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Abstract: Electroencephalography (EEG) is a non-invasive technique widely used in neuroscience
to diagnose neural disorders and analyse brain activity. However, ocular and myogenic artifacts
from eye movements and facial muscle activity often contaminate EEG signals, compromising signal
analysis accuracy. While deep learning models are a popular choice for denoising EEG signals,
most focus on removing either ocular or myogenic artifacts independently. This paper introduces a
novel EEG denoising model capable of handling the simultaneous occurrence of both artifacts. The
model uses convolutional layers to extract spatial features and a fully connected layer to reconstruct
clean signals from learned features. The model integrates the Adam optimiser, average pooling,
and ReLU activation to effectively capture and restore clean EEG signals. It demonstrates superior
performance, achieving low training and validation losses with a significantly reduced RRMSE value
of 0.35 in both the temporal and spectral domains. A high cross-correlation coefficient of 0.94 with
ground-truth EEG signals confirms the model’s fidelity. Compared to the existing architectures and
models (FPN, UNet, MCGUNet, LinkNet, MultiResUNet3+, Simple CNN, Complex CNN) across a
range of signal-to-noise ratio values, the model shows superior performance for artifact removal. It
also mitigates overfitting, underscoring its robustness in artifact suppression.

Keywords: electroencephalography (EEG); EEG denoising; artifact removal; convolutional neural
network (CNN); deep learning (DL)

1. Introduction

Healthcare has been significantly revolutionised with the emergence of artificial in-
telligence, machine learning, and deep learning. Machine learning and deep learning
algorithms have been employed to address several challenges. Deep learning and ma-
chine learning have advanced detection, diagnosis, and treatment across various medical
conditions. Significant progress has been made in cancer detection [1-3], pathological anal-
ysis [4], cardiac health issues [5,6], neurological analysis [7,8], and in developing surgical
innovations and training systems, including robotic surgical systems [9] and surgical skill
assessments [10].

Electroencephalography, commonly known as EEG, is a measure of the electrical
activity generated by the brain. The electrical activity is generated by the neuron’s synapses
in the cerebral cortex of the brain. These electrical impulses are produced due to the
synchronised activity of the neurons depending on the state of consciousness along with
mental and emotional functions [11,12]. Emotion recognition [13], identification of different
brain activities [14], and pathology analysis [15] are prominent applications of EEG.

EEG is a non-invasive method used to monitor the brain’s electrical activity by placing
multiple electrodes on the scalp to detect and record the electrical impulses generated by the
brain. The quality of the EEG is often distorted by several factors, including noise from the
electrodes and physiological artifacts like ocular and myogenic artifacts. Myogenic artifacts
originate from the activity of the frontalis and temporalis muscles, while eye movement
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and eye blinks give rise to ocular artifacts. Eye movement creates a sudden change in the
resting potential of the retina. This change in the potential is captured by the electrodes and
appears as sharp spikes in the EEG signals which spread rapidly through the neural activity
detected by the electrodes. Meanwhile, blinks are more pronounced and show up as slow
and large voltage changes [16]. Muscular artifacts can be recorded all over the scalp, and
the extent of the disturbance depends on the movement of different muscles like the jaw,
neck, or face [17], or the changes caused by breathing and sweat-induced electrodermal
interference. These artifacts appear as sharp changes in EEG signal amplitude, which mimic
brain activity and are often misinterpreted as brain activity. As depicted in Figure 1 [18],
the resting EEG signals are shown at the top while the EEG signals containing artifacts
originating from eye movement and eye blinks are shown in Figures 1a and 1b, respectively,
while Figure 1c depicts how heavily EEG signals are corrupted when there is muscle tension
in the area surrounding the electrodes. This misinterpretation of EEG signals increases the
need to detect and remove artifacts by processing contaminated EEG signals.
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Figure 1. Artifacts in EEG: (a) eye movement, (b) eye blinks, and (c) muscle tension [18].
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To remove these artifacts, several techniques have been developed so far. Some of
the techniques that are widely used employ independent component analysis (ICA) [19],
wavelet transform [20], and adaptive filters [21]. Although these methods have been used
widely, they require expert observation for identifying the artifacts as well as significant
loss alongside artifact removal. Due to these reasons, deep learning-based models have
become significant tools to perform the task of artifact removal. Several studies have
presented models for artifact removal such as a U-net-based model [22] for EOG artifact
removal which made use of U-net [23], a model commonly used for image segmentation.
Another study [24] presented four benchmark networks for artifact removal along with a
benchmark EEG dataset to be utilised in further studies. These studies have been successful
in removing artifacts from EEG signals. However, these techniques are generally effective
at removing either ocular artifacts or myogenic artifacts but not both simultaneously.

Existing artifact removal techniques often eliminate clean EEG signals along with
ocular and myogenic artifacts from the contaminated EEG data, which reduces the accuracy
of the resulting signal. Moreover, existing denoising models are particularly effective only
when addressing a single type of artifact; however, they struggle to maintain accuracy
when dealing with multiple types of artifacts due to the increased complexity within the
EEG signals. This limitation largely stems from unsuitable model parameters, making
existing models inefficient for simultaneously removing multiple artifacts.

