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Abstract: This paper proposes an enhanced visual simultaneous localization and mapping (vSLAM)
algorithm tailored for mobile robots operating in indoor dynamic scenes. By incorporating point-
line features and leveraging the Manhattan world model, the proposed PLM-SLAM framework
significantly improves localization accuracy and map consistency. This algorithm optimizes the
line features detected by the Line Segment Detector (LSD) through merging and pruning strategies,
ensuring real-time performance. Subsequently, dynamic point-line features are rejected based on
Lucas–Kanade (LK) optical flow, geometric constraints, and depth information, minimizing the
impact of dynamic objects. The Manhattan world model is then utilized to reduce rotational esti-
mation errors and optimize pose estimation. High-precision line feature matching and loop closure
detection mechanisms further enhance the robustness and accuracy of the system. Experimental
results demonstrate the superior performance of PLM-SLAM, particularly in high-dynamic indoor
environments, outperforming existing state-of-the-art methods.

Keywords: indoor dynamic scenes; mobile robot; visual SLAM; point-line features; Manhattan
worlds

1. Introduction

In recent years, vSLAM has become a research hotspot in the fields of autonomous
driving and intelligent robotics. In many current SLAM algorithms for indoor scenes,
most rely on corner points as feature information for environmental 3D modeling and
pose tracking [1–3]. Although point features perform well in some scenes, in indoor
environments with complex geometries and texture deficiencies, it is often difficult for
point features to adequately describe the geometric information of the scene. In addition,
randomly appearing dynamic objects in the scene can cause serious interference with
feature matching, leading to a sharp decrease in the overall performance of the system. In
order to improve the stability of SLAM systems in complex and dynamic environments,
some researchers have attempted to improve the stability of SLAM systems by introducing
line features and dynamic feature rejection techniques.

On the one hand, line features, as a powerful complement to point features, can pro-
vide richer geometric structure information, especially in building or indoor environments,
which can effectively enhance the SLAM system’s ability to understand and model the
environment. Thus, the introduction of line features not merely improves the robustness of
feature matching, but also exhibits better performance under the influence of noise and il-
lumination variations. In some studies, by combining point features and line features [4–6],
SLAM systems can achieve more accurate localization and map construction in diverse
environments. On the other hand, many indoor scenes often have different moving objects,
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and the dual motion of the robot and the moving target in the field-of-view (FOV) makes
the SLAM system face many technical difficulties in the process of dynamic culling. If the
dynamic features extracted from moving objects are directly used for robot pose estimation,
it will cause significant error accumulation during the localization process, resulting in
pose drift, and the constructed map will also be inconsistent with the actual environment.
Therefore, it has become a cutting-edge research hotspot for how to improve the robustness
and accuracy of vSLAM in dynamic environments, and many researchers have also devel-
oped different solutions by using different methods [7–11], but all of them are proposed for
specific application scenes or under some assumptions. For the application requirements of
indoor dynamic scenes, considering that there are many planes (such as walls, floors, and
ceilings) in indoor structured scenes, the Manhattan World model assumes that these planes
are vertical or horizontal. Utilizing the additional constraints of this structural regularity
of the Manhattan world allows us to further improve the pose estimation accuracy and
map construction performance by restricting the rotational degrees of freedom for pose
estimation. Thus, this paper develops a vSLAM algorithm for mobile robots based on
point-line features and the Manhattan world model, which can effectively improve the
performance of mobile robots’ localization and map building in indoor dynamic scenes.
The main contributions of this paper are as follows:

• A merging and optimization strategy for LSD line features is proposed, and the
method of separating the point-line features is used to calculate the LSD line fea-
ture descriptors, which improves the accuracy of feature matching while ensuring
real-time performance.

• The accuracy of localization in indoor environments is improved by weighting the
reprojection error of point-line features and optimizing the robot’s pose in conjunction
with the Manhattan world model.

