
Citation: Yu, L.; Sun, X.; Albelaihi, R.;

Park, C.; Shao, S. Dynamic Client

Clustering, Bandwidth Allocation,

and Workload Optimization for

Semi-Synchronous Federated

Learning. Electronics 2024, 13, 4585.

https://doi.org/10.3390/

electronics13234585

Academic Editor: Domenico Rosaci

Received: 10 September 2024

Revised: 11 November 2024

Accepted: 15 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamic Client Clustering, Bandwidth Allocation, and Workload
Optimization for Semi-Synchronous Federated Learning
Liangkun Yu 1 , Xiang Sun 1,* , Rana Albelaihi 2 , Chaeeun Park 1 and Sihua Shao 3

1 Department of Electrical Engineering, University of New Mexico, Albuquerque, NM 87131, USA;
liangkun@unm.edu (L.Y.); chaeeun0618@unm.edu (C.P.)

2 Department of Computer Science, College of Engineering and Information Technology, Onaizah Colleges,
Onaizah 56447, Saudi Arabia; ralbelaihi@oc.edu.sa

3 Department of Electrical Engineering, Colorado School of Mines, Golden, CO 80401, USA;
sihua.shao@mines.edu

* Correspondence: sunxiang@unm.edu

Abstract: Federated Learning (FL) revolutionizes collaborative machine learning among Internet of
Things (IoT) devices by enabling them to train models collectively while preserving data privacy. FL
algorithms fall into two primary categories: synchronous and asynchronous. While synchronous
FL efficiently handles straggler devices, its convergence speed and model accuracy can be compro-
mised. In contrast, asynchronous FL allows all devices to participate but incurs high communication
overhead and potential model staleness. To overcome these limitations, the paper introduces a
semi-synchronous FL framework that uses client tiering based on computing and communication
latencies. Clients in different tiers upload their local models at distinct frequencies, striking a balance
between straggler mitigation and communication costs. Building on this, the paper proposes the
Dynamic client clustering, bandwidth allocation, and local training for semi-synchronous Federated
learning (DecantFed) algorithm to dynamically optimize client clustering, bandwidth allocation,
and local training workloads in order to maximize data sample processing rates in FL. DecantFed
dynamically optimizes client clustering, bandwidth allocation, and local training workloads for
maximizing data processing rates in FL. It also adapts client learning rates according to their tiers,
thus addressing the model staleness issue. Extensive simulations using benchmark datasets like
MNIST and CIFAR-10, under both IID and non-IID scenarios, demonstrate DecantFed’s superior
performance. It outperforms FedAvg and FedProx in convergence speed and delivers at least a 28%
improvement in model accuracy, compared to FedProx.

Keywords: federated learning; client selection; workload optimization; model aggregation;
semi-synchronous

1. Introduction

With billions of connected Internet of Things (IoT) devices being deployed in our phys-
ical world, IoT data are produced in a large volume and high velocity [1]. Analyzing these
IoT data streams is invaluable to various IoT applications, which can provide intelligent
services to users [2]. However, most IoT data streams contain users’ personal information,
and so users are not willing to share these IoT data streams with third parties but keep them
locally, thus leading to data silos. To break data silos without compromising data privacy,
federated learning (FL) has been proposed for enabling IoT devices to collaboratively and
locally train machine learning models without sharing their data samples [3,4].

In general, there are four steps in each global iteration during the FL process: (1) Global
model broadcasting, i.e., an FL server initializes a global model and broadcasts it to all
the selected clients via a wireless network. (2) Local model training, i.e., each selected
client trains the received global model over its local data samples to derive a local model
based on, for example, stochastic gradient descent (SGD). (3) Local model update, i.e., each

Electronics 2024, 13, 4585. https://doi.org/10.3390/electronics13234585 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234585
https://doi.org/10.3390/electronics13234585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4062-2499
https://orcid.org/0000-0002-6954-7018
https://orcid.org/0000-0002-5208-9743
https://orcid.org/0000-0002-2831-9860
https://doi.org/10.3390/electronics13234585
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234585?type=check_update&version=2

Electronics 2024, 13, 4585 2 of 16

selected client uploads its local model to the FL server via the wireless network. (4) Global
model update: the FL server aggregates all the received local models to generate a new
global model for the next global iteration. The global iteration continues until the global
iteration is converged. A typical example of using FL is training next-word prediction
models [3] such as those used in text input systems on smartphones. In this scenario,
multiple smartphones collaborate to train a shared model for predicting the next word in a
message but without sharing the actual text messages or any private data with each other.
Instead, the devices send only model updates to a central server, which aggregates these
updates and updates the global model. This ensures that sensitive data, like the content of
users’ messages, remains on the device and is not shared with others or stored centrally.
Fast model training or convergence is critical as users expect quick and accurate responses,
so delays in prediction accuracy or speed would result in a poor user experience. Note
that in this paper, we assume that all data samples are labeled, as is common in many FL
settings. While leveraging unlabeled data could potentially enhance model training and
accuracy, this falls outside the scope of the current work. Future studies could explore semi-
supervised or unsupervised learning approaches, such as self-training [5–7] or consistency
regularization [8–10], to integrate unlabeled data and further improve model performance.

Using conventional FL, which randomly selects many clients to participate in the FL
process, may lead to the straggler problem [11]. Here, stragglers refer to clients with low
computational capabilities, which require more time to train models, and/or clients with
low communication data rates, which, in turn, experience delays in uploading models.
So, the FL server has to wait a long time for these stragglers to compute and upload their
local models to the FL server, thus leading to a long training time (which equals the sum of
the latency for all the global iterations). To reduce the waiting time of the FL server, two
main solutions address the straggler problem: synchronous FL and asynchronous FL. (1) In
synchronous FL, the FL server sets up a deadline τ, and so it only selects the qualified
clients who can finish its local model training and upload before the deadline in order
to participate in the FL process. All the local models that are received after the deadline
will be discarded [12]. However, synchronous FL has its drawbacks. First, it reduces the
number of participating clients, thus slowing down the convergence rate by requiring more
global iterations to reach convergence [13]. Second, synchronous FL may cause model
overfitting due to reduced data sample diversity. That is, the derived model can fit well
for the data samples in these qualified clients but not in the non-qualified clients, thus
reducing the model’s accuracy. (2) In asynchronous FL, the FL server enables all the clients
to participate and updates the global model immediately upon receiving an update from
any client. The updated global model is then sent only to the client, which just uploads
its local model [14]. Asynchronous FL can reduce the waiting time of the FL server, but it
faces two key challenges: (i) The high communication cost, as both the server and clients
frequently exchange models; (ii) The model stale problem where slower clients are trained
on outdated global models, leading to a reduction in the convergence rate [15–17].