This paper presents a novel deep learning framework explicitly designed to signifi-
cantly advance the accuracy of EEG signal analysis by addressing the simultaneous removal
of ocular and myogenic artifacts. The proposed model employs a sophisticated architecture
combining convolutional layers with a fully connected layer, further optimised using the
ReLU activation function. A distinguishing feature of this approach lies in its ability to min-
imise information loss during the artifact removal process, which is critical for preserving
the integrity of the original EEG signals. Additionally, the model’s performance is further
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refined using the Adam optimiser, accompanied by the meticulous fine-tuning of network
parameters, ensuring optimal convergence and artifact suppression.

The remainder of this paper is structured as follows: Section 2 is a literature review of
existing conventional and deep learning-based models used for denoising and removing
different artifacts from EEG signals. Section 3 investigates the dataset used and the network
structure of the neural network. The processes and parameters for training the neural
network are also discussed in this chapter. Section 4 presents and discusses the results
obtained from training and evaluating the neural network. Finally, Section 5 presents the
conclusions drawn from the research, outlines the limitations of the proposed work, and
identifies directions for future research.

2. Literature Review

The presence of unwanted components in EEG results in inaccurate and erroneous
analysis. To remove these artifacts efficiently, different denoising methods have been
developed over the years. This review explores both conventional denoising techniques
and deep learning-based approaches to provide an overview of their effectiveness in EEG
artifact removal.

2.1. Conventional Methods for Artifact Removal

Independent component analysis (ICA) is used to remove the components which
differ from the original EEG signal and to generate noise-free EEG signals [25]. ICA-based
software EEGlab v7.1.7.18b [26] was also employed in research [19] to detect and remove
the artifacts present in EEG signals. Although effective, it removes the clean EEG signals as
well as the noisy signals without any manual check. Another study [21] was also successful
in removing artifacts from EEG signals while reducing the loss of information by making
use of ICA, multivariate empirical mode decomposition (MEMD), and factor analysis (FA).

Another study [27] employed both ICA and regression in combination to break the
signal components in independent components and to identify the noisy components.
The noisy components were then removed by linear regression. This method was highly
effective at removing the artifacts but failed to preserve clean EEG signals, as components
of clean EEG signals were also removed. To rectify this loss of EEG signals, a moving
average filter (MA) smoothed the signal by replacing each data value with the average
neighbouring values after ICA to preserve the signals.

Wavelet transform has also been widely used to discard the artifacts present in EEG
signals. A past study [28] detected and removed the wavelets containing artifacts and
utilised the remaining wavelets to reconstruct a clean EEG signal. This resulted in an
inaccurate reconstruction of the denoised EEG signal when used on its own. When it
is used with ICA [29], ICA separates the artifacts from the EEG signals while discrete
wavelet transform removes these artifacts and reconstructs a clean EEG signal. The main
limitation of using wavelet transform turns out to be the inaccurate reconstruction of the
denoised EEG signal and mistakenly eliminating parts of the clean EEG signal along with
the artifacts.

In addition to wavelet transform and ICA-based methods, EEG denoising is also
performed by using other signal processing techniques such as filters, including adaptive
filters [30], the Kalman filter [31], and the Wiener filter [32]. High-pass filters [33] and band-
pass filters [34] are also capable of rejecting certain frequencies relating to artifacts present
in the EEG signal. Though effective, there is a risk of removing the frequency components
of the EEG signal along with the artifacts which can result in data loss. Other methods
include variational mode decomposition [35], empirical mode decomposition [36,37], and
canonical correlation analysis (CCA) [38]. These EEG-denoising techniques rely on linear
transformation and assumptions which can result in data loss during the analysis and
reconstruction of the EEG signals. CCA-based methods for removing EMG artifacts de-
termine the artifact and then decompose it into multiple uncorrelated components [38],
assuming a low autocorrelation between the artifacts. CCA has also been used along with



Electronics 2024, 13, 4576

40f19

Ensemble EMD (EEMD) to remove artifacts from EEG signals [39] where the values of
autocorrelation are chosen by trial and error. Because of the dependency of these methods
on presumptions, these methods are unreliable even though they have shown effective
performance in removing artifacts from contaminated EEG signals.

2.2. Deep Learning-Based Methods for Artifact Removal

Deep learning approaches to EEG denoising allow a focus towards data-driven al-
gorithms for artifact removal, which has been made possible due to the availability of
data-rich datasets. Deep learning-based models are also capable of removing EEG artifacts
in an integrated manner to capture dependencies and perform optimisation for artifact
removal throughout processing.