• A dynamic point-line feature rejection method combining LK optical flow, geometric
constraints, and image depth is constructed to effectively avoid the influence of
dynamic objects on the system.

• On the basis of obtaining closed-loop candidate keyframes using the Bag of Words
(BOW) model, geometric consistency verification is performed by calculating the
similarity of line features to improve the accuracy of loop closure detection.

The rest of the paper is organized as follows. The related works about point-line
features based on vSLAM and dynamic vSLAM are briefly presented in Section 2. The
pipeline of the proposed framework and method are introduced in Section 3, and its
implementation scheme is detailed. The simulation studies and experimental results are
presented in Section 4, while Section 5 concludes the paper and provides future works.

2. Related Work

The performance of vSLAM depends largely on the accuracy of feature extraction and
matching, and in practical application environments, for scenes with complex geometric
structures or weak textures, a single point feature may not be able to provide enough
geometrical information about the environment; meanwhile, the interference of dynamic
objects might lead to unstable feature matching, which in turn affects the robustness and
accuracy of the SLAM system. Along these lines, many researchers have introduced line
feature and dynamic feature rejection techniques to carry out extensive and in-depth
research on them.

2.1. Point-Line Feature-Based SLAM

In vSLAM, the fusion of point-line features can effectively improve the system’s
ability to adapt to complex environments. Most of the current line-feature-based SLAM
frameworks use LSD [12] algorithms for line segment detection and further utilize the line
binary descriptor (LBD) [13] to complete line feature description and matching [4,5,14–16].
Compared to the EDLines [17] line features-based vSLAM algorithm [18–20], LSD can
achieve sub-pixel detection accuracy without adjusting parameters, and the impact of noise
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is relatively small. A typical real-time matching algorithm is PL-SLAM [4,5], which employs
LSD and LBD for line segment matching. Pumarola et al. [4] used the length and direction
of line features to remove outliers and solve the problem of line segment tracking and
matching, while Gomez Ojeda et al. [5] extended this algorithm to closed-loop detection.
Fu et al. [14] effectively integrated point, line, and inertial measurement unit (IMU) data in
an optimized sliding window based on the state-of-the-art VINS-mono [2], achieving high-
precision attitude estimation. Lim et al. [21] introduced a monocular point-line vSLAM
system, which effectively improves the matching accuracy by introducing optical flow
tracking and filtering short line segments in each frame. Additionally, studies [22,23]
improved the accuracy and stability of the camera’s pose estimation and depth map
recovery in monocular and multi-view SLAM systems by introducing the Manhattan
world model to simplify the geometric structure of the environment. During line segment
extraction, due to the interference of noise and other uncertainties, the line segment detector
may mistakenly detect broken line segments, thereby increasing the difficulty of line feature
matching. For this reason, some scholars merged and optimized line features to improve the
detection efficiency of algorithms [15,24,25]. In order to reduce time consumption, most of
these point-line feature-based methods do not incorporate line segments into loop closure
detection, but the inclusion of line features can effectively help robots better perceive and
recognize structural features in the scene, especially in weakly textured scenes.

2.2. Dynamic SLAM

Currently, the existing vSLAM solutions in dynamic scenes mainly include multi-
sensor information compensation-based methods [26–29], geometric constraint-based meth-
ods [10,30–33], and deep learning-based methods [15,34,35]. Among them, representative
works such as Kim [28] adopted IMU data to perform rotation compensation on the motion
of RGB-D cameras, converting the feature points of the current frame to the coordinate
system of the previous frame to generate motion vectors, and then distinguish dynamic
feature points in the image. Liu et al. [29] utilized different fields of view of sensors to
detect and remove outliers in dynamic scenes. PLDS-SLAM [32] obtained prior features
of dynamic regions by detecting and segmenting them, achieving precise separation of
dynamic images. Qinglin et al. [33] exploited geometric constraints to classify and filter
feature points, and then used the obtained static feature points to complete pose estimation
and construct a map. Studies [36,37] utilize optical flow fields with the ability to recognize
dynamic features to detect and eliminate motion features.