To address the limitations of both synchronous and asynchronous FL, we propose
semi-synchronous FL. In this method, all clients in the system are grouped into different
tiers based on the deadline of a global iteration, denoted as τ, and the clients’ model training
and uploading latency. Specifically, if a client can complete model training and uploading
within the interval of τ × (j− 1) and τ × j, it is assigned to the jth tier. As illustrated in
Figure 1, consider an example where Client-1 and Client-2 complete their model training
and upload before the deadline τ, thus being assigned to the 1st tier, which has a deadline
of τ. On the other hand, Client-3 completes its local model training and uploading between
τ and 2τ, placing it in the 2nd tier with a deadline of 2τ. These different tiers indicate that
clients upload their local models to the FL server at varying frequencies. For example, the
upload frequency of Client-1 and Client-2 is twice as high as that of Client-3.

Electronics 2024, 13, 4585 3 of 16

Figure 1. The semi-synchronous FL framework.

Semi-synchronous FL differs from synchronous FL since all the clients participate in
the training process to increase the diversity of training samples, avoid model overfitting
and stragglers, and reduce the convergence time. Semi-synchronous FL also differs from
asynchronous FL since different clients in semi-synchronous FL have to follow their own
schedules in order to upload their local models, while the FL server still has to wait for a
global iteration to terminate in order to aggregate the received local models, which reduces
the communication cost and mitigates the model stale problem found in asynchronous FL.

Although semi-synchronous FL can potentially resolve the drawbacks of synchronous
and asynchronous FL, it has its own unveiled challenges. First: how to cluster clients into
different tiers? Client clustering depends on the model training and uploading latency
of a client. However, it is not easy to estimate the uploading latency of a client, which,
for example, depends on the number of clients in this tier. In particular, more clients
in the tier sharing the bandwidth resource leads to higher uploading latency and vice
versa. Hence, it is hard to estimate the uploading latency if client clustering has not been
determined. Second: how to dynamically assign computing workloads to different clients?
In conventional FL, clients perform uniform local training, meaning that clients train their
local models based on the same number of data samples. This results in high-computing-
capacity clients having long idle time in each global iteration. For example, as shown in
Figure 1, Client-1 in tier-1 has a high computing capacity to quickly finish its local model
training, upload its local model to the FL server, and then wait for the beginning of a
new global iteration. Instead of waiting, Client-1 can train more data samples to generate
a better local model. Studies have demonstrated that training more data samples per
client can accelerate model convergence in FL [18–20]. Thus, dynamically optimizing the
training workload of a client based on its computing capacity can potentially improve
the FL performance. However, workload optimization and client clustering are coupled
together since a different workload (i.e., selecting a different number of data samples to
train the model) of a client would change its model computing and uploading latency,
which leads to a different client clustering. The paper aims to resolve the mentioned two
challenges by jointly optimizing client clustering, bandwidth allocation, and workload
assignment in the context of semi-synchronous FL. The main contributions of the paper are
summarized as follows.

1. We propose semi-synchronous FL to resolve the drawbacks of synchronous and
asynchronous FL.

2. We propose dynamic workload optimization in semi-synchronous FL and prove
that dynamic workload optimization outperforms uniform local training in semi-
synchronous FL via extensive simulations.

3. To resolve the challenges in semi-synchronous FL, we formulate an optimization
problem and design Dynamic client clustering, bandwidth allocation, and workload
optimization for semi-synchronous Federated learning (DecantFed) algorithm to solve
the problem.

Electronics 2024, 13, 4585 4 of 16

The rest of the paper is organized as follows. The related work is summarized in
Section 2. The system models and the problem formulation are presented in Section 3.
Section 4 describes the proposed DecantFed algorithm to efficiently solve the problem.
Simulation results are provided and analyzed in Section 5, and we conclude the paper in
Section 6.

2. Related Work

To solve the straggler problem in FL, synchronous FL has been proposed to set up a
deadline and discard the local models received after the deadline. Since having more clients
uploading their models can potentially accelerate the training speed, Nishio et al. [14] pro-
posed to select the maximum number of clients who can upload their local models before
the deadline. Lee et al. [21] designed a mobile device performance-disparity-aware mecha-
nism to adaptatively adjust the deadline. On the other hand, since the latency of a client in
uploading its model depends on the allocated bandwidth, wireless resource management
and client selection are usually optimized jointly. For example, Albaseer et al. [19] aimed
to jointly optimize the bandwidth allocation and client selection such that the weighted
number of the selected clients is maximized. Given a set of selected clients, Li et al. [20] pro-
posed that FedProx assign more local epochs to clients with high computing capacity, where
more local epochs imply a higher computing workload. FedProx can potentially reduce
the number of global iterations but may hurt the global model convergence owing to local
model overfitting, especially when a data sample distribution is non-independent and iden-
tically distributed (non-IID) [22]. FedProx adds a proximal term in the loss function for each
client’s local model to mitigate the local model overfitting problem. Albelaihi et al. [12] con-
sidered time division multiple access (TDMA) as the wireless resource-sharing approach in
wireless FL. While TDMA can enhance bandwidth utilization, it can also lead to a waiting
period for the selected client to upload their local model due to the wireless channel’s
limited availability. To account for the potential impact of waiting time on client selection,
a heuristic algorithm is developed to maximize the number of selected clients who can
upload their models before the deadline. Selecting more clients to participate in each global
iteration leads to the high energy consumption of the clients [23], and so Yu et al. [24]
designed a solution to maximize the tradeoff between the total energy consumption of
the selected clients and the number of the selected clients in each global iteration. Instead
of maximizing the number of selected clients in each global iteration, Xu and Wang [25]
proposed that increasing the number of the selected clients over global iterations would
have a faster convergence rate. Based on this hypothesis, they designed a long-term client
selection and bandwidth allocation solution, which aims to maximize the weighted total
number of the selected clients for all the global iterations while satisfying the energy budget
of the clients and bandwidth capacity limitation. Here, the weight is increasing over the
global iterations.

Instead of waiting for the deadline to expire before updating the global model in
synchronous FL, asynchronous FL allows the FL server to immediately update the global
model once it receives a local model [15,26,27]. However, as we mentioned before, asyn-
chronous FL has the model stale problem, i.e., the slower clients may train their local models
based on an outdated global model, which results in slow convergence or even leads to
model divergence [28,29]. To mitigate the model stale problem, Xie et al. [30] proposed
a new global model aggregation, where the new global model equals the weighted sum
of the old global model and the received local model. Here, the weight of a local model
is a function of the local model staleness, i.e., a longer delay of training and uploading a
local model for a client leads to a higher staleness of the local model and a lower weight
of the local model. Chen et al. [31] proposed the asynchronous online FL method, where
different clients collaboratively train a global model over continuous data streams locally.
The FL server updates the global model once it receives the gradient, learning rate, and
the number of data samples from a client. Another drawback of asynchronous FL is the
high communication cost, especially for faster clients since they more frequently exchange

Electronics 2024, 13, 4585 5 of 16

their models with the FL server. A potential solution could be to enable the FL server to
update the global model after it receives a number of local models instead of receiving
each local model. The concept of client clustering has been proposed to mitigate model
accuracy reduction caused by non-IID data. For example, Christopher [32] suggested
clustering clients based on the similarity of their local updates to the global model. The
clients within the same cluster are trained independently and in parallel on a specialized
model. Similarly, Kim et al. [33] proposed a customized generative adversarial network for
grouping clients into clusters without sharing raw data. Based on that, they also developed
heuristic algorithms to dynamically adjust cluster numbers and client associations based on
loss function values. While clustering reduces the impact of non-IID data, these methods
overlook differences in client capacities, leaving the straggler problem unresolved.

