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Abstract: Non-destructive testing (NDT) enables the determination of internal defects and flaws
in concrete structures without damaging them, making it a common application in current bridge
concrete inspections. However, due to the complexity of the internal structure of this type of
concrete, limitations regarding measurement point placement, and the extensive detection area,
accurate defect detection cannot be guaranteed. This paper proposes a method that combines the
Simultaneous Algebraic Reconstruction Technique with Group Sparsity Regularization (SART-GSR)
to achieve tomographic imaging of bridge concrete under sparse measurement conditions. Firstly,
a mathematical model is established based on the principles of the tomographic imaging of bridge
concrete; secondly, the SART algorithm is used to solve for its velocity values; thirdly, on the basis of
the SART results, GSR is applied for optimized solution processing; finally, simulation experiments
are conducted to verify the reconstruction effects of the SART-GSR algorithm compared with those of
the SART and ART algorithms. The results show that the SART-GSR algorithm reduced the relative
error to 1.5% and the root mean square error to 89.76 m/s compared to the SART and ART algorithms.
This improvement in accuracy makes it valuable for the tomographic imaging of bridge concrete and
provides a reference for defect detection in bridge concrete.

Keywords: non-destructive testing; travel time tomography; bridge concrete; joint iterative
reconstruction algorithm; group sparsity; dictionary learning

1. Introduction

The continuous growth in the number of bridges has led to increasingly severe issues
relating to bridge problems. To address the problem of detecting the quality of bridge con-
crete, research on new bridge acoustic tomography imaging technology for bridge concrete
structures has been conducted. These studies present innovative approaches that address
the gap in detecting the internal structures of concrete bridges. Their application is crucial
for enhancing the quality and durability of bridges during construction. Currently, the
methods for detecting internal defects in concrete structures mainly include the ultrasonic
pulse method, radar-scanning method, impact-echo method, and infrared imaging method.
Numerous scholars at home and abroad have studied these methods. Bond et al. have
used travel time tomography to detect cracks in large volumes of dam concrete. Vassilios K
Karastathis [1] applied acoustic tomography technology to assess the quality of concrete in
the Marathon Dam. Nandipati S M Ravi Kumar [2] et al. have used ultrasonic technology
to evaluate the uniformity of concrete and reveal defects. Alexey Tatarinov [3] et al. have
developed an ultrasonic testing method to monitor the development of railway sleeper
cracks. Monika Zielifiska [4] et al. have proposed a theoretical model combined with CT
scanning to determine the propagation paths of elastic waves in reinforced concrete. Thiele
Marc [5]. et al. applied acoustic measurements to study the fatigue process of concrete
and found that ultrasonic measurements could identify damage characteristics caused by
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loading. Donda Dipesh P [6] et al. have used ground-penetrating radar (GPR) technology
to detect defects and rebar in concrete under laboratory conditions. Singh Sanjeev K [7]
et al. adopted millimeter-wave evaluation methods to non-destructively test the damage
inflicted on concrete structures after a fire, and compared with ultrasonic pulse velocity
technology, they found consistent results between the two. Ma Ye [8] et al. have developed
a method using geological radar to detect moisture-related damage in asphalt pavements,
introducing the “Accumulated Intralayer Peak” (AIP) index to detect spalling damage. Jin
Hui [9] et al. have studied the feasibility of using infrared thermography to detect internal
voids in concrete bridges. Brigitte Goffin [10] et al. have used infrared thermography
technology to study the effect of the corrosion of epoxy-coated and uncoated steel bars in
concrete on thermal behavior. Sam Ang Keo [11] et al. have explored the application of mi-
crowave infrared thermography technology in detecting defects in carbon-fiber-reinforced
polymer-composite-material-reinforced concrete specimens. Abd Wahid Rasib [12] et al.
used thermal imaging sensors carried by drones to inspect surface defects in concrete on
bridge columns, successfully identifying surface defects. Scherr Johannes F [13] et al. used
an impact-echo scanner to perform delamination detection on large areas of concrete bridge
decks, determining repair needs and checking repair effects. Liu Yun Lin [14] et al. have
conducted experimental and numerical studies to detect debonding defects in the grouting
layer of precast concrete components using the impact-echo method. Hu Xinmin [15] et al.
have proposed a multi-parameter comprehensive interpretation method based on impact
elastic waves for the rapid detection of internal defects in hydraulic tunnel linings. Li
Hongyan [16] et al. compared the reconstruction effects of iterative algorithms such as the
Algebraic Reconstruction Technique (ART) and the Simultaneous Algebraic Reconstruction
Technique (SART) and, based on this, developed an improved algebraic reconstruction
method. They calculated two consecutive results using the algebraic reconstruction algo-
rithm and then used the weighted sum of these two results to correct the reconstructed
image, obtaining iterative results and reducing noise.