With the application of deep learning in medical detection [38,39], autonomous driv-
ing [40], and 3D point cloud processing[41], some scholars have also introduced different
network models into SALM and achieved many significant results. PLD-SLAM [16] applied
the MobileNet model and K-Means clustering of depth information to obtain dynamic
feature points and lines, and further used epipolar constraints and depth differences to
remove dynamic features. Ai et al. [35] introduced multi-view geometric constraints to
judge the confidence of the segmented region on the basis of semantic segmentation of im-
ages using the DUNet network. In [42,43], the authors drew on depth information to build
a depth filter and combined it with semantic information for dynamic object recognition.
Among these dynamic SLAM schemes, although the method based on multi-sensor fusion
improves system robustness, it also increases hardware cost and computational complexity,
and the introduction of sensors increases the uncertainty and noise. Deep learning-based
methods can obtain more accurate detection results through object detection or semantic
segmentation [44], but most seriously rely on prior knowledge, and model training also
requires a lot of time. Hence, in this work, by combining optical flow, geometric constraints,
and image depth values, the accuracy of dynamic feature judgment can be effectively
improved, and the distinction and recognition of indoor dynamic objects can be realized
without the need for semantic segmentation models, as well as other expensive sensors,
which not merely effectively reduces the demand for hardware resources, but also achieves
satisfactory results in dynamic object detection and rejection.
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3. Pipeline

The algorithm in this paper is based on the architecture of vSLAM, which mainly
consists of two parts, the front-end and the back-end, as shown in Figure 1. In the front-
end, to ensure real-time, the point-line feature separation strategy is used to calculate
the LSD line feature descriptor. If there are enough Oriented FAST and Rotated BRIEF
(ORB) feature points around the line feature, then the line feature should be removed
to reduce the number of line features in the high texture region. Meanwhile, the line
features extracted by LSD need to be merged and optimized before feature matching is
performed. Then, in terms of the Manhattan world hypothesis, the Manhattan axis is
calculated using the structure of line features to optimize the pose estimation of the robot,
and the re-projection error of point-line features is weighted to improve the localization
accuracy of the system. To reduce the interference of dynamic objects and improve the
stability and reliability of the system in indoor dynamic environments, the dynamic point-
line features are further identified and rejected by combining LK optical flow, image depth,
and geometric constraints, and then the static features with high-confidence are utilized
to complete the pose estimation and background reconstruction. In the back-end, on
the basis of obtaining the closed-loop candidate keyframe using the BOW model, the
structural consistency judgment of line features is further added to increase the accuracy
and robustness of loop closure detection through the assistance of line features. Finally, a 3D
dense map of the indoor environment is constructed by combining the bundle adjustment
(BA) optimized keyframe’s pose and the robot’s trajectory, and introducing the point cloud
library (PCL) and point cloud preprocessing techniques to construct a 3D dense map of the
indoor environment, and then using the Octomap to further generate a 3D octree map that
can be applied to robot navigation.

Loop closure 
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Figure 1. Scheme of visual SLAM for mobile robots based on point-line features and Manhattan
world model in indoor dynamic scenes.

3.1. Line Feature Extraction and Optimization

The LSD algorithm can obtain detection results with sub-pixel level accuracy in linear
time, but it is difficult to fully match the same line segments extracted by the algorithm in
different images, and often detects many short line segments, so the extracted line features
need to be optimized. Inspired by the matching method proposed by Zhao et al. [45], we
defined attributes such as endpoints, midpoints, and direction vectors of line segments, as
well as geometric relationships such as angles and lengths between line segments in our
work. Then, we sorted the line segments in descending order by length and constructed a
coarse-to-fine judgment method using geometric relationships to determine whether the
line segments should be merged or not, so that the set of line features can be optimized for
the subsequent feature matching and related analysis tasks.