EEG reconstruction [40] and EEG data augmentation [41] are the most noticeable
examples of EEG-related analysis techniques. Several deep learning-based models have
been implemented and utilised to remove artifacts from EEG signals. Some of them are
GAN:Ss [42], recurrent neural networks (RNNs) [43,44], Simple and Complex CNNs [45], and
auto encoders [46]. Four benchmark networks have also been presented [24] for ocular and
myogenic artifacts individually along with a benchmark EEG dataset. Although effective,
the networks behave poorly on low noise levels. Even though deep learning-based models
have made significant progress in the denoising of EEG signals and the removal of artifacts
present in them, they still lack in terms of robustness, dataset, generalisability, and the
artifacts removed. Based on these drawbacks, there is a need to make improvements
in the existing models and to develop the appropriate performance metrics to evaluate
EEG-denoising models.

3. Methodology
3.1. Problem Definition

Ocular and myogenic artifacts corrupt the EEG signal while EEG is being performed
on a patient. The artifacts are independent of clean EEG signals and are called background
noise. The individual impact of ocular and myogenic artifacts on clean EEG signals is
expressed in Equation (1).

Y=X+Ax(Ao+ Am) (1)

where Y, X, Ap, and Ay, represent the noisy EEG signal, clean EEG signal, ocular artifact
and myogenic artifacts, respectively, while A represents the relative contribution of an arti-
fact, which can be controlled with the value of the signal-to-noise ratio (SNR). Equation (2)
expresses how the SNR is calculated.

RMS(X)

SNR =10l0g 23 A x (Ag + An)

()

EEG signals are denoised to remove the artifacts present in noisy EEG signals to
estimate and predict clean EEG signals. The deep learning model learns the artifacts “Ap’
and ‘A’ present in the noisy EEG signal ‘Y utilising the knowledge learned during the
training process and filters out any artifacts present in the noisy EEG signal ‘Y.

The main aim of this paper is to effectively denoise noisy EEG signals using the
proposed model to remove the simultaneously occurring ocular and myogenic artifacts
present in noisy EEG signals. The model is implemented to remove the ocular and myogenic
artifacts present in the noisy EEG signals by optimising the existing model [43]. The model’s
performance is optimised using the Adam optimiser to adaptively adjust learning rates,
enhancing the training process and fine-tuning the network parameters while extending
the training and validation processes to achieve faster convergence and lower losses. This
also results in the increased accuracy of the denoising model [43] and expands its capability
to remove various types of artifacts. Figure 2 depicts the proposed framework for the
simultaneous EOG-EMG artifact removal.
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Figure 2. Framework for simultaneous EOG-EMG artifact removal.

3.2. Dataset

The dataset used in this paper for training and testing purposes was EEGdenoiseNet [24].
EEGdenoiseNet was developed for the purpose of training and testing denoising models
based on deep learning and is already pre-processed. The dataset contains 4514 clean EEG
signals, 3400 EOG (Electrooculogram) signals, and 5598 EMG (Electromyograph) signals.
The noisy EEG segments were produced by introducing noise using EOG and EMG signals
into the clean EEG signals, which were taken as the ground-truth clean EEG signals.

3.3. Generation of Contaminated EEG Signals

The ground-truth and the noisy EEG signals were generated using the EOG, EMG,
and EEG signals from the EEGdenoiseNet dataset for training and testing purposes. As the
artifacts were introduced in the EEG signals linearly, the EOG and EMG segments were
added into the clean EEG signals from the dataset to generate the noisy EEG signals, as
shown in Figure 3.

EMG Signals EOG Signals Clean 55(9 Signal

AX (Ap +Ay)

Noisy EEG Signals
v

Figure 3. Noisy EEG signal synthesis.

Figure 4 displays a comparison of the clean EEG signal and the contaminated EEG
signal. The clean EEG signals and the noisy EEG signals were used to train and validate
the model.
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Figure 4. Example segment of simultaneous EOG- and EMG-corrupted EEG signal and ground-truth
EEG signal.

As the simultaneous EOG-EMG-contaminated EEG signals were obtained by the
random and uncorrelated addition of the artifacts into the clean EEG signals, this provided
a controlled baseline for various models’ generalisability without dealing with the more
complex nature of locked EOG-EMG signals which depends on the high correlation of
both artifacts. This approach also provides a wide range of signal-noise profiles and helps
prevent generalisability on extremely specific artifact trends.

To synthesise the noisy EEG signals containing both artifacts, the 5598 EMG segments
were randomly added to 3400 EOG segments. Some of the EOG segments were reused so
that the dimensions of the EOG and EMG segments are the same, as previously conducted
in other studies [23,43,44] for adding only EMG segments into the EEG signals to generate
EMG-corrupted EEG signals. The combined EOG-EMG artifact segments were added to the
EEG signals by dropping some segments to match the dimensions of the clean EEG dataset,
which was 4514, and by making use of the fact that the artifacts were linearly additive
in nature. Before addition, the combined EOG-EMG artifact segments and clean EEG
segments were shuffled and split into training, validation, and testing datasets, with 80%
assigned for training, 10% for validation, and 10% for testing, by following the techniques
outlined by the authors of EEGdenoiseNet [24] and existing studies [47,48].