However, due to high experimental costs, the testing conditions for large-scale bridge
concrete structures cannot guarantee a dense distribution of sensor measurement points,
and data collection is prone to errors. Therefore, the imaging accuracy is not ideal, which
is a problem awaiting resolution. To address the above issues, in this paper, we propose
a combination of the Simultaneous Algebraic Reconstruction Technique (SART) and the
Group-Sparsity Regularization (GSR) method. The application of group sparsity technol-
ogy provides new possibilities for improving image reconstruction accuracy and efficiency.
By utilizing the characteristics of internal defects in concrete and their structural properties,
group-sparsity-derived prior knowledge can handle incomplete or noise-corrupted obser-
vation data, accurately recover the original signal, and facilitate more precise and stable
image reconstruction.

2. Related Work

Nandipati S M Ravi Kumar et al. evaluated the uniformity of concrete structures
by using ultrasonic pulse velocity testing and contour-mapping techniques. The contour
maps generated from ultrasonic pulse velocity values displayed the level of structural
uniformity. The color variations in the contour maps revealed defects present in the
structure. This interpretation strategy provided an appropriate tool for the assessment of
concrete structures. Alexey Tatarinov et al. developed a method in which ultrasonic testing
is used to monitor and quantify transverse and longitudinal cracks in railway prestressed
concrete sleepers. By analyzing the time and energy parameters of ultrasonic signals, this
method was successfully used to evaluate the fast and slow components of ultrasonic
propagation to monitor the depth development and temporal changes of cracks. Field
studies conducted on Latvian railways verified the effectiveness of this method through
comparative tests on healthy and cracked sleepers. The research results indicate that as
cracks gradually expand, the propagated ultrasonic signal attenuates, and the ratio of slow-
to-fast wave components tilts towards the slow waves. Combining these two manifestations
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can provide quantitative indicators of the cracking process. Monika Zieliriska M et al.
developed a new theoretical model to determine the propagation paths of elastic waves in
reinforced concrete structures, including transmission, refraction, reflection, and creeping
waves along the surface of inclusions. Wave propagation measurements were performed
on the surfaces of beams and computerized tomography scanning was conducted to image
the internal structures of the test beams. Ray tracing was employed via a hybrid method
combining network theory with ray-bending methods. The research results show that
ultrasonic tomography has great potential in detecting debonding in reinforced concrete
structures. Thiele Marc et al. employed acoustic measurement techniques to investigate
the fatigue process of concrete under compressive cyclic loading. In addition to acoustic
emission and ultrasonic signal measurements, they incorporated other non-destructive
testing methods, including strain, elastic modulus, and static strength measurements.
Their research revealed that ultrasonic measurements could determine the anisotropic
characteristics of fatigue damage caused by uniaxial loading. Additionally, it was observed
that fatigue damage does not seem to be entirely composed of crack structures parallel to
the load direction; crack structures perpendicular to the load and local compaction may
also be components of fatigue damage. However, the aforementioned methods do not
consider the limitations of defect detection in large bridge structures and are unable to
guarantee the detection accuracy of large structural concrete. For instance, for long-span
suspension bridges or cable-stayed bridges, due to their complex dynamic characteristics
and large scale, the ultrasonic pulse method may struggle to accurately capture all the
important modal information.