Specifically, the n line segments extracted by LSD are first sorted in descending order
of length to obtain an ordered set of line segments L = {l1, l2, · · · , ln}. This processing is
mainly because the confidence level of long line segments is higher compared to short line
segments, and thus, the short line segments should be merged in the direction of the long
line segments. Then, a preliminary judgment is made based on the angle between the line
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segments, i.e., coarse selection. Let si = (xsi , ysi ), ei = (xei , yei ) and mi = (xmi , ymi ) denote
the start, end, and midpoint of the ith line segment, respectively. Then, the ith line segment
can be denoted as li =

−→siei, as shown in Figure 2. Assume that the two line segments to be
merged are (li, lj), the length of li and lj satisfies length(li) ≥ length(lj), and θij is the angle
between segments li and lj in degrees. If the following condition is satisfied, it indicates
that li and lj have preliminarily possessed the merging conditions, i.e.,

θij = arccos

( −→siei · −→sjej∣∣−→siei
∣∣∣∣−→sjej

∣∣
)

< θth (1)

where |·| denotes the modulus of a vector, and θth is a set angle threshold.

il

js
je

jm

im

jl

D pp
i jm lD j im lD

is ie

Figure 2. The properties and geometric relationships of two line features extracted by LSD algorithm.

To further determine whether (li, lj) can proceed with the final merger, a fine selection
is required based on Equation (1). Thus, the similarity between li and lj is constructed
as follows:

S(li, lj) = 1 − 1√
2

√(
D∗

ηα

)2
+

(
θij

ηθth

)2

(2)

η =
lj

li
, η ∈ (0, 1] (3)

Dpp = min(Dsisj , Dsiej , Deiej , Deisj) (4)

D∗ = max(Dpp, Dmi lj
, Dmj li ) (5)

where Dpp denotes the closest distance between the endpoints of the line segments of li
and lj, Dmi lj

and Dmj li are the distances from the midpoints li and lj of mi and mj to lj and
li, respectively, α is the measure, and α = 1.5 in this paper. The larger S(li, lj) is, the more
similar li and lj are, and the more eligible they are for merging. Here, we believe that
S > 0.3 satisfies the merging condition of line segments.

According to the above steps, a set of line segments Ξ that can be merged with li has
been found. During the merge process, it is necessary to project lj onto li, i.e.,

lj =
−→sjej ∈ Ξ (6)

lj
′ = Prjli

−→sjej (7)

Let the start and end points of lj
′ be s′j = (x′sj

, y′sj
) and e′j = (x′ej

, y′ej
), respectively. If x′sj

> xsi

and x′ej
< xei , it indicates that lj

′ are all inside li, then the merged line segment from lj to li
is li. If x′ej

> xei , it indicates that part or all of lj
′ is outside of li, as shown in Figure 3. In this

case, considering that the long line segment plays a dominant role in the merging process,
to ensure that the merged line segments do not deviate too far from the long line segments,
let the starting point of the merged line segment be the endpoint si = (xsi , ysi ) of the long
line segment, then the merged line segment lj→i can be obtained according to the following:
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lj→i =
−→
sie′ j +

η

2
×
−→
e′ jej (8)

i
s( , )

ii s sx y

il
e( , )

i ii e ex y

jl

j il 

e( , )
j jj e ex y

e( , )
j jj e ex y  

e( , )
i ii e ex y  

s( , )
j jj s sx y

( , )
m mm e ee x y

Figure 3. Scenarios for the line features merging.