To synthesise the noisy EEG signal, the segments from both sets were linearly com-
bined with each other according to Equation (1), with signal-to-noise ratios ranging from
—7dB to +2dB. To expand the size of the training, validation, and testing sets, the combined
EOG-EMG segments and the clean EEG segments were linearly recombined ten times in a
random manner, at an interval of one. The use of various SNR values across noisy EEG
signals introduced diversity in the data for the model to better generalise and to avoid
exposure to familiar noise patterns. As a result, the training set consisted of 36,110 pairs,
while the validation set and the testing set consisted of 4520 and 4510 pairs, respectively.

3.4. Network Structure

The deep learning model for denoising the EEG signals was developed with seven 1-D
convolutional blocks, each having two convolutional layers with the same number of filters
followed by a ReLU function. The size of the filters increased exponentially from 32 to 2048
in each block with a kernel size of 3 and a stride of 1. The increase in filter size in each block
increased the feature dimensions, enabling different numbers of features to be extracted in
each layer. An average pooling layer with a size of 2 followed each convolutional block
which reduced the spatial dimensions of the block output, but the number of channels
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remained the same. The pooling layer was followed by a dropout layer with a rate of 0.5 to
introduce randomness to the system to make it robust and avoid overfitting.

To make the output data compatible with the dimensions of the fully connected layer,
a flatten layer was used after the last convolutional block. The two-dimensional output
from the convolutional block was converted into a one-dimensional vector by stacking all
the values in a single dimension. This enabled the flatten layer to lose the spatial dimension
but retain its depth, which acted as the channel information and was input to the fully
connected layer to reconstruct the EEG signal and produce a denoised EEG signal. In the
fully connected layer, each neuron was connected to the subsequent neuron in the flatten
layer, resulting in a reconstructed EEG signal which was the prediction required from the
model and had the same dimensions as the input given to the model. The network structure

for the model is displayed in Figure 5.
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Figure 5. Network structure for the denoising model.

A detailed view of how the EEG signal dimensions change after every layer is shown in
Figure 6. The number of channels or the width of the EEG signal in the output dimensions
relate to the number of filters applied in the convolution layer while extracting the feature.
The length of the EEG signal decreases exponentially as features are extracted.
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Figure 6. EEG signal dimensions in each layer.

3.5. Training and Validation

To overcome the problem of instability and slow convergence during training, the
clean and noisy EEG signals were normalised. Normalising the clean and noisy EEG
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signals scales the signals to a common range for time points, which maintains the relative
relationship between the signals and avoids the potential overfitting of the model. The
normalised signals can be represented by Equations (3) and (4).

X:X/Uy (3)

Y=Y/oy (4)

where oy is the standard deviation of the noisy EEG signal “Y’. The normalised noisy EEG
signal ‘Y” is input to the neural network.

The neural network is defined as a non-linear function f that uses the samples from the
noisy EEG signal distribution to map it to another distribution with respect to the learnable

parameter 6, which is the estimation of the denoised EEG signal ’)N(i’, with the difference

between X; and X; being minimised, as shown in Equation (5).

X; = f(Y:,6) (5)

The loss function of minimum square error (MSE) is used as a quality-of-service
parameter to determine the accuracy of the predictions made by the model. It was used
during the training and validation processes to reduce the difference between the clean
and ground-truth EEG signals. The MSE determined the optimal weight parameters by
making use of the stochastic gradient descent (SGD), which in turn used a random set of
samples for noisy and clean EEG signals to update the training parameters, as shown in
Equation (6).

1 N2
Lmvse = NE?:l <Xi - X; ) (6)

where ‘N’ is the total number of samples in an epoch while X; and X; are the ith samples of
the input normalised clean EEG signals and the denoised EEG signals, respectively.

The Adam optimiser was used during the training process to determine the optimal
set of parameters to minimise the difference between the denoised and clean EEG signals.
The Adam optimiser had the learning rate set as 0.0001 and the exponential decay rate for
moment 37 was set as 0.5, while the rate for 3, was set as 0.9 with the value of epsilon ¢ set
as 1078, The model was trained for 50 epochs with a batch size of 20 of randomly generated
training datasets. The Adam optimiser was used for training as it can achieve a faster
convergence because of the adaptivity of the learning rate according to the exponential
decay for the first moment (mean) and second moment (uncentered variance), which
helps the model to avoid overfitting. The learning rate was determined and adjusted
according to the first and second moments. This adaptivity of the learning rate optimised
the convergence of the network. The bias correction of the Adam optimiser also helped
in estimating the moments more accurately for faster convergence. The Adam optimiser
works more efficiently than the RMSprop optimiser because of the multiple moments as
compared to the single moment in the RMSprop optimiser. By setting the value 3; as
0.5, the network adapted faster to the changes in the gradients, while when 3, was set as
0.9, more importance was given to the current gradients and less weight was given to the
previous gradients. With RMSprop having only squared gradients () as opposed to the
mean and squared gradients (31 and 3,) in the Adam optimiser, this gives past gradients
more influence over the current gradient and slows down convergence. After training,
the model was validated on an unseen dataset to determine the model performance and
learning and to see if the model was overfitting. The model with the least validation loss
was saved as the best-trained model and its weight parameters were used.