Donda Dipesh P et al. used ground-penetrating radar (GPR) technology in a laboratory
environment to study signal attenuation by simulating concrete slabs under different depth
and material conditions to detect surface and subsurface defects and rebar in concrete.
Their research revealed that the reflection amplitudes of different materials at varying
depths show significant changes, which is helpful for the detection and standardized
quantification of subsurface cracks in actual structures such as concrete bridge decks,
providing decision makers with useful information for monitoring and planning structural
repairs and reinforcement. Singh Sanjeev K et al. introduced a novel millimeter-wave
evaluation method as a non-destructive test for assessing fire damage in concrete civil
engineering structures. They utilized an active millimeter-wave radar system operated
at 55-65 GHz to measure the complex relative permittivity of concrete cube specimens.
The results were compared with those obtained using the existing ultrasonic pulse velocity
technique, revealing good consistency between the two methods. Ma Ye et al. developed
a method in which ground-penetrating radar (GPR) is used to detect moisture-related
spalling damage in asphalt pavements. A finite-difference time-domain-based simulation
program was used to study the propagation of GPR signals in damaged pavements, and
a new GPR indicator, “Accumulated Intralayer Peak” (AIP), was introduced to detect
spalling damage in asphalt pavements. Field data and visual inspection of pavement
cores were used to verify the effectiveness of this indicator and assess its performance
in detecting the presence, extent, and severity of spalling in sections of pavement in use.
Their study found that voids in the middle of the AC layer produce positive peaks in the
reflected waves, while intermediate peaks at the interface between the AC layer and the
base layer are related to spalling damage in the AC layer. The AIP had accuracy rates of
80% for predicting spalling and 96% for predicting non-spalling sections, demonstrating its
effectiveness in detecting spalling damage in flexible pavements. The above methods, when
applied to actual defect detection in bridge concrete, can be affected by reinforcing-bar
reflection signals, leading to masking or confusion of defect signals. For example, during
the inspection of a certain bridge, some anomalous signals were detected using ground-
penetrating radar (GPR). Upon careful analysis, it was found that these anomalies did not
originate from defects within the concrete itself but rather from irregular arrangements or
corrosion of the reinforcing steel.
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Jin Hui et al. explored the application of infrared thermography in detecting internal
voids and other structural issues in concrete bridges. They analyzed the relationship
between concealed structural issues in concrete bridges and infrared thermograms at the
theoretical level and verified the feasibility of using infrared thermography to detect internal
defects in bridge concrete by establishing a concrete model containing inner = cavity defects
and conducting finite element simulation analysis. The final finite element simulation
results coincided with those from theoretical analysis, indicating that it is feasible to use
infrared thermography technology to detect internal defects in bridge concrete. Brigitte
Goffin et al. studied the effect of corrosion on the thermal behavior of reinforced concrete
without electromagnetic influence using infrared thermography technology in order to
detect epoxy-coated and uncoated steel reinforcement. By inserting heating elements into
the steel reinforcement embedded in the concrete and heating the steel from the inside, the
thermal response of the concrete surface was monitored using an infrared camera. The
thermal measurement results showed that corrosion thermally isolated the uncoated steel
reinforcement, while the corrosion of epoxy-coated steel reinforcement caused the coating
to crack, thereby reducing the thermal isolation effect of the steel. Sam Ang Keo et al.
studied the application of microwave infrared thermography technology in detecting and
characterizing defects in carbon-fiber-reinforced polymer-composite-material-reinforced
concrete specimens. A numerical model including a broadband pyramid horn antenna and
specimens was constructed, and two operating modes were experimentally validated using
a 360-watt power system. The study found that MIRT has the potential to become a method
for identifying defects in CFRP-strengthened concrete structures. Wahid Rasib et al. utilized
thermal imaging sensors mounted on drones to inspect surface defects in concrete bridge
columns, successfully identifying surface defects through close-range remote sensing NDT
and image segmentation analysis. However, the above methods do not consider the impact
of external environmental conditions on the detection results during the actual infrared
thermography technology detection process. Taking the quality inspection of an exterior
wall finish on a high-rise building as an example, when using infrared thermography for
the inspection, it was found that due to strong sunlight and high wind speeds on the day
of the inspection, the temperature distribution on the exterior wall surface was uneven,
leading to some misjudgments. After multiple repeated inspections and adjusting the
timing of the inspections (choosing cloudy days or evenings), more accurate results were
finally obtained.

Scherr Johannes F et al. conducted a large-scale on-site study using a prototype
impact-echo scanner on a concrete bridge deck with a total area of over 17,000 square
meters to detect delaminations. Manual tapping and coring confirmed the presence of
delaminations in known sections of the bridge. An extensive damage assessment helped
determine the need for repair work. Based on the preliminary results, two lanes of the
bridge were repaired, and the bond between new and old concrete was examined in
subsequent tests. Liu Yun Lin et al. performed experimental and numerical studies on the
grout layer between precast concrete components in assembly structures, aiming to detect
interface-debonding defects based on impact-echo theory. Their study tested the impact-
echo method under two different boundary conditions. The results showed that thickness
frequencies near free boundaries were significantly lower than those near fixed boundaries.
Additionally, boundary effects disappeared when the impact location was sufficiently far
from any boundaries. These characteristics can be used to identify debonding layers in
grout joints (i.e., near free boundaries). Additionally, blind on-site tests were conducted to
verify the effectiveness of the proposed impact-echo method in detecting debonding layers.
Hu Xinmin et al. introduced a multi-parameter comprehensive interpretation method
based on impact elastic waves for the rapid detection of internal defects in hydraulic
tunnel linings. This method combines common time offset domain analysis, frequency
domain analysis, and two-dimensional Rayleigh wave methods for data processing. The
aforemetioned detection method involves single data acquisition and multi-parameter joint
interpretation. Concrete lining tests were conducted on physical models and compared
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with results obtained using the ground-penetrating radar method to validate the accuracy
of the method. Coring results demonstrated the reliability and stability of the method in
practical applications. Compared to ultrasonic pulse methods, radar scanning, and infrared
imaging, the impact-echo method shows clear advantages in terms of operational simplicity,
testing speed, cost-effectiveness, and applicability for defect detection in bridge concrete.
However, its imaging precision still needs improvement due to limitations in the number
of measurement points.