As a note, the length of line segments is usually closely related to their credibility
and merging potential in the merging process. Our method first sorts line segments by
length, and then uses the angle between line segments for coarse screening to obtain the set
of line segments to be merged, effectively reducing the computational complexity of line
segment similarity comparison. Furthermore, this method adaptively adjusts the distance
and angle thresholds of the merged line segments based on their length ratio without the
need for manual intervention, which can be better adapted to the case of line segments of
different lengths, thereby improving the accuracy of merging. Although the long segment
is more representative and provides more constraints compared to the short segment, one
cannot simply project the short segment onto the long segment. Consequently, the merging
distance between short segment lj and long segment li can be adaptively determined under
different line segment lengths by comparing the length ratio η of line segments. That is,
the closer η is to 0, the greater the difference in length between lj and li, and the closer
the endpoint e′i = (x′ei

, y′ei
) of the merged lj→i is to e′j = (x′ej

, y′ej
). The closer η is to 1, the

smaller the length difference between lj and li, and the closer the endpoint e′i = (x′ei
, y′ei

)
of the merged lj→i em = (xem , yem). It can be concluded that the effect of different line
lengths can be balanced by our method, which contributes to reducing the merging error
and improving the accuracy.

Figure 4 compares the line feature extraction effects of different algorithms. Among
them, Figure 4a shows the line features extracted from the scene using the traditional LSD
algorithm, which are distinguished by different colors, while Figure 4b shows the line
features obtained after merging by our method. The line segments that meet the merging
conditions are marked in yellow, while those that do not meet the merging conditions are
marked in red. We find that the line features obtained after merging and optimizing using
our method are significantly better than conventional LSD.

(a) LSD (b) Ours

Figure 4. Comparison of line feature extraction results for different algorithms.
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3.2. Manhattan Axis Calculation

Manhattan world is a universally applicable model for indoor environments and struc-
tured scenes, and its key assumption is that elements in the environment (e.g., walls, floors,
ceilings, and other key structures) are mainly aligned along three mutually perpendicular
axes (i.e., Manhattan axes). Therefore, this paper applies the Manhattan world assumption
to the SLAM system, namely, on the basis of utilizing the position estimation of point
and line features, further utilizing the additional constraints of structural regularity of the
Manhattan world to improve the accuracy of the pose estimation and the consistency of the
map reconstruction.

In the process of extracting the Manhattan coordinate system, we mainly use the direc-
tion vector of line features in 3D space to project the direction information of line features
onto the Manhattan sphere and employ MeanShift clustering to find the clustering centers
of the direction in space [22,46]. Then, Manhattan axis selection is achieved by minimizing
the difference between the direction vector and the ideal orthogonal direction, i.e.,

min f (
−→
A1,

−→
A2,

−→
A3) = ∑

i ̸=j

∣∣∣−→Ai ·
−→
Aj

∣∣∣+ λ
3

∑
i=1

(1 −
∥∥∥−→Ai

∥∥∥2
) (9)

where
−→
A1,

−→
A2, and

−→
A3 denote the closest axis directions to the Manhattan coordinate

system determined using MeanShift clustering, respectively; ∑
i ̸=j

∣∣∣−→Ai ·
−→
Aj

∣∣∣ denotes the cal-

culation of the orthogonal product of the two principal axes, ideally, the value equal to 0;

λ
3
∑

i=1
(1 −

∥∥∥−→Ai

∥∥∥2
) denotes regularizing the module length to ensure that the module length

of each direction vector is close to 1; λ is a regularization coefficient used to balance the
proportion of orthogonality and module length standardization. By solving Equation (9),
one can find the Manhattan coordinate system.

Further, the results of MeanShift clustering are converted to the unit sphere for nor-
malization through the Riemann exponent, also, to ensure the orthogonality of the rotation
matrix, the singular value decomposition is used to obtain the rotation matrix Rcm. Finally,
the rotation between the Manhattan coordinate system and the camera coordinate system
is represented by the rotation matrix Rcm as follows:

Cw = RwcRcmCm (10)

where Cw is the world coordinates Cw = (x⃗, y⃗, z⃗), and Rwc is the rotation matrix from the
camera coordinate system to the world coordinates.