The proposed model was trained, validated, and tested 10 times along with Simple
CNN and Complex CNN networks [24] to increase the statistical power of the results. The
Simple CNN was made up of four 1-D convolutional layers with a filter size of 64 in each
block along with a kernel size of 3 and stride of 1. Each convolutional layer was followed
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by a batch normalisation layer along with an activation function of ReLU and dropout rate
of 0.3. The Complex CNN stacked multiple residual blocks with kernel sizes of 3, 5, and 7
in three parallel branches with a 1-D convolutional layer at the beginning and at the end
of the residual blocks. The Complex CNN used a dense layer at the end to produce the
denoised EEG signals. All the networks were implemented in Python 3.10.12 in Google
Colab with V100 GPU.

3.6. Evaluation

The trained model was then evaluated on a test dataset to observe the model’s capabil-
ity to generalise features across any unseen and new data. This evaluation was performed
to ensure the model’s robustness, reliability, and its applicability in a real-life setting where
the model obtained new and unseen data as the input. The model denoised the unseen
contaminated EEG signal, and the denoised EEG signal was evaluated by using three
evaluation metrics: the relative root mean square error in the time domain RRMSE (t),
the relative root mean square error in the frequency domain RRMSE (f), and the cross
correlation (CC) between the input noisy signal and the denoised EEG signal obtained as
the model’s output.

The relative root mean square error in the time domain RRMSE (t)(see Equation (7)) and
the relative root mean square error in the frequency domain RRMSE (f), (see Equation (8))
measure how well the denoised signal matches the properties of the input signal in time and
frequency domain, respectively. A smaller value of both error functions displays a greater
similarity between the signals.

_ RMS(f(Y) — X)

RRMSE (1) = —~pJc ™) o
RRMSE(f) — RM5(P 151\%]; ;YS)I)D(XI)J)SD(X)) o

The cross correlation (CC) between the input noisy signal and the denoised EEG signal
determines the similarity and alignment between both signals (see Equation (9)). A higher
value of cross correlation indicates a high similarity between both signals.

_ Cov(f(Y),X)
V/ Var (f(Y))Var (X)

Additionally, the quality of the denoised EEG signals was also evaluated by estimating
the power ratios in all five frequency bands of EEG signals i.e., Delta (0.5-4 Hz), Theta
(4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-80 Hz) [49], against the power
of the EEG signal across the whole spectrum. The average power ratios were calculated for
the clean EEG signal, noisy EEG signal, and denoised EEG signal. As the ocular artifacts and
myogenic artifacts existed in the frequency ranges of 0.2—4 Hz and 20-100 Hz, respectively,
the power ratio helped determine how well the denoised EEG signals related to the clean
EEG signals in the spectral domain. For the closely related numerical value of the estimated
power ratio for the denoised EEG signal and clean EEG signal in any frequency band, the
predicted signal was more closely related to the ground-truth signal. On the contrary, the
estimated power ratio for the noisy EEG signal and the clean EEG signal were expected to
be numerically far apart. The power ratio for a frequency band was calculated by dividing
the power of a frequency power band with the total power of the whole signal.

©)

4. Results and Discussion
4.1. Training and Validation Losses

The mean square error (MSE) was calculated while training and validating the model’s
performance on the dataset. MSE was used as a quality-of-service parameter to determine
the accuracy of the predictions made by the model. The proposed model was trained
and validated using EEG signals which were contaminated with EOG and EMG artifacts
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simultaneously. As depicted in Figure 7, the MSE decreased significantly as the model was
trained, which indicates that the model effectively generalises the features of the artifacts it
learns during training. The decrease in validation loss also indicates that the model avoids
the problem of overfitting. As the gap between the loss values of training loss and the
validation loss is small, this indicates that the model can learn and generalise meaningful
features from the training data.

Training and Validation Loss

Mean Squared Error (MSE)

T T T T
10 20 30 40 50
Epochs

—— Training Loss —— Validation Loss
Figure 7. Training and validation loss curves for the proposed model.

4.2. Benchmark Networks

To observe the performance of the proposed model in comparison to the existing
models, the Simple CNN and the Complex CNN were trained and tested on the same
contaminated EEG with simultaneous myogenic and ocular artifacts. As shown in Figure 8,
the validation loss of both the networks increases significantly while the training loss
decreases significantly. These loss behaviours indicate that the models are unable to
generalise the data and are overfitted. The gap between the training loss curve and the
validation loss curve indicates the overfitting of the models and generalisation on the
training data with both artifacts simultaneously.