3. Construction of Travel-Time Tomography Model

The impact of the excitation hammer on the ground produces spherical surface wave
signals that propagate along straight rays (the normal family of wave fronts). The travel
time of elastic waves during transmission is determined by their speed and geometric
paths. The time it takes the elastic waves to reach the sensor array is known as the travel
time, which is a function of both the velocity and path.

t= 1alr:/Salr 1)
Lo L

Among the variables above, t represents the travel time; v represents the velocity of
shockwave propagation; s represents the slowness; L is the ray path; and dr indicates a
segment of the ray path.

The test area is divided into several regular or irregular grid cells, as shown in Figure 1.
The equation mentioned above is discretized, and for the i-th ray,

ti:iaijsj,i:1,2,~~,I,j:1,2,o~,] (2)
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Figure 1. Sketch of the travel-time tomography model.

In the equation given above, t; represents the I-dimensional vector of travel times for
the i-th ray from the seismic source to the sensor; Sj denotes the slowness value of the j-th
grid; a;; represents the coefficient projection of the i-th ray passing through the j-th grid,
and it is a matrix with dimensions of I x J; I is the number of rays, which is the product of
the number of activation points and the number of sensors; and ] is the number of grids.
The equation, written in matrix form, is

AS=T 3)

Here, T = (t1,1p...t 1)/ is the M-dimensional column vector of travel times for each
ray; S = (51,52 ...S ])’ is the slowness value of discrete units, which is the reciprocal of
wave speed and an N-dimensional column vector; and A is a matrix of the order of I x J.
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This paper is primarily concerned with solving Equation (3) to determine the value of S.
In the equation mentioned above, the elements of matrix T represent the travel times of rays
passing through the grids, which are related to the length of the propagation ray passing
through the grids between the stimulation point and the sensor. Not all grids are traversed
by rays; therefore, Equation (3) constitutes a large system of underdetermined equations.

4. Methods for Solving the Tomographic Imaging Model of Internal Structural Velocity
Field in Bridges

4.1. Simultaneous Algebraic Reconstruction Technique

In the process of actual bridge concrete wave velocity inversion reconstruction, due
to the sparse sensor measurement points and the limited quantity of data obtained, the
analytical equation set for bridge concrete is a large underdetermined system of equations,
making it difficult for traditional solution methods to obtain more precise solutions. To
address the issue of underdetermined systems of equations, a series of inversion algo-
rithms have emerged, including the Back Projection Technique [17] (BPT), the Algebraic
Reconstruction Technique [18] (ART), the Simultaneous Iterative Reconstruction Technique
(SIRT), and the Simultaneous Algebraic Reconstruction Technique (SART).

The Algebraic Reconstruction Technique (ART) is a relatively old iterative reconstruc-
tion algorithm proposed by R. Gorden and others that has been widely used in image
reconstruction. Compared to analytical reconstruction methods, iterative methods offer
significant advantages, as they can yield good reconstruction results even when some
projection data are missing. The iterative steps of the ART method involve correcting each
ray in each image sequentially, which not only requires a large amount of computation but
also poses issues regarding slow convergence and potential non-convergence. Equation (4)
represents the iterative formula for the ART algorithm:

iy J
a
s}‘“ = s;( +A 7 J (ti - ﬂijS?) 4)
2 =1
Y

Here, s;-‘ is the slowness of the j-th grid after k iterations; ¢; is the actual measured
projection value; a;; is the projection coefficient, that is, the length of the i-th ray in the j-th
grid; A is the relaxation factor, usually in the range of (0, 2); and k is the number of iterations.

The Simultaneous Algebraic Reconstruction Technique [19] (SART) is an iterative
reconstruction algorithm that combines the advantages of both the ART and SIRT. Unlike
the ART, which updates only the pixels affected by a single ray in each iteration, the SART
considers the information from all rays within a projection view to update the pixels. This
helps reduce image noise and improve reconstruction quality. Compared to the SIRT, the
SART maintains a similar noise suppression ratio but enhances the convergence speed of
the algorithm, making it more suitable for handling large-scale problems. The basic idea
behind the SART algorithm is to calculate the projection error for all rays at each projection
angle and then update each pixel in the image. This effectively reduces the noise introduced
by the ART algorithm, as shown in Equation (5):

L &
\ ajj - | ti— '21 aijs;
k+1 _ ck . =
sit =5+ ; ; )
aij = L aj
=1 =1

Here, s;-‘ is the slowness of the j-th grid after k iterations; t; is the actual measured
projection value; a;; is the projection coefficient, that is, the length of the i-th ray in the j-th
grid; A is the relaxation factor, usually in the range of (0, 2); k is the number of iterations;
and [ is the projection collection.
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4.2. Group Sparse Modeling

Sparsity has become an important characteristic of natural images, and regularization
techniques for sparsity are widely used in image-processing methods such as denoising,
image restoration [20], and resolution enhancement. Sparse models assume that every
pixel in an image can be represented by elements in a dictionary, which are extracted from
natural images by taking image patches and training them.