Figure 5 shows how we calculate the rotation matrix of a robot in the Manhattan world
coordinate system. Assuming there are two local Manhattan coordinates M1 and M2 in
the current scene, which is composed of line feature directions of different indoor object
structures and observed at different keyframes. Meanwhile, assuming that M1 and M2
were not recorded in the local Manhattan coordinate system maps prior to C1, and that they
were observed earliest by C1 and C3, respectively, one can use C1 as a reference frame and
use the Manhattan rotation matrix to estimate the camera rotation matrix Rw

c2 for C2, i.e.,

Rw
c2 = Rm1

c2 (Rm1
c1 )

T
Rw

c1 (11)

Moreover, M2 was observed for the first time in C3, which was not recorded in the local
Manhattan coordinate system map and cannot be used for camera rotation matrix estima-
tion based on M2. However, C2 can be used as a reference frame to estimate the camera
rotation matrix Rw

c3 of C3 based on M1, i.e.,

Rw
c3 = Rm1

c3 (Rm1
c2 )

T
Rw

c2 (12)
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Similarly, the camera rotation matrix Rw
c4 of C4 is estimated by using C3 as a reference

frame according to M2, i.e.,
Rw

c4 = Rm2
c4 (Rm2

c3 )T Rw
c3 (13)

It can be found that the role of the Manhattan axes in pose estimation is mainly to
provide a structured and globally consistent model of the environment, enabling vSLAM in
indoor structured environments to enhance the accuracy and robustness of feature match-
ing, and pose optimization, by exploiting line features that are aligned with the three main
orthogonal directions (i.e., Manhattan axes). This approach improves the quality of local-
ization and map construction in indoor structured environments by reducing mismatches
and optimizing pose estimation for geometric consistency with the environment.

M2M2M1M1

C3

C1 C2

C4

M1M1
M1M1

M2M2

M2M2

M1M1

Cluster

X

Y

1 1

2 2 1 1( ) R
Tw m m w

c c c cR R R=

1 1

c3 3 2 2( ) R
Tw m m w

c c cR R R=

2 2

c4 c4 c3 c3( )w m m T wR R R R= 1A

2A

3A

mC

Manhattan 

coordinate system

Manhattan toy

Manhattan coordinate 

system extraction

Line features of Manhattan 

frames at C4 pose

Robot  pose transformation process in 

Manhattan coordinate system in indoor scene

Indoor 

scene

Figure 5. Scenarios for the extraction of Manhattan coordinates in indoor scene.

3.3. High-Precision Matching for Line Feature

For the line feature matching, the common approaches such as Pumarola [4] and
Li [47] adopted a similar approach to the processing of point features in ORB-SLAM2, i.e.,
when searching for matching line segment feature pairs between two frames of images, the
descriptors of the line features are directly calculated, and the KNN algorithm is employed
to register the line features. Unfortunately, this process heavily relies on the similarity of
descriptors, making it easy for mismatches to occur.

In this work, to improve the accuracy and reliability of matching, we use geometric
constraints to further validate and screen the matching results based on the similarity of
descriptors, and calculate the reprojection error. More specifically, the Hamming distance
between descriptors is used to initially screen possible matches to obtain the line feature
l−i in the previous frame f−cur that matches the ith line feature li in the current frame fcur,
which can be computed based on the mapping relation, i.e.,

li
′ = FTl−i (14)

F = K−Tt∧RK−1 (15)

where K denotes the camera’s inner reference matrix, R and t denote the camera rotation
matrix and translation vector, respectively. Ideally, all points on li should be on l′i , which is
satisfied for any point p(x, y, 1) of li, i.e.,

pT l′i = 0 (16)

By substituting Equation (14) into Equation (16), the geometric relationship between
the line features of two frames can be obtained as follows:

pT FT l−i = 0 (17)

In fact, there may be some error between the line l′i obtained through fundamental
matrix mapping and the actual observed line li. Therefore, we calculate the sum of the
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distances between the starting point (si, s′) and the ending point (ei, e′i) of the two line
segments, respectively, to obtain the matching error of the two line features. Then, by
setting an error threshold Dth, potential mismatches are filtered out to improve the accuracy
of the matching, i.e., ∥∥si − s′ i

∥∥+ ∥∥ei − e′ i
∥∥ ≤ Dth (18)

According to the above analysis, the pseudo-code of the high-precision matching
algorithm for inter-frame line features in this paper is shown in Algorithm 1.