3. System Models and Problem Formulation

In this section, we will provide the related system models and formulate the problem
for jointly optimizing client clustering, bandwidth allocation, and workload optimization in
semi-synchronous wireless FL. Denote the set of clients in the system as I ; i is used to index
these clients. All the clients in I will be clustered into different tiers and will upload their
local models to the FL server via a base station (BS). Denote the set of tiers as J ; j is used to
index these tiers. In our scenario, we consider frequency division multiple access (FDMA)
as the wireless resource-sharing mechanism among various tiers. This implies that each
tier will be allotted a distinct frequency band that does not overlap with other tiers, and the
bandwidth allocated to each tier will be optimized. Let bj be the bandwidth allocated to tier
j. In addition, the clients within the same tier would share the same frequency band based
on TDMA, meaning that the clients would take turns acquiring the entire frequency band
to upload their models. As mentioned in Section II, TDMA may introduce extra waiting
time for a client to wait for wireless bandwidth to be available. Therefore, if client i is in tier
j, then the latency of client i in training and uploading its local model to the FL server is

tij = tcomp
i + twait

ij + tupload
ij , (1)

where tcomp
i is the computing latency of client i in training its local model, twait

ij is the delay

of client i in tier j to wait for the frequency band to be available, and tupload
ij is the uploading

latency of client i in tier j to upload its local model.

3.1. Computing Latency

The computing latency of client i can be estimated by [34]

tcomp
i =

Cidi
fi

, (2)

where Ci is the number of CPU cycles required for training a sample of its local model, di is
the number of samples to be trained on client i; and fi is the CPU frequency of client i.

3.2. Uploading Latency

According to [35–37], the achievable data rate of client i in tier j can be estimated by
rij = bj log2

(
1 + pi gi

N0

)
, where bj is the amount of bandwidth allocated to clients in tier j, pi

is the transmission power density of client i, gi is the channel gain from client i to the BS, and
N0 is the average background noise. Note that the algorithm proposed in Section 4 does not
rely on this equation for calculating the client’s upload data rate. Other, more sophisticated
models that provide better estimates for upload data rates can be easily integrated into
our algorithm to enhance its performance. Consequently, the latency of client i in tier j to
upload its local model with size of s to the BS is tupload

ij = s
rij

= s
bj log2

(
1+ pi gi

N0

) .

Electronics 2024, 13, 4585 6 of 16

3.3. Waiting Time

Once client i finishes its local model training, it can immediately upload its local model
to the FL server if the bandwidth is unoccupied, i.e., there is no other client currently
uploading its local model. However, if the bandwidth is occupied, client i has to wait, and
the waiting time depends on its position in the queue. Specifically, let I j denote the set of
clients in tier j, who are sorted based on the increasing order of their computing latency,
i.e., ∀i′ ∈ I j, tcomp

i′ ≤ tcomp
i′+1 , where i′ is the index of the clients in I j. Hence, if client i is in

tier j, its waiting time can be calculated based on the following recursive function.

twait
i′ j =

0, i′ = 1,

max
{

0, tcomp
i′−1 + twait

i′−1,j + tup
i′−1,j − tcomp

i′

}
, i′ > 1,

(3)

3.4. Problem Formulation

Assuming the FL server can access the state information of all clients, including
their channel gains, CPU frequencies, and transmission power, and that all clients are
time-synchronized and cooperative, adhering to the clustering, workload, and bandwidth
allocations provided by the FL server. We formulate the problem to jointly optimize client
clustering, bandwidth allocation, and workload management in semi-synchronous FL
as follows.

P0 : arg max
d,x,b

∑
i∈I

(
di ∑

j∈J
wjxij

)
, (4)

s.t. ∀i ∈ I ,
(

tcomp
i + twait

ij + tupload
ij

)
xij ≤ jτ, (5)

∀i ∈ I , Dmin ≤ di, (6)

∀i ∈ I , ∑
i∈J

xij = 1, (7)

∀i ∈ I , ∀j ∈ J , xij = {0, 1}, (8)

∑
j∈J

bj ≤ B. (9)

where xij is a binary variable to indicate if client i is clustered in tier j (i.e., xij = 1) or not
(i.e., xij = 0), x =

{
xij|∀i ∈ I , ∀j ∈ J

}
, d = {di|∀i ∈ I } is the workload allocation in

terms of the number of data samples being used to train local models for all the clients,
b =

{
bj|∀j ∈ J

}
implies the amount of bandwidth allocated to different tiers, and wj

indicates the frequency of the clients in tier j uploading their local models. i.e., wj =
|J |−j+1
|J | .

Here, |J | indicates the last tier. Hence, a larger wj means tier j is a lower tier, and clients
in this tier upload their local models more frequently. Training a model over more data
samples leads to higher model accuracy. Based on this intuition, we set up the objective of
P0 so that the number of training data samples per unit time is maximized, where ∑

i∈J
wjxij

is the frequency of client i in uploading its local model, and di is the number of data samples
used to train its local model. Constraint (5) indicates the clients in different tiers should
meet their tier deadlines. Constraint (6) defines the minimum number of the samples,
denoted as Dmin, to be trained locally by each client. Constraint (7) specifies each client
should only be clustered into exactly one tier. Constraint (8) refers to xij being a binary
variable, and Constraint (9) means the amount of bandwidth allocated to all the tiers no
larger than B, where B is the available bandwidth at the BS.

4. The DecantFed Algorithm

P0 is difficult to solve. First, client clustering x, bandwidth allocation b, and workload
management d are coupled together. For instance, allocating less bandwidth or selecting
more data samples for client i in a tier would increase its uploading latency tupload

i and

Electronics 2024, 13, 4585 7 of 16

computing latency tcomp
i , thus leading to client i being unable to upload its local model

before its tier deadline. As a result, client i has to be assigned to the next tier, which has a
longer tier deadline. We propose DecantFed to efficiently solve problem P0. The basic idea
of DecantFed is to decompose P0 into two sub-problems and solve them individually.

4.1. Client Clustering and Bandwidth Allocation

Assume that each client trains only the minimum number of samples Dmin
i from its

local dataset, i.e., for all i in I , di = Dmin, then P0 can be transformed into the following.

P1 : arg max
x,b

∑
i∈I

∑
j∈J

wjxij, (10)

s.t. Constraints (5), (7), (8), and (9).