Training and Validation Loss

Simple CNN Complex CNN
0.10
0.12 4
o 0104 0.08
v
£
5  0.08
= 0.06
w
T 0061
I
]
- 0.04 -
»n  0.04-
(-
m
[}
= 0024 0.02
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epochs
—— Training Loss —— Validation Loss

Figure 8. Training and validation loss curves for Complex CNN and Simple CNN.

The value for the training and validation losses are also higher for Simple CNN and
Complex CNN as compared to the values for the proposed model. This indicates that the
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proposed model performs better in capturing and learning the underlying features of the
contaminated EEG signals than the other two networks.

4.3. Temporal and Spectral Evaluation of the Proposed Model

The performance of the proposed model was quantified on three evaluation metrics,
i.e., RRMSE (t), RRMSE (f), and CC. The values of these parameters indicate the simi-
larity between the ground-truth EEG signals and the denoised EEG signals obtained as
the output from the model. The model was evaluated firstly by combining the EEG signal
segments with the noise segments by assigning a value of SNR randomly. This was carried
out to estimate the average performance of the model. The values of RRMSE (t) and
RRMSE (f) were both found to be 0.35, while the CC value of the signals was calculated
to be 0.94. The value of CC indicates a high similarity and a strong correlation between
the ground-truth EEG signals and the denoised EEG signals. Moreover, the values of
RRMSE (t) and RRMSE (f), show that the model’s predictions are accurate to a great
degree and have lesser room for error. This also shows the ability of the model to be equally
effective at capturing the signal characteristics in both the time and the frequency domains.

As compared to the proposed model, the Simple CNN and the Complex CNN have
higher values for the RRMSE (t) and RRMSE (f) and a smaller value of cross correlation
between the denoised and the clean EEG signals. This difference in the values indicates
that the proposed model effectively captures the subtle temporal and spectral properties of
the noise present in the EEG signals and produces a denoised signal which greatly aligns
with the clean EEG signal. The smaller values of the RRMSE (t) and RRMSE (f) shown
in Table 1 also indicate that the proposed model can overcome the constraints of Simple
CNN and Complex CNN. The higher cross correlation (CC) values of the proposed model
demonstrate that the model is effectively able to remove the present artifacts in the EEG
signal better than Simple CNN and Complex CNN.

Table 1. Evaluation metrics for combined artifact removal.

Model RRMSE(t) RRMSE(f) cc
Complex CNN 0.56 0.56 0.85
Simple CNN 0.65 0.65 0.82
Proposed 0.35 0.35 0.94

Table 2 displays the power ratios of the frequency bands for the clean EEG signal,
contaminated EEG signal, and the denoised EEG signals predicted from the proposed
model. The power ratios across the frequency bands for the denoised EEG signal and the
clean EEG signal are closely related numerically, which displays a high similarity between
the signals.

Table 2. Power ratios for various frequency bands for denoised, EOG-EMG-contaminated, and clean
EEG signals.

Frequency Band Delta Theta Alpha Beta Gamma
Clean EEG Signal 0.383637 0.420987 0.104761 0.071334 0.019281
Denoised EEG Signal 0.376995 0.449792 0.097245 0.059614 0.016354

EOG-EMG-Contaminated

EEG Signal 0.294029 0.187648 0.056777 0.101412 0.360134

The EOG artifacts lie in the Delta band while the EMG artifacts have high frequency
components and exist in the Gamma band, as further visualised in Figure 9. The power
ratio can be seen as having a high value in the Delta and Gamma bands because of the
EOG and EMG artifacts. This can be seen to have been drastically reduced in the denoised
EEG signal.
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Figure 9. Power ratios for various frequency bands for denoised, EOG-EMG-contaminated, and clean
EEG signals.

To observe the performance of the proposed model, the noisy EEG signal along with
the ground-truth EEG signal and the denoised EEG signal were plotted in the time domain
and spectral domain. Figure 10 displays the average performance of the proposed model
in the time domain when the signal was contaminated with a range of SNR values to
introduce randomness in noise behaviour. The denoised signal closely related to the clean
EEG signal, which displays the robustness of the model in removing artifacts.

Normalised Amplitude

0 100 200 300 400 500
Number of Samples

EOG-EMG-Contaminated EEG Signal —— Clean EEG Signal —— Denoised EEG Signal

Figure 10. Temporal representation of denoised, EOG-EMG-contaminated, and clean EEG signals.

Figure 11 displays the model performance in the spectral domain. The high-frequency
power in the contaminated signal appears to be reduced significantly in the denoised EEG
signal while preserving the lower-frequency characteristics. This indicates a significant
decrease in artifacts present in contaminated EEG signals without losing any of the main
EEG characteristics.