Group sparsity is an optimization technique [21] that extends the sparsity constraint
from individual elements to groups of elements, operating at the group level. This extension
allows algorithms to effectively maintain relationships between elements within a group
while achieving a more effective sparse representation in complex scenarios [22]. In group
sparsity, the non-local self-similarity principle is used to find image blocks with similar
structures [23], thereby further enhancing the effectiveness of sparse representation.

Feature extraction is a key step [24] that determines the quality of subsequent pro-
cessing. To effectively describe and classify image textures, it is necessary to identify more
indicators that reflect image characteristics and extract these features through analysis and
transformation. Traditional block-sparsity-based methods typically divide images into
multiple overlapping small blocks and process them separately, but this can result in a
loss of similarity between blocks, leading to inaccurate sparsity coefficients. Therefore,
this paper proposes a new method that does not process image blocks in a fixed order but
rather clusters similar blocks together to form a group-based sparse representation. This
approach considers both sparsity and non-local similarity in images, allowing for adaptive
handling of image sparsity within the group domain. Figure 2 is a schematic of how the
group sparsity method is employed in image reconstruction.

' )

Step 1: Adaptive Construction of grou
= o = p' Adjacent blocks

Similarity .

ii v l —
i LE;*"}

Step 2: Sparse Representation of Group Representation
i = [a' Gt G| coefficient
A A - 5
: : E
x
v v

[N g o =k 1) | L)
feon

=

S =Dl

b

A
* 2

Dy = [deers Famer s

Group S, . Representation

Matrix

= J

Figure 2. Adaptive group sparsity image reconstruction.

The specific steps are as follows: Divide the bridge concrete slowness distribution S
with a size of X into n regions Sy (k = 1,2, - - - , n) with dimensions of /Bx x /Bx. For each
region Sy, use the Structure Similarity Index Measure (SSIM), denoted as SSIM(Si, S;) > ¢,
as the metric for assessing the similarity between wave velocity regions. ¢ is a preset
threshold value. Within an L x L search window, select ¢ blocks that are most similar to the
region block gi. The Structure Similarity Index is defined as

(2pxpty + C1)(20xy + Cp)

SSIM(x,y) =
S T N G WU oY)

(6)

where p, and pi, are the mean values of each block, which are used as estimated values, 0
and ¢y are the standard deviations of each block, used as contrast estimation values. The
higher the SSIM value, the more similar the values of x and y.
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Translate the blocks into column vectors, and then arrange the c regions found in
matrix form, denoted as Sg, (Sg, = {Skal, SGyx2: 77, Skac})- This matrix is referred to
as the similar block group, as defined by Equation (7).

Sc, = Hg, (S) @)

Here, Hg, (+) is the Sg, operator extracted from S, and H gk (+) is the transposition of
Hg, (+). Transposing it allows each group S, to be placed back into the corresponding k po-
sition in the reconstructed image, with the other positions being equal to zero. To obtain the
slowness values for the entire detection area, average all the groups yielding, Equation (8).

1H£k(sck) o
Hgk(lBs ><c)

S:

lm= TTM:

k

where 1, « is a matrix of the same size as Sg,, filled with ones.

According to the above definition, it can be clearly seen that each image block Sy
corresponds to a group Sg,. It can also be seen in Figure 3 that the construction of Sg,
clearly involves the utilization of the self-similarity of the image.

S S,

‘m
=

Figure 3. Construction of similar block groups.

Due to various factors affecting the signals received during actual measurement, it is
not possible to directly determine the values of S and Sg, from the signals obtained. There-
fore, an estimate mg, of S, is used for dictionary learning. Singular Value Decomposition
(SVD) is then applied to mg,, resulting in Equation (9).

r
me, = quZGngk = anckxi(quXivgkXi) 9
i=1

where r is the number of atoms in Dg,: Mmg, = {Wmckxlfﬂmckxzr' Mgy, };
Y, = dia §Mmg, is a diagonal matrix with all elements off the main diagonal being zero;

UG, xi is a column of Ug, ; and v(T;kX ; is a column of V, . For each group, the definition of
each atom in Dg, is given by Equation (10).

T
AGyxi = UG xiVG, xi (10)

Finally, we define the corresponding adaptive dictionary Dg, for each group, as
expressed in Equation (11).