Solving P1 remains challenging due to the unknown waiting time twait
ij specified in (5),

which becomes known only after clients have been grouped into tiers. However, for
optimizing the objective function in P1, it is preferable to assign clients to lower tiers that
have a larger wj, while still meeting the tier’s deadline constraints as outlined Constraint
(5). Motivated by this insight for solving P1, we design the heuristic LEAD algorithm (joint
cLient clustEring and bAnDwidth allocation), summarized in Algorithm 1. Specifically,

1. Each client’s uploading time is determined by its tier. Additionally, tier bandwidth

is determined by the number of clients in the corresponding tier, i.e., bj =
∑

i∈I
xij

|I | × B.
Then,

tupload
ij =

|I |
B ∑

i∈I
xij

s

log2

(
1 + pi gi

N0

) . (11)

2. In the jth iteration, we intend to assign as many clients as possible to the jth tier,
while satisfying Constraint (5). Let Ĩ denote the set of clients who have not been
clustered into any tier yet, i.e., Ĩ =

{
∀i ∈ I

∣∣∣∑j∈J xij = 0
}

. We sort the clients in Ĩ
in descending order based on their computing latency. Let I j denote the set of these

sorted clients, i.e., I j =
{
∀i′ ∈ Ĩ

∣∣∣tcomp
i′+1 ≤ tcomp

i′

}
, where i′ is the index of the clients

in I j. Assume that all the clients in I j can be assigned in tier j, i.e., ∀i′ ∈ I j, xi′ j = 1.
We then iteratively check the feasibility of all the clients in tier j starting from the
first client, i.e., whether each client in tier j can really be assigned to tier j to meet
Constraint (5) or not. If a client currently in tier j cannot meet Constraint (5), this
client will be removed from tier j, i.e., xi′ j = 0. Note that removing a client reduces
the bandwidth bj allocated to tier j in Step 13, which may lead to the clients, who
were previously feasible to be assigned to tier j to meet Constraint (5), no longer
feasible because of the decreasing of bj. As a result, we have to go back and check the
feasibility of all the clients in tier j starting from the first client again, i.e., i′ = 1 in
Step 14.

3. Once the client clustering in tier j is finished, we start to assign clients to tier j + 1
by following the same procedure in Steps 5–19. The client clustering ends when all
clients have been assigned to the existing tiers, i.e., Ĩ ̸= ∅.

Electronics 2024, 13, 4585 8 of 16

Algorithm 1: LEAD algorithm

1 ∀i ∈ I , di = Dmin
i , calculate tcomp

i based on Equation (2).
2 ∀i ∈ I , ∀j ∈ J , initialize xij = 0.
3 Initialize j = 1 and Ĩ := I .
4 while Ĩ ̸= ∅ do
5 Create I j by sorting the clients in Ĩ based on their computing latency;
6 Cluster all the clients in I j into tier j, i.e., ∀i′ ∈ I j, xi′ j = 1;

7 Calculate bj =
|I j|
|I | × B;

8 for i′ ←− 1 to
∣∣I j
∣∣ do

9 if xi′ j == 1 then
10 Calculate twait

i′ j and tupload
i′ j based on Equations (3) and (11), respectively;

11 if twait
i′ +twait

i′ j +tupload
i′ j >τ j then

12 xi′ j = 0;

13 Update bj =

∑
i′∈I j

xi′ j

|I | × B;

14 Restart the for loop, i.e., i′ = 1.
15 end
16 end
17 end

18 Ĩ =
{
∀i ∈ I

∣∣∣∑j∈J xij = 0
}

;

19 j := j + 1;
20 end

4.2. Dynamic Workload Optimization

Plugging client clustering x and bandwidth allocation b, which are derived by the
LEAD algorithm, into P0, we have

P2 : arg max
d

∑
i∈I

(
∑

j∈J
wjxij

)
di, (12)

s.t. Constraints (5) and (6).

Assume that ∀i ∈ I , di is a continuous variable. Then, P2 is a linear programming problem,
and its optimal solution can be derived by using the Simplex method in polynomial
time [38]. Note that the number of samples di should be an integer variable, and so we
simply take di to be the maximum integer value that is smaller than d∗i , i.e., ∀i ∈ I ,
di = ⌊d∗i ⌋, where d∗i is the optimal value by using the Simplex method to solve P2.

4.3. Summary of DecantFed

The DecantFed algorithm is summarized in Algorithm 2. Specifically, the FL server
performs the following steps: (1) Obtains the states in terms of channel gain gi, CPU
frequency fi, and transmission power pi of all the clients; (2) Calculates the bandwidth
allocation b and client clustering x based on LEAD in Algorithm 1 as well as the workload d
by using Simplex method to solve P2; (3) Broadcasts the workload assignment d, bandwidth
allocation b, client clustering x, deadline τ, and the initial global model to all the clients
such that all the clients can understand their local training configurations; (4) Conducts FL
training for a number of global iterations. Here, in the lth global iteration, the FL server
only collects models from the clients whose tiers are participating in training during the lth

global iteration. That is, if l%j == 0, then tier j is participating in training during the lth

global iteration. Let Kl denote the set of the clients that are participating in the training
during the lth global iteration, i.e., Kl = {i|∀i ∈ I , ∀j ∈ J , l%j == 0 && xij == 1}. Once

Electronics 2024, 13, 4585 9 of 16

the FL server receives the local models from all the clients in Kl , it then updates the global
model based on

ω
global
l = ∑

i∈Kl

|Di|
∑k∈Kl

|Dk|
ωlocal

i,l , (13)

where ωlocal
i,l is the local model uploaded from client i in the lth global iteration, ω

global
l is

the global model derived in the lth global iteration, Di is the local dataset of client i, and
|Di| is the total number of samples in Di. Once the FL server has updated the global model
ω

global
l based on (13), it broadcasts ω

global
l to the clients in Kl and then initializes the next

global iteration.

Algorithm 2: DecantFed algorithm

1 At the FL server:
2 Obtain states of all clients, i.e., ∀i ∈ I , gi, fi, pi
3 Derive b and x by executing the LEAD algorithm.
4 Derive d by applying the Simplex to solve P2.
5 Broadcast the workload assignment d, bandwidth allocation b, client clustering

x, deadline τ, and the initial global model to all the clients.
6 for each global iteration l do
7 Receive local models from the clients in Kl ;
8 Update the global model ωl based on Equation (13);
9 Broadcast the updated global model ωl to the clients in Kl ;

10 end
11 end
12 At each client:
13 Receive d, b, x, τ, and the initial global model to understand the local training

configuration.
14 Calculate the learning rate based on Equation (14).
15 while a new global model is received do
16 Train its local model over di samples based on Equations (15) and (16);
17 Upload its local model to the FL server;
18 end
19 end

In DecantFed, each client trains the received global model based on its di number of
local samples. However, the local training may have the following: (1) The model staleness
problem due to the semi-synchronous nature; (2) The model divergence problem due to the
non-IID and workload optimization. Here, we apply the following solutions to tackle the
model staleness and divergence problems.