Electronics 2024, 13, 4576

13 of 19

1071+
1072
N 1073
I
)
T
5 1074
1075 4
10-64
0 10 20 30 40 50 60 70 80 90 100 110 120
Frequency (Hz)
—— Denoised EEG Signal EOG-EMG-Contaminated EEG Signal —— Clean EEG Signal
Figure 11. Spectral representation of denoised, EOG-EMG-contaminated, and clean EEG signals.
4.4. Evaluation on Different Signal-to-Noise Ratios
The proposed model was trained and evaluated on the training and testing data with
specific signal-to-noise ratios (SNR) to observe the effect of varying noise on the model
performance. The SNR value determined the amount of noise present in the training,
validation, and testing data. The value of the SNR ranged from —7dB to +2dB. Table 3
displays and compares the values of RRMSE (t), RRMSE (f), and CC across the values of
SNR values of —7dB to +2dB with the contaminated EEG signal with both EOG and EMG
artifacts simultaneously with the existing methods [50]. It can be observed from Table 3
that the proposed model performs exceptionally well overall but especially at lower values
of the SNR. Multi-ResUNet3+ performs better than the proposed model at higher values
of the SNR for RRMSE (f) but not at the lower values of the SNR. The cross correlation is
higher than those of the other models at all the values of the SNR, which further displays
the effectiveness of the proposed model.
Table 3. A comparison of estimated performance metrics (CC, RRMSE in time and frequency
domains) across different SNR values.
Model
Evaluation SNR  Proposed Complex Simple MultiResUNet3+ LinkNet MCGUNet UNet FPN
Metric (dB) Model CNN CNN [50] [51] [52] [23] [53]
-7 0.677 1.033 1.0411 0.783 0.7989 0.7235 0.8122 0.8198
—6 0.599 0.974 0.932 0.7446 0.7638 0.6873 0.7755 0.7758
-5 0.543 0.869 0.839 0.6883 0.7088 0.6479 0.7189 0.7247
—4 0.462 0.751 0.779 0.544 0.6532 0.5688 0.6524 0.6706
RRMSE(#) -3 0.405 0.673 0.677 0.5675 0.5994 0.5222 0.6017 0.6108
-2 0.374 0.557 0.555 0.5108 0.537 0.4476 0.5458 0.5438
-1 0.357 0.480 0.468 0.448 0.4821 0.4526 0.4736 0.4871
0 0.312 0.395 0.393 0.3821 0.4143 0.4054 0.4207 0.4338
1 0.322 0.327 0.326 0.3375 0.361 0.4183 0.3603 0.3664
2 0.266 0.274 0.278 0.2867 0.3107 0.3744 0.3118 0.3159
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Table 3. Cont.

Model
Evaluation SNR  Proposed Complex Simple MultiResUNet3+ LinkNet MCGUNet  UNet FPN
Metric (dB) Model CNN CNN [50] [51] [52] [23] [53]

-7 0.677 1.03 1.0411 0.7017 0.7447 0.6894 0.7903 0.8202

—6 0.599 0.974 0.932 0.6587 0.7399 0.6364 0.7429 0.7842

-5 0.543 0.869 0.839 0.5879 0.6578 0.569 0.7088 0.7222

—4 0.462 0.751 0.779 0.4401 0.5969 0.4865 0.5999 0.6812

RRMSE(f) -3 0.405 0.673 0.677 0.4768 0.5559 0.4545 0.5341 0.6136
-2 0.374 0.557 0.555 0.4188 0.4972 0.3698 0.5027 0.5216

-1 0.357 0.480 0.468 0.3577 0.4262 0.3625 0.4287 0.4701

0 0.312 0.395 0.393 0.2934 0.3576 0.3196 0.3763 0.3945

1 0.322 0.327 0.326 0.2542 0.3048 0.3374 0.3134 0.3289

2 0.266 0.274 0.278 0.2142 0.2622 0.2722 0.2635 0.2716

-7 0.758 0.620 0.618 0.6152 0.5987 0.663 0.5856 0.5771

—6 0.807 0.654 0.670 0.6582 0.6512 0.7113 0.6355 0.637

-5 0.849 0.705 0.719 0.7188 0.7052 0.7449 0.7039 0.6932
—4 0.889 0.751 0.753 0.8191 0.7576 0.8009 0.7565 0.7507

-3 0.915 0.804 0.802 0.8245 0.801 0.8388 0.8003 0.7982

cc -2 0.928 0.856 0.858 0.858 0.8431 0.8819 0.8428 0.8423
-1 0.934 0.889 0.895 0.8934 0.878 0.8832 0.8803 0.8757

0 0.950 0.922 0.923 0.9228 0.9098 0.9094 0.9084 0.9025

1 0.948 0.946 0.946 0.9411 0.9332 0.91 0.9325 0.9308

2 0.964 0.962 0.961 0.9579 0.9506 0.9277 0.9504 0.9496

Similarly, Figures 12 and 13 also display the values for RRMSE (t), RRMSE (f),
and CC plotted against the integer values of the SNR from —7dB to +2dB. The values
for evaluations metrics are recorded for different values of the SNR to determine the
effectiveness of the proposed model as compared to the other existing models when the
amount of noise varies.
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Figure 12. A comparison of estimated performance metrics (CC, RRMSE in time and frequency
domains) across different SNR values.
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Figure 13. Comparison of performance between the proposed model and the existing models.