Dg, = {dg,x1,dG,x2, -+ ,dGxr } (11)

In practical applications, the sparse representation model is defined as
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1
a = argming | T—AS 53 +A | « | (12)

In the aforementioned formula, the first term is the data fidelity term, and the second
term is the regularization term. The role of the regularization parameter A is to control the
degree of sparse representation. The GSR model represents the slowness S of the entire
detection area by using the dictionary Dg, to find sparse coefficients ag, »;

n r
Z Hg;k(zl aGkXideXi)

S = DGIXG = k=1 7 = (13)
Z HGk(lexc)
k=1
where Dg is the merging of D¢, , and a is the merging of a, .
Therefore, the GSR model corresponds to
1 2
ac = argming || T — AS|3 + Aflag| (14)

Upon comparing Equation (12) with Equation (14), it is evident that the primary differ-
ence between them lies in the units used for dictionary learning and sparse representation.
In Equation (14), the GSR model employs groups as the basic units for sparse represen-
tation, which are formed by similar patches found within a search window. Therefore,
during the process of dictionary learning and sparse coding, not only is the local sparsity
of slowness distribution utilized but also its non-local similarity, leading to better slowness
reconstruction results. Moreover, Equation (14) introduces adaptive dictionary learning for
each group instead of learning a general dictionary for all patches, which not only reduces
the complexity of learning but also facilitates large-scale optimization.

4.3. SART Algorithm Based on Group Sparsity Regularization

The SART-GSR algorithm primarily consists of two steps: The first step involves
using the SART (Simultaneous Algebraic Reconstruction Technique) algorithm to solve
Equation (3), resulting in solution S. The second step involves the use of § as the initial
value and the use of GSR (Graduated Non-Convexity for Sparse Reconstruction) to reduce
artifacts in 5, leading to solution S via the optimization of Equation (14). This is equivalent to

1 A
min= || S — 8§ |2 +A || ac |1, X.t. S = Dgag (15)
tXG,SZ

Since Equation (15) is a combinatorial optimization problem, it cannot be solved
directly. This paper adopts the Iterative Soft Thresholding (IST) algorithm to iteratively
optimize Equation (15). The iteration process is as follows:

PN

m' =8 —5(8" - 8§) (16)
1
§"1 = argming || S —m' |3 +A || ag [l (17)

where ¢ is a constant and t represents the number of iterations. In each iteration, the
following equation holds [23]:

1 1 ¢
< I8 =m" 3= 2 X Il xG, — mq, |1} (18)
k=1

where K = By X ¢ x n. Substituting Equation (18) into Equation (17) yields Equation (19).

n
. 1
min Z(E | S, —mg, |17 +7 | ag, [l1) (19)
G k=1
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where T = AK/X. Equation (19) is equivalent to several subproblems:

1
argmin | Sg, — mg, 12 +7 | ag, It (20)
Gk

In Equation (20), since S;, = Dg, &g, and mg, = DGkank, and due to the unitary
invariance of dictionary Dg,, it follows that

|| DGkaGk - DGkrlmGk ”%:” &G, — Umck H% (21)
Therefore, Equation (20) can also be written as
in_ 5 22
argming Il «G, =g, 2 +7 |l acy Il (22)
Therefore, the approximate solution to Equation (21) is
EGk = hard (iymck, V 2T> = Nmg, ¥ 1[abs(fm¢, ) — V21 (23)
where hard (-) denotes the hard thresholding operator. 1[abs (i, ) — v27]) is defined

as follows:
1,abs(17mck) > /27

24
O,abs(nmck)g 2T (24)

[abs (g, ) — V27 = {

The overall process of the SART-GSR algorithm is shown in Figure 4.

Initialization parameters:

t=0,B,,4¢A4

Calculate equation (16),
update m, construct mg,

'

h J

The iteration || Comduct iterations Use § as the For each group,calculate
result is used on equation (3) ;mtf;]l v(a;lsuli equation (11) to update D, > D5 | | f = ¢ 4]
as the initial using the SART or e. calculate equation (23) to update
algorithm algorithm P —a R
value. iteration. Gy G
A

A

Figure 4. Flowchart of the SART-GSR algorithm.

5. Algorithm Verification and Result Evaluation
5.1. Algorithm Verification

To verify the feasibility and effectiveness of the established algorithm, a numerical
simulation was conducted by employing concrete as a homogeneous medium model.
Both low-speed and high-speed anomaly areas were set up within the model. A self-
developed program was used to perform theoretical numerical calculations on the estab-
lished medium model, and the results were analyzed to validate the feasibility and accuracy
of the algorithm.
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To study the impact of defects in different regions on the computed tomography
imaging results, three defect conditions were designed. The medium model designed for
this numerical simulation is shown in Figure 5, with dimensions of 30 m by 24 m. The grid
is divided into 24 rows and 30 columns, totaling 720 cells, each measuring 1 m by 1 m.