1. Dynamic learning rate. Similar to asynchronous FL, the model staleness problem may
also exist in DecantFed, although it is mitigated. The reason for having staleness in
DecantFed is that clients in high tiers may train their local models based on outdated
global models. To further mitigate the model staleness problem in DecantFed, we
adopt the method in [31] to set up different learning rates for the clients in different
tiers, i.e.,

δj = min(δ1 ×max(logα j, 1), 0.1) (14)

where δj is the learning rate of the clients in tier j, δ1 is the learning rate of the clients
in tier 1, and α (α > 1) is a hyperparameter to adjust the changes in learning rates
among tiers. Note that both δ1 and α are given before the FL training starts. Basically,
Equation (14) indicates that clients in a higher tier would have a larger learning rate
(i.e., δj+1 ≥ δj) to update their local models more aggressively such that these clients
can catch up with the model update speed of the clients in the lower tiers. Note that

Electronics 2024, 13, 4585 10 of 16

Equation (14) also ensures that δj is less than 0.1 to avoid the clients in higher tiers
overshooting the optimal model that minimizes the loss function. Once the learning
rate is determined, client i updates its local model based on the gradient descent
method, i.e.,

ωlocal
i,l (t + 1) = ωlocal

i,l (t)− ∑
j∈J

δjxij

×∇ f
(

ωlocal
i,l (t); ai,n, bi,n

)
, (15)

where ωlocal
i,l (t) is the local model of client j during the t and t− 1 local iterations, re-

spectively, in the lth global iteration, (ai,n, bi,n) is the input-output pair for client i’s nth

data sample, ∑j∈J δjxij implies the learning rate of client i, and f
(

ωlocal
i,l (t); ai,n, bi,n

)
is the loss function of the model given the model parameter ωlocal

i,l (t) and data sample
(ai,n, bi,n). A typical loss function that has been widely applied in image classification
is cross-entropy loss.

2. Clipping the loss function values. Owing to the non-IID and dynamic workload
optimization, the data samples in a client could be highly uneven. For example, a
client has one thousand images labeled as dogs but only two images labeled as cats.
If this client has high computing capability and the FL server would assign a high
workload in terms of training a machine-learning model to classify dogs and cats
by selecting all the images for many epochs, then the local model may overfit the
client’s local dataset. After being trained by numerous dog images, the local model
may diverge if a cat image is fed into the local model to generate an excessive loss
value. For example, if the loss function is defined as the cross-entropy loss, then
the loss function is − log(ϵ) → ∞, where ϵ → 0 is the probability of labeling the
image as a cat by the local model. Infinite loss values lead to large backpropagation
gradients, which can subsequently turn both weights and biases into ‘NaN’. Although
regularization methods can reduce the variance of model updates, especially in IID
scenarios, they cannot resolve the infinite loss issues that normally happen when the
data distribution is highly non-IID. In such cases, loss clipping serves as an effective
and computationally efficient solution to constrain model update, clipping the loss
value into a reasonable range, i.e.,

f
(

ωlocal
i,l (t); ai,n, bi,n

)
:= min

{
f
(

ωlocal
i,l (t); ai,n, bi,n

)
, ζ
}

, (16)

where ζ is a hyperparameter that defines the maximum loss function value.

5. Simulations
5.1. Simulation Setup

Assume that there are 100 clients that are randomly distributed over a 2 km×2 km area
to participate in the FL training via a wireless network, where a BS is located at the center
of the area to forward global/local models between the FL server and clients. In addition,
the path loss between a client and the BS is estimated based on ϕ = 128.1 + 37.6di [39],
where ϕ and di are the path loss and distance between the BS and client i. If fast fading
is not considered, the channel gain gi between the BS and client i is mainly determined

by the path loss, i.e., gi = 10−
ϕi
10 . Moreover, the transmission power of each client is

0.1 watt, i.e., ∀i ∈ I , pi = 0.1. The amount of bandwidth available for the BS is B = 1 MHz.
Also, the CPU frequency of a client fi and the number of CPU cycles to process a sin-
gle sample Ci are randomly selected, following based on two uniform distributions, i.e.,
fi ∈ U(0.1, 1)× 109 Hz and Ci ∈ U(1, 5)× 107 CPU cycles. Other simulation parameters
are listed in Table 1.

Electronics 2024, 13, 4585 11 of 16

Table 1. Simulation parameters.

Parameter Value

Background noise N0 −94 dBm
Bandwidth (b) 1 MHz
Client transmission power (p) 0.1 watt
Size of the local model (s) 100 kbit
Client i CPU frequency fi ∈ U(0.1, 1)× 109 Hz
Number of CPU cycles required for
training one sample on client i Ci ∈ U(1, 5)× 107

Number of local samples |Di| Dirichlet distribution
Number of local epochs Various, dynamic local training
Number of local batch size 10

5.1.1. Non-IID Dataset

Two benchmark datasets, i.e., CIFAR-10 [40] and MNIST [41], are used to evaluate
the performance of DecantFed. Here, CIFAR-10 is a dataset for image classification with
10 image labels and 6000 images per label. It has 50,000 training images and 10,000 test
images. MNIST is a dataset of 28 × 28 grayscale images of handwritten digits 0–9 with
60,000 training examples and 10,000 test examples.

The benchmark dataset will be dispatched to 100 clients based on non-IID across
different categories, and the Dirichlet distribution is a common choice for generating
non-IID data. The probability density function of the Dirichlet distribution is [42]

f (η1, . . . , η|I |; β) =
Γ(β× |I |)

Γ(β)|I |

|I |

∏
i=1

η
β−1
i , (17)

where |I | is the total number of clients in the network, ηi is the probability of dispatching
an image in a dataset to client i, where ∑

|I |
i=1 ηi = 1, and β is a parameter to adjust the degree

of non-IID, i.e., a smaller β leads to a more non-IID data distribution among the clients. Γ(β)
in Equation (17) is the Gamma function, i.e., Γ(x) =

∫ ∞
0 tx−1e−tdt is Gamma function.

5.1.2. Global Model Design

We will train two different convolutional neural networks (CNNs) for the two bench-
mark datasets. For CIFAR-10, we apply a 3 VGG-block CNN with 32, 64, and 128 filters in
the convolution layers. Followed by convolution layers, two fully connected layers with
128 and 10 nodes, respectively, are added, and ReLU is used as the activation function for
all these layers. For MNIST, we apply a neural network having two fully connected layers
with 784 and 10 nodes, respectively. The learning rates of the clients are calculated based
on Equation (14), where α = 1.45 and δ1 = 0.005. The loss function value is clipped to
ζ = log2(10) ≈ 3.33.