Table 3 lists the models’ performances by calculating the values of RRMSE in the time
and frequency domains and CC between the denoised and clean EEG signals. The bold
numerical values display the best performing model for each parameter and the SNR value.
When the value of the SNR is low, i.e., the amount of noise present in the contaminated
EEG signal is greater than the clean EEG signal, the proposed model performs exceptionally.
The values of RRMSE in both time and frequency domains are much lower than these
values for the Complex CNN and Simple CNN. This indicates the better performance of the
proposed model in removing artifacts from the contaminated EEG signals and producing
denoised EEG signals as compared to the Complex CNN and Simple CNN.

However, when the value of the SNR starts to increase, the performance of the Simple
CNN and Complex CNN improves greatly, and their performances are on par with the
proposed model. The values for RRMSE in both the time and frequency domains and CC
for the proposed model are almost identical when the SNR is above +2dB, indicating the
robustness and effectiveness of the proposed model.

The proposed model performs exceptionally better than the existing models, especially
atlow SNR values, for all three evaluation metrics. RRMSE (t) remains consistently lower
than the rest of the models for all values of the SNR between —7dB and +2dB. For values
of the SNR higher than —-1dB, MultiResUNet3+ performs better than the proposed model.
The proposed model, however, still performs comparatively better than the rest of the
models on lower SNR values of —7dB to —5dB, proving its capability to remove artifacts
when high noise is experienced. The cross correlation between the predicted signal and the
clean EEG signal remains higher than the existing models throughout the range of values
of the SNR.
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Figure 12 graphically represents the trend in the values of RRMSE (t), RRMSE (f),
and CC between the noisy EEG signals and the denoised EEG signals at various values
of the signal-to-noise ratio across different models for the removal of the simultaneous
EOG-EMG artifacts.

Figure 13 displays the spread of the values of the evaluation metrics for the proposed
model and the existing models when the simultaneous EOG-EMG artifacts are removed.
The values for the RRMSE (t) and RRMSE (f) are observed to be at the bottom of the plot
while the cross correlations appear at the top of the plot.

5. Conclusions

The aim of this study is to denoise EEG signals by removing simultaneously occurring
ocular and myogenic artifacts by employing a deep learning-based neural network. The
denoising model is a convolutional neural network (CNN) architecture consisting of seven
convolutional blocks, each having two 1D convolutional layers with a ReLU activation
function, followed by an average pooling layer and a dropout layer, and a fully connected
layer at the very end of the architecture. The convolutional blocks extract noise features from
the contaminated EEG signal, while the fully connected layer reconstructs the denoised
signal. Trained with the Adam optimiser, with batch sizes of 20 and 50 epochs, the model’s
effectiveness is evaluated using the mean squared error (MSE), the relative root mean
square error in the time and frequency domains (RRMSE (t) and RRMSE (f)), and cross-
correlation (CC) coefficients. The low training and validation losses, alongside the close
alignment between the RRMSE and CC values, demonstrate the model’s capability to
accurately capture and denoise artifacts without overfitting. The model achieves RRMSE
values of 0.35 in the time and frequency domains and a CC value of 0.94, which indicates a
strong alignment of the reconstructed EEG signals with clean EEG signals.

A comparative analysis shows that the proposed CNN model performs better than the
existing models to remove simultaneously occurring EOG-EMG artifacts. The developed
model exhibits lower training and validation losses, lower RRMSE values in both the time
and frequency domains, and higher cross-correlation (CC) coefficients than the benchmark
models. Additionally, the proposed model has been proven to perform better than the
existing models when evaluated across a range of signal-to-noise ratios (SN R) from —7dB to
+2dB. It achieves significantly lower RRMSE values and higher cross-correlation coefficients
when compared with existing models in the literature, highlighting its ability to remove
artifacts at different noise levels.

A limitation of this study is the absence of spatial convolution layers which restricts its
capability to capture spatial patterns across different channels. This can result in ineffective
performance in a multi-channel EEG configuration and effects the generalisability of the
model. Moreover, the lack of phase-locked EOG and EMG data for model generalisation
also limits the model’s ability to learn the correlated noise patterns when the EOG and
EMG signals occur in a synchronised pattern. A potential limitation of this study is the risk
of data leakage, as often experienced by algorithms developed for medical applications, as
the datasets available for model training are limited.

For future work, incorporating spatial convolutional layers in the existing model can
widen the scope of the study. The existing model can be further enhanced to monitor and
remove artifacts from real-time EEG signals effectively as well as to perform a study with
correlated EOG and EMG signals. The model can also be evaluated using different valida-
tion methods and datasets to further enhance and explore its performance. It can also be
enhanced to remove both physiological and non-physiological artifacts in a clinical setting.
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