[ Low-velocity o Normal velocity .High—velocity B Low-velocity Normal velocity Low-velocity
y zones: 4000n/s zones: 2500m/s

zones: 2500n/s y zones: 4000m/s zones: 5000m/s zones: 4000m/s

>

X X X

(First Medium Model Condition) (Second Medium Model Condition) (Third Medium Model Condition)

Figure 5. Medium model conditions.

The parameters for the GSR-SART algorithm were set as follows: A = 1, with a block
size of 4 x 4, meaning Bx = 16, and the number of similar blocks ¢ = 9. The measurement
scheme for the concrete medium model involves placing measurement points (the green
dots in the figure) on the upper and lower edges of the component, with excitation sources
(the red dots in the figure) arranged in two central columns, thereby achieving a double-
through coverage result for the area being tested. There are 11 measurement points on each
side and 10 excitation points on each side of the middle part, totaling 2 x 11 x 20 = 440 ray
paths, as shown in Figure 6.

Figure 6. Media simulation ray paths.

To more intuitively compare the imaging effects and accuracy of the iterative recon-
struction algorithms, namely, the ART, SART, and SART-GSR, these three algorithms were
employed to perform inverse imaging of the aforementioned concrete medium wave veloc-
ity model. In order to smooth the wave velocity values of adjacent grids, the reconstruction
results were processed with smoothing. The original number of grids was expanded one
hundred times, and the wave velocity data were interpolated within two-dimensional
data [25], making the tomographic imaging results more reasonable. The imaging results
are shown in Figures 7-9.
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Figure 7. Medium model condition 1 algorithm reconstruction effect diagram.
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Figure 9. Medium model condition 3 algorithm reconstruction effect diagram.

By comparing the reconstruction results yielded by the three algorithmes, it is evi-
dent that there are significant differences in the reconstruction effects around the defect
areas. The ART algorithm produces relatively blurry imaging effects at the edges of ab-
normal wave velocity areas, whereas the SART and SART-GSR algorithms yield better
reconstruction effects near the defect areas. By comparing Figures 5-7, it can be seen that
the reconstructed image obtained via the SART is affected by internal noise, while the
overall reconstruction effect of the SART-GSR algorithm is superior, with a more complete
internal structure, showing a particularly clear advantage in the reconstruction results of
non-abnormal areas. In summary, this algorithm offers better reconstruction effects than
other reconstruction algorithms.
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5.2. Field Experiment

To further compare the reconstruction effects of the three algorithms, a field experi-
ment was designed for additional validation. This experiment involved casting concrete
specimens with dimensions of 300 mm x 300 mm x 20 mm. The grid was divided into
30 x 30 sections, resulting in a total of 900 grid cells, each measuring 1 dm x 1 dm. The
measurement scheme for the specimens was consistent with the simulation experiments,
involving the placement of sensors on the edges of the top and bottom sides of the compo-
nent, with excitation sources arranged in the two central columns, as shown in Figure 10.
The layout of the field experiment is shown in Figures 11 and 12.

Figure 12. Diagram of the entire layout of the sensors in the field experiment.

In order to more accurately verify the effects of three reconstruction algorithms and
reduce the influence of random errors on the results, a measurement repeatability experi-
ment was carried out: under the condition of ensuring the same measurement conditions,
multiple repeated measurement experiments were conducted, and finally the average
values of multiple measurements were used as experimental data for analysis. The imaging
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results are shown in Figure 13. Comparing the reconstruction effects of the three algorithms
reveals that the ART and SART algorithms are severely affected by noise interference. The
SART-GSR algorithm effectively reduces the noise interference from the field experiment
environment, resulting in an overall better reconstruction effect.
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Figure 13. Diagram of the algorithm reconstruction effect in the field experiment.

5.3. Evaluation of Reconstruction Effects

In scientific research and engineering applications, the accuracy of algorithms directly
affects the reliability and application value of the final results. To objectively evaluate the
performance of the three algorithms in terms of reconstruction accuracy in the region of
interest, we utilize two main error parameters, relative error (RE) and root mean square
error (RMSE), to measure the reconstruction effects of different methods. The RE was
primarily used to assess how closely each of the three methods’ actual reconstruction effects
for each grid within the wave velocity reconstruction area match the initial velocity model of
the concrete medium. This parameter objectively reflects the accuracy of the reconstructed
velocity model. Meanwhile, the RMSE was used to evaluate the deviation between the
reconstruction results of the different algorithms across the entire area and the initially
established medium model. The smaller its value, the closer the reconstruction results
are to the initially set values, indicating better reconstruction effects. Overall, the RE and
RMSE provide objective criteria for evaluating the accuracy of the different reconstruction
methods from local and global perspectives, respectively. The equations for calculating the
RE and RMSE are shown in Equations (25) and (26), respectively.