5.1.3. Comparison Methods

Some FL algorithms assume that the FL server understands some prior knowledge,
such as the number of samples residing on each client or the distribution of samples in
each client, and design corresponding client selection or model aggregation methods to
improve the model accuracy or accelerate the training process. However, we argue that
this prior knowledge may not be available or accurate and violates data privacy, which is
one of the major motivations for applying FL. The proposed DecantFed does not require
such prior knowledge, and in order to achieve fair comparisons, two FL baselines, i.e.,
FedAvg [3] and FedProx [20], that also do not require such prior knowledge are used to
compare the performance with DecantFed. Here, FedAvg selects all the clients in each
global iteration without setting up a deadline. Also, FedAvg performs uniform local model
training, meaning that the number of data samples to train a local model is the same for all
the clients. On the other hand, FedProx performs synchronous FL by setting up a deadline

Electronics 2024, 13, 4585 12 of 16

τ and selects only a few clients who can upload their local models before the deadline to
participate in the model training. Also, FedProx will dynamically allocate workloads to
different clients based on their computing capacities. Three FL algorithms are summarized
in Table 2. To compare the performance of different FL algorithms, an evaluation will be
conducted on their convergence rate and model test accuracy. Since the duration of a global
iteration may vary for the three FL algorithms, the convergence rates will be measured over
both time and global iterations.

Table 2. Comparisons of different FL algorithms.

Methods Workload (di) Synchronous Deadline Clients

DecantFed dynamic semi-syn τ all

FedProx [20] dynamic syn τ few

FedAvg [3] fixed syn ∞ all

5.2. Simulation Results
5.2.1. Performance Comparison Among Different FL Algorithms

Assume a deadline of τ = 15 s. Figure 2 shows the learning curves for different
algorithms by using MNIST. Here, Figure 2a,b show the learning curves over global
iterations and time, respectively, when the data distribution is more similar to non-IID
(i.e., β = 0.1). Similarly, Figure 2c,d show the learning curves over global iterations and
time, respectively, when the data distribution is more similar to IID (i.e., β = 1). From
Figure 2a,c, we can see that, in both IID (β = 1) and non-IID (β = 0.1) scenarios, the final
model accuracy of DecantFed is slightly higher than FedAvg (which is around 90%) but
much higher than FedProx, and the convergence rate over global iteration for DecantFed
is slightly faster than FedAvg. The reason for having low testing accuracy for FedProx
is that FedProx only selects five clients out of one hundred, and low client participation
leads to an insufficient and biased training dataset, which reduces the testing accuracy of
the global model. The low client participation in FedProx also results in model accuracy
decreasing when the data distribution changes from IID to non-IID. Yet, the change in
model accuracy over β for DecantFed and FedAvg is negligible because they allow all
the clients to participate in the training. In Figure 2b,d, it is easy to observe that the
convergence rate over time for DecantFed is much faster than FedAvg in both IID and
non-IID scenarios. DecantFed is fully converged around 130,000 s achieving 90% model
accuracy, while FedAvg only achieves 45% and 73% model accuracy in IID and non-IID
scenarios, respectively, at 200,000 s. This is because the duration of a global iteration for
FedAvg is much longer than DecantFed since FedAvg has to wait for all the clients to
upload the local models.

Figure 2. Test accuracy of different algorithms for MNIST with β = 0.1 and 1.

Figure 3 shows the learning curves for different algorithms by using CIFAR-10. We
can obtain a similar conclusion in which DecantFed and FedAvg converge to a similar
model test accuracy, i.e., 70% for non-IID as shown in Figure 3a and 73% for IID as shown
in Figure 3c. On the other hand, FedProx only achieves 39% and 45% in non-IID and IID,
respectively. This highlights that DecantFed can achieve at least 28% higher model accuracy

Electronics 2024, 13, 4585 13 of 16

than FedProx. Also, the convergence rate over time for DecantFed is much faster than
FedAvg in both IID and non-IID scenarios, as shown in Figure 3b,d. In order to attain
a test accuracy of 41%, DecantFed and FedAvg demand 0.5× 105 seconds and 2× 105 s,
respectively. DecantFed is four times faster than FedAvg. It is worth noting that when
β = 0.1 as shown in Figure 3a, the final model accuracy of FedAvg is slightly better than
DecantFed, which is different from the other settings. Also, the model accuracy of FedAvg
during the training is more stable than DecantFed.

Figure 3. Test accuracy of different algorithms for CIFAR-10 with β = 0.1 and 1.

5.2.2. Performance of DecantFed by Varying τ

The deadline τ plays a critical role in determining the performance of DecantFed. A
smaller value of τ enables more tiers in the system, resulting in fewer clients assigned to a
tier. Hence, a smaller τ makes DecantFed behave more like asynchronous FL, eventually
becoming asynchronous when each tier only has one client. Conversely, a larger τ results
in DecantFed behaving more like FedAvg, i.e., all the clients are assigned to a tier, and
the FL server has to wait for the last client to upload its local model if τ → ∞. Figure 4
shows the learning curve for different deadline settings by using CIFAR-10 when β = 0.1
and β = 1. As shown in Figure 4a,c, a larger τ not only accelerates convergence over
iterations but also stabilizes the training process. This is because a larger τ allows for
more low-index-tier clients to contribute to each global update. Additionally, a larger τ
helps global model stability. For example, there are several noticeable sudden drops in test
accuracy when τ = 10, which is owing to the fact that there is only an average of 1 client
in the first tier, likely providing a biased local model update. Conversely, when τ = 80,
the training curve is more stable due to the fact that more clients are in the lower tiers.
However, a larger τ leads to slower convergence over time owing to the longer duration of
a global iteration. Table 3 shows final model accuracy (i.e., when the model is converged)
by applying different values of τ when β = 0.1. Note that DecantFed with τ = 2.5 s mirrors
asynchronous FL with dynamic workload optimization, where each tier has only one client,
and the FL server updates the global model immediately upon receiving a local model from
any client. From the table, we can observe that choosing the appropriate deadline (e.g.,
τ = 10 s) is critical to optimize the tradeoff by maximizing the final model accuracy and
maximizing the convergence rate over time in DecantFed.

Figure 4. Test accuracy of DecantFed with different deadlines for CIFAR-10 with β = 0.1 and 1.

Table 3. Test accuracy over τ (seconds) under non-IID with β = 0.1.

Deadline τ (s) 2.5 5 10 20 40 80

Test accuracy (%) 69.07 72.59 73.48 73.45 73.03 72.61

Electronics 2024, 13, 4585 14 of 16

5.2.3. Performance of DecantFed by Optimizing the Workload Among Clients

We next evaluate how the workload optimization affects the performance of DecantFed.
Here, we have two settings for DecantFed: (1) UniformDecant [42] performs uniform local
training among the clients, i.e., all the clients use the same number of data samples (i.e.,
di = 10, ∀i ∈ I) to train their local models. (2) DecantFed optimizes di by solving P2.
Other settings for UniformDecant and DecantFed are the same. Figure 5 shows the learning
curves for UniformDecant and DecantFed by using CIFAR-10 when β = 0.1 and β = 1.
From the figures, we can find that DecantFed can achieve not only a higher final model
accuracy but also a faster convergence rate. This basically demonstrates that dynamic
workload optimization enables clients with high computational capacities to train their
local models over more data samples can significantly improve the FL performance.

Figure 5. Comparison of DecantFed (with dynamic workload optimization) and UniformDecant
(without dynamic workload optimization) for β = 0.1 and β = 1.

6. Conclusions

To solve the drawbacks of synchronous FL and asynchronous FL, we propose a
semi-synchronous FL, i.e., DecantFed, which performs the following: (1) Jointly clusters
clients into different tiers and allocates bandwidth to different tiers so that the clients in
different tiers would have different deadlines/frequencies to upload their local models;
(2) Dynamically allocates training workload in terms of training data samples to different
clients to enable high computational capacity clients to derive better local models, while
keeping the clients in their original tiers. Simulation results demonstrate that the model
accuracy incurred by DecantFed and FedAvg is similar but is much higher than FedProx.
The convergence rate over time incurred by DecantFed is much faster than FedAvg. In
addition, the deadline is an important parameter that significantly influences the perfor-
mance of DecantFed, and we will investigate how to dynamically adjust the deadline to
maximize the performance of DecantFed in the future. Finally, our results demonstrate that
dynamic workload optimization for clients is vital to improving FL performance. In future
work, we aim to conduct an ablation study to assess the contribution of individual design
components, including client clustering and bandwidth allocation, dynamic workload
optimization, and dynamic learning rate, to the overall performance of DecantFed. This
analysis will provide further insights into optimizing federated learning models under
semi-synchronous and asynchronous settings. Such studies are expected to guide more
efficient strategies tailored to heterogeneous client capabilities.

Electronics 2024, 13, 4585 15 of 16

Author Contributions: Conceptualization, L.Y. and X.S.; Methodology, L.Y. and X.S.; Software,
L.Y.; Validation, L.Y.; Formal analysis, L.Y.; Investigation, L.Y.; Resources, L.Y.; Data curation, L.Y.;
Writing—original draft, L.Y.; Writing—review & editing, L.Y., X.S., R.A., C.P. and S.S.; Visualization,
L.Y.; Supervision, X.S.; Project administration, X.S.; Funding acquisition, X.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation under Award under grant
no. CNS-2323050, OIA-2417062, and CNS-2148178, where CNS-2148178 is supported in part by funds
from federal agencies and industry partners as specified in the Resilient & Intelligent NextG Systems
(RINGS) program.

Data Availability Statement: The data presented in this study are openly available in https://arxiv.
org/abs/2403.06900 (accessed on 20 November 2024).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in
the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Ansari, N.; Sun, X. Mobile Edge Computing Empowers Internet of Things. IEICE Trans. Commun. 2018, E101.B, 604–619.

[CrossRef]
2. Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29. [CrossRef]
3. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

4. Kalloori, S.; Srivastava, A. Towards cross-silo federated learning for corporate organizations. Knowl.-Based Syst. 2024, 289, 111501.
[CrossRef]

5. Amini, M.R.; Feofanov, V.; Pauletto, L.; Hadjadj, L.; Devijver, E.; Maximov, Y. Self-training: A survey. arXiv 2022, arXiv:2202.12040.
6. Zhang, X.; Huang, X.; Li, J. Joint Self-Training and Rebalanced Consistency Learning for Semi-Supervised Change Detection.

IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5406613. [CrossRef]
7. Guo, J.; Liu, Z.; Chen, C.L.P. An Incremental-Self-Training-Guided Semi-Supervised Broad Learning System. IEEE Trans. Neural

Netw. Learn. Syst. 2024, early access. [CrossRef]
8. Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. Fixmatch: Simplifying

semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608.
9. Fu, X.; Shi, S.; Wang, Y.; Lin, Y.; Gui, G.; Dobre, O.A.; Mao, S. Semi-Supervised Specific Emitter Identification via Dual Consistency

Regularization. IEEE Internet Things J. 2023, 10, 19257–19269. [CrossRef]
10. Wu, Z.; He, T.; Xia, X.; Yu, J.; Shen, X.; Liu, T. Conditional Consistency Regularization for Semi-Supervised Multi-Label Image

Classification. IEEE Trans. Multimed. 2024, 26, 4206–4216. [CrossRef]
11. Vu, T.T.; Ngo, D.T.; Ngo, H.Q.; Dao, M.N.; Tran, N.H.; Middleton, R.H. Straggler Effect Mitigation for Federated Learning in

Cell-Free Massive MIMO. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC,
Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

12. Albelaihi, R.; Sun, X.; Craft, W.D.; Yu, L.; Wang, C. Adaptive Participant Selection in Heterogeneous Federated Learning. In
Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6.
[CrossRef]

13. Wang, J.; Joshi, G. Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms.
arXiv 2018, arXiv:1808.07576.

14. Nishio, T.; Yonetani, R. Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge. In Proceedings
of the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.
[CrossRef]

15. Xu, C.; Qu, Y.; Xiang, Y.; Gao, L. Asynchronous federated learning on heterogeneous devices: A survey. arXiv 2021, arXiv:2109.04269.
16. Damaskinos, G.; Guerraoui, R.; Kermarrec, A.M.; Nitu, V.; Patra, R.; Taiani, F. FLeet: Online Federated Learning via Staleness

Awareness and Performance Prediction. In Proceedings of the 21st International Middleware Conference, New York, NY, USA,
7–11 December 2020; pp. 163–177. [CrossRef]

17. Rodio, A.; Neglia, G. FedStale: Leveraging stale client updates in federated learning. arXiv 2024, arXiv:2405.04171.
18. Gao, Z.; Duan, Y.; Yang, Y.; Rui, L.; Zhao, C. FedSeC: A Robust Differential Private Federated Learning Framework in

Heterogeneous Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC),
Austin, TX, USA, 10–13 April 2022; pp. 1868–1873. [CrossRef]

19. Albaseer, A.; Abdallah, M.; Al-Fuqaha, A.; Erbad, A. Data-Driven Participant Selection and Bandwidth Allocation for Heteroge-
neous Federated Edge Learning. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 5848–5860. [CrossRef]

https://arxiv.org/abs/2403.06900
https://arxiv.org/abs/2403.06900
http://doi.org/10.1587/transcom.2017NRI0001
http://dx.doi.org/10.1109/MCOM.2016.1600492CM
http://dx.doi.org/10.1016/j.knosys.2024.111501
http://dx.doi.org/10.1109/TGRS.2023.3314452
http://dx.doi.org/10.1109/TNNLS.2024.3392583
http://dx.doi.org/10.1109/JIOT.2023.3281668
http://dx.doi.org/10.1109/TMM.2023.3324132
http://dx.doi.org/10.1109/ICC42927.2021.9500541
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685077
http://dx.doi.org/10.1109/ICC.2019.8761315
http://dx.doi.org/10.1145/3423211.3425685
http://dx.doi.org/10.1109/WCNC51071.2022.9771929
http://dx.doi.org/10.1109/TSMC.2023.3276329

Electronics 2024, 13, 4585 16 of 16

20. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks.
In Proceedings of the Machine Learning and Systems, Austin, TX, USA, 2–4 March 2020; Volume 2, pp. 429–450.