Erp = Wi =911 1000 (25)

~

(26)

In the formulae, | represents the total number of grids in the reconstructed wave
velocity field area; y; represents the reconstruction result of each reconstruction algorithm
in the j-th grid; and 7; represents the theoretical true value in the j-th grid.

The Figure 14 shows the relative errors of the wave velocity values reconstructed by
the ART, SART, and SART-GSR algorithms compared to the set wave velocity values in
720 grids within the reconstruction area. In the relative error graph, it can be seen that
within the reconstruction area, the relative errors of the ART and SART algorithms are
higher, and the relative error in some individual grids far exceeds the average error. This is
due to reasons such as sparse ray coverage, which leads to some pixels in the reconstruction
area not being correctly updated during the iteration process, especially at the edges of
the image, where this effect is more pronounced. Additionally, truncation of projection
data can also cause large errors in individual data points in the reconstructed image. The
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missing data from the truncated parts result in related areas of the image not being correctly
updated. The relative errors of the SART and SART-GSR are significantly lower than those
of the ART algorithm. Compared to the SART algorithm, SART-GSR has an overall lower
relative error, and it effectively reduces the high relative errors in some grids. The relative
error of the wave velocity data for each grid reconstructed by the SART-GSR algorithm
was maintained at approximately 1.5%, which is about a 4% reduction compared to the
ART algorithm and an approximately 1.5% reduction compared to the SART algorithm.
Furthermore, we evaluated the root mean square error (RMSE), which was used as an
indicator to measure the overall error after reconstruction. As shown in Figure 15, it
represents the RMSE values of the three algorithms in five experiments. The average RMSE
values of the three algorithms in five experiments are shown in Table 1.

15
SART
ART
SART-GSR
10
X
S
5]
(0]
2
® |
[ i i
’ i ” ’
| Il
"! ! ik w ’
i‘ 1) i

! | | ‘:'Ir! iy ‘l'u 'z|| ‘l 'Il b
W ﬂm umul'lwm,{ wn.u
gr|d number

Figure 14. Relative error of velocity in each grid.
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Figure 15. Comparison chart concerning the root mean square errors of the different algorithms.
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Table 1. Comparison of reconstruction errors for different algorithms.

Reconstruction Algorithm ART SART SART-GSR
RMSE (m/s) 209.28 171.24 89.76

In the table above, it can be seen that the root mean square errors (RMSEs) of the wave
velocity reconstructions for the three different algorithms are 209.28 m/s, 171.24 m/s, and
89.76 m/s, respectively. From these two sets of error data, it is evident that the method
proposed in this paper has a significantly lower overall wave velocity reconstruction error
than the other two algorithms. By comprehensively analyzing both the relative error and the
RMSE, it can be further directly demonstrated that the method proposed in this paper has
more advantages in the reconstruction of bridge concrete wave velocities. Looking at the
overall effect of data reconstruction, it is evident that the results obtained by the SART-GSR
method have smaller errors than the simulated medium model, and the imaging error is
significantly less than that of the ART and SART algorithms. Upon comprehensive analysis,
in the practical development and application of wave velocity imaging for bridge concrete
defect detection, among the three algorithms tested, the SART-GSR method achieves the
best tomographic imaging results.

6. Conclusions

To further improve the precision of tomographic imaging for bridge concrete, this
paper proposes a wave velocity inversion reconstruction method based on the SART-GSR
algorithm. Through simulation experiments and comparison with traditional methods
such as the ART and SART algorithms, the results show that the SART-GSR algorithm not
only enhances the quality of the reconstructed image but also helps to preserve the edge
information of the internal structure of the concrete. This allows for better identification
and localization of defects, verifying the feasibility of the proposed method. It has signifi-
cant implications for achieving rapid and efficient health monitoring and assessment of
concrete structures and holds practical engineering value for the tomographic imaging of
bridge concrete.

7. Discussion

The SART-GSR algorithm shows great potential in improving the accuracy and ef-
ficiency of health monitoring for concrete structures, with a wide range of application
prospects. In dam maintenance, this technology is expected to provide high-resolution
three-dimensional images useful for accurately identifying and locating defects, ensuring
the structural safety of dams and thereby reducing the risk of catastrophic failure. Airport
runway safety monitoring could also benefit from this technology; regular inspections can
allow the timely detection and repair of problem areas, ensuring runway smoothness. In
the field of historical-building preservation, internal inspections can be conducted without
damaging the original structure, allowing for the timely detection and addressal of issues.
The monitoring of underground pipelines and tunnels has also become more efficient,
helping to prevent accidents. Additionally, this technology is promising for the remote
monitoring of offshore platforms and oil-drilling platforms, reducing personnel risk and
enhancing safety. These applications demonstrate the significant value and potential of the
SART-GSR algorithm across various infrastructures and industrial sectors.
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