21. Lee, J.; Ko, H.; Pack, S. Adaptive Deadline Determination for Mobile Device Selection in Federated Learning. IEEE Trans. Veh.
Technol. 2022, 71, 3367–3371. [CrossRef]

22. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi, S.; McMahan,
H.B.; et al. Towards Federated Learning at Scale: System Design. arXiv 2019, arXiv:1902.01046. [CrossRef]

23. Albelaihi, R.; Yu, L.; Craft, W.D.; Sun, X.; Wang, C.; Gazda, R. Green Federated Learning via Energy-Aware Client Selection.
In Proceedings of the GLOBECOM 2022–2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December
2022; pp. 13–18. [CrossRef]

24. Yu, L.; Albelaihi, R.; Sun, X.; Ansari, N.; Devetsikiotis, M. Jointly Optimizing Client Selection and Resource Management in
Wireless Federated Learning for Internet of Things. IEEE Internet Things J. 2021, 9, 4385–4395. [CrossRef]

25. Xu, J.; Wang, H. Client Selection and Bandwidth Allocation in Wireless Federated Learning Networks: A Long-Term Perspective.
IEEE Trans. Wirel. Commun. 2021, 20, 1188–1200. [CrossRef]

26. Nguyen, J.; Malik, K.; Zhan, H.; Yousefpour, A.; Rabbat, M.; Malek, M.; Huba, D. Federated Learning with Buffered Asynchronous
Aggregation. In Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, Virtual, 28–30 March
2022; Volume 151, pp. 3581–3607.

27. Wang, Z.; Zhang, Z.; Tian, Y.; Yang, Q.; Shan, H.; Wang, W.; Quek, T.Q.S. Asynchronous Federated Learning over Wireless
Communication Networks. IEEE Trans. Wirel. Commun. 2022, 21, 6961–6978. [CrossRef]

28. Jiang, J.; Cui, B.; Zhang, C.; Yu, L. Heterogeneity-Aware Distributed Parameter Servers. In Proceedings of the 2017 ACM
International Conference on Management of Data, New York, NY, USA, 14–19 May 2017; SIGMOD ’17, pp. 463–478. [CrossRef]

29. Zhang, W.; Gupta, S.; Lian, X.; Liu, J. Staleness-Aware Async-SGD for Distributed Deep Learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; AAAI Press: Washington, DC,
USA, 2016; IJCAI’16, pp. 2350–2356.

30. Xie, C.; Koyejo, S.; Gupta, I. Asynchronous federated optimization. arXiv 2019, arXiv:1903.03934.
31. Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous Online Federated Learning for Edge Devices with Non-IID Data.

In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 15–24. [CrossRef]

32. Briggs, C.; Fan, Z.; Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-IID
data. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020;
pp. 1–9. [CrossRef]

33. Kim, Y.; Hakim, E.A.; Haraldson, J.; Eriksson, H.; da Silva, J.M.B.; Fischione, C. Dynamic Clustering in Federated Learning.
In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6. [CrossRef]

34. Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M.; Poor, H.V.; Cui, S. Delay Minimization for Federated Learning over
Wireless Communication Networks. arXiv 2020, arXiv:2007.03462. [CrossRef]

35. Xu, D. Latency Minimization for TDMA-Based Wireless Federated Learning Networks. IEEE Trans. Veh. Technol. 2024, 73,
13974–13979. [CrossRef]

36. Hu, Y.; Huang, H.; Yu, N. Device Scheduling for Energy-Efficient Federated Learning over Wireless Network Based on TDMA
Mode. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing,
China, 21–23 October 2020; pp. 286–291. [CrossRef]

37. Tran, N.H.; Bao, W.; Zomaya, A.; Nguyen, M.N.H.; Hong, C.S. Federated Learning over Wireless Networks: Optimization Model
Design and Analysis. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris,
France, 29 April–2 May 2019; pp. 1387–1395. [CrossRef]

38. Dantzig, G.B.; Thapa, M.N. Linear Programming; Springer: Berlin/Heidelberg, Germany, 2010.
39. ETSI. Radio Frequency (RF) Requirements for LTE Pico Node B (3GPP TR 36.931 Version 9.0.0 Release 9); Technical Report ETSI TR 136

931 V9.0.0; European Telecommunications Standards Institute: Sophia Antipolis, France, 2011.
40. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://bibbase.org/

network/publication/krizhevsky-hinton-learningmultiplelayersoffeaturesfromtinyimages-2009 (accessed on 20 November 2024).
41. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
42. Yu, L.; Sun, X.; Albelaihi, R.; Yi, C. Latency-Aware Semi-Synchronous Client Selection and Model Aggregation for Wireless

Federated Learning. Future Internet 2023, 15, 352. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVT.2021.3136308
https://doi.org/10.48550/arXiv.1902.01046
http://dx.doi.org/10.1109/GLOBECOM48099.2022.10001569
http://dx.doi.org/10.1109/JIOT.2021.3103715
http://dx.doi.org/10.1109/TWC.2020.3031503
http://dx.doi.org/10.1109/TWC.2022.3153495
http://dx.doi.org/10.1145/3035918.3035933
http://dx.doi.org/10.1109/BigData50022.2020.9378161
http://dx.doi.org/10.1109/IJCNN48605.2020.9207469
http://dx.doi.org/10.1109/ICC42927.2021.9500877
https://doi.org/10.48550/arXiv.2007.03462
http://dx.doi.org/10.1109/TVT.2024.3389972
http://dx.doi.org/10.1109/WCSP49889.2020.9299815
http://dx.doi.org/10.1109/INFOCOM.2019.8737464
https://bibbase.org/network/publication/krizhevsky-hinton-learningmultiplelayersoffeaturesfromtinyimages-2009
https://bibbase.org/network/publication/krizhevsky-hinton-learningmultiplelayersoffeaturesfromtinyimages-2009
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/fi15110352

	Introduction
	Related Work
	System Models and Problem Formulation
	Computing Latency
	Uploading Latency
	Waiting Time
	Problem Formulation

	The DecantFed Algorithm
	Client Clustering and Bandwidth Allocation
	Dynamic Workload Optimization
	Summary of DecantFed

	Simulations
	Simulation Setup
	Non-IID Dataset
	Global Model Design
	Comparison Methods

	Simulation Results
	Performance Comparison Among Different FL Algorithms
	Performance of DecantFed by Varying
	Performance of DecantFed by Optimizing the Workload Among Clients

	Conclusions
	References