Algorithm 1 High-precision matching of line features

Require: line feature set KeyL1 of f−cur and the descriptor mLdes1; line feature set KeyL2 of fcur and the descriptor

mLdes2; Foundational matrix F
Ensure: Refined matching list of line features VL
1: L(li , l−i ) ⇐ KnnMatch(mLdes1, mLdes2)

2: for i = 1 to N do
3: l′i ⇐ Projection(F, l−i )

4: D(∥si − s′i∥, ∥ei − e′i∥) ⇐ Distance(l′i , li)
5: if ∥si − s′i∥+ ∥ei − e′i∥ ≤ Dth then
6: VL ⇐ (li , l−i )

7: end if
8: end for

Figure 6 shows the line feature matching results of different methods. It can be ob-
served that directly using descriptors for KNN matching will result in a certain number
of matching errors. Instead, the line feature matching using basic matrices with geomet-
ric constraints ensures geometric consistency while effectively filtering out mismatches,
thereby improving the accuracy of matching.

(a) KNN (b) KNN and geometric constraints

Figure 6. Comparison of the line feature matching results for different methods.

3.4. Dynamic Feature Detection and Elimination

In dynamic scenes, optical flow can be used to continuously track features and es-
tablish corresponding relationships between adjacent frame features to assist in feature
matching. Also, effective detection of moving targets can also be achieved by utilizing
the characteristics of the changing optical flow of moving targets. Thus, in this paper, a
dynamic feature detection method based on LK optical flow and geometric constraints is
constructed, and histograms are established by dividing the dynamic point-line features
with the depth information of the image. First, the features of the current frame are tracked
using the LK optical flow, and the accurate optical flow information is obtained by minimiz-
ing the matching error (i.e., optical flow residual) around each feature point. Assuming that
the coordinate point to be tracked is (ux, uy), the optical flow vector E(dx, dy) is calculated
by setting the neighborhood window size to wx × wy. Then, for each pixel, the optical flow
residuals between the predicted position and the actual observed position after the optical
flow vector shift are calculated as follows:



Electronics 2024, 13, 4592 10 of 28

∆d =
ux+wx

∑
x=ux−wx

uy+wy

∑
y=uy−wy

( f−cur(x, y)− fcur(x + dx + ∆dx, y + dy + ∆dy))
2 (19)

After obtaining the optical flow residuals of adjacent frames, a threshold dth is set,
and if it satisfies ∆d > dth, it is considered that the object’s movement distance in the
two frames is relatively large, and it can be judged as a dynamic object. Considering
that the conventional optical flow method cannot effectively recognize objects with small
movement amplitude, this paper considers introducing geometric constraints on the basis
of optical flow and calculating the global similarity through the distance error of point
features and line features to further improve the accuracy of dynamic feature detection.
Notably, in our work, global similarity is regarded as the consistency of point-line features
in geometric space.

For point features, the global similarity is calculated by using epipolar constraints to
match the distance between the point and its corresponding epipolar. If the result is greater
than a certain threshold, it is marked as a dynamic point. Specifically, according to the
fundamental matrix F, map the feature points of f−cur to the corresponding search area of
fcur, i.e., near the epipolar l fcur

i , and calculate the distance error Mp as follows:

Mp =

∣∣∣∣P fcur
i

T
FP f−cur

i

∣∣∣∣√
∥A∥2 + ∥B∥2

(20)

l fcur
i = [A, B, C]T = FP f−cur

i (21)

where P f−cur
i =

[
u f−cur

i , v f−cur
i , 1

]
and P fcur

i =
[
u fcur

i , v fcur
i , 1

]
denote homogeneous coordinate

representations of the matching pixels of f−cur and fcur, respectively, and [A, B, C]T is the
vector representation of the polar line l fcur

i .
For line features, the observed line features are constantly changing due to the con-

tinuous motion of the robot, while the line features of dynamic objects do not conform to
the rigid-body transformation, and the range of spatial distance variations between two
consecutive frames of the line features tends to be large. Therefore, we adopt the algorithm
proposed by Huang L.M [48], which can simultaneously solve line segment matching and
motion estimation and utilize the integral of the distance between the corresponding points
of the line features as a measurement function to calculate the global similarity between
the line features to determine whether the matched pairs of line features between two
consecutive frames are dynamic or not, i.e., calculate the error distance Ml between the two
line features as follows:

Ml(l
fcur
i , l f−cur

i ) =
∣∣∣l fcur

i

∣∣∣(m fcur
i − Rm f−cur

i − t)2 +

∣∣∣l fcur
i

∣∣∣3
12

(v fcur
i − Rv f−cur

i )2 (22)

where (l fcur
i , l f−cur

i ) denotes the pair of line features in the two frames that match successfully;
|li|, mi and vi denote the length, midpoint, and direction of the corresponding line feature,

respectively. If Ml(l
fcur
i , l f−cur

i ) is greater than a set threshold, l fcur
i is labeled as a dynamic

line feature.
Additionally, since features on dynamic objects tend to have the same depth, we

further combine the dynamic features in fcur detected using optical flow and geometric
methods with their depth information to find the minimum and maximum depth values of
the pixels in fcur constituting the interval [d fcur

min, d fcur
max], and construct the depth histogram
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S. In our case, the constant interval width is set to ξ = 0.3, and the depth histogram S is
constructed based on the following:

d fcur
max − d fcur

min
ξ

= n (23)

If n ≥ 12, then the histogram is S = {s1, s2, · · · , sn}. If n < 2, let n = 12, recal-
culate the value of ξ, and evenly divide the interval based on ξ to obtain the histogram
S = {s1, s2, · · · , s12}. On this basis, the dynamic point-line features are put into the cor-
responding depth-value interval in the histogram to obtain the depth-value interval that
preserves the most dynamic features, and all the point-line features that conform to the
depth of this interval are labeled as dynamic features, thereby obtaining a static feature
point set with high confidence. Such processing can effectively reduce the trajectory error of
the robot and thus improve the performance of the SLAM system in dynamic environments.

3.5. Pose Estimation

In our work, to achieve accurate estimations of poses between adjacent frames of
images, we utilize Manhattan structural constraints to achieve estimation without rotational
drift. Under the Manhattan world model, by detecting all frames fman in the scene that can
be represented by the Manhattan world model, i.e., Manhattan frames, and using fman as a
reference frame to solve the pose, the rotation matrix Rw

fcur
of the current frame relative to

the reference frame is obtained as follows:

Rw
fcur

= Rm
fcur

(Rm
fre f

)T Rw
fre f

(24)

where Rm
fcur

denotes the Manhattan rotation matrix of the current frame, fre f denotes
the reference frame corresponding to the pose solution, Rw

fre f
and Rm

fre f
denote the rotation

matrix of the reference frame and the corresponding Manhattan rotation matrix, respectively.
The translation t can be found by optimizing the E{Rw

fcur
, t} of the minimization error

function for point-line feature matching, i.e.,

E = arg min
Rw

fcur
,t

1
2

[
∑

pi∈Pcur

ψE2
pi
+ ∑

li∈Lcur

(1 − ψ)E2
li

]
(25)

ψ =
NPcur

NPcur + NLcur

(26)

where Pcur and Lcur denote the sets of point features and line features in fcur that match
successfully with fre f , respectively; NPcur and NLcur denote the number of point features
and line features in the set, respectively; the reprojection error Ep

i
of the ith feature point is

represented as follows:

Ep
i
=
∥∥∥p fcur

i − π(K, Rw
fcur

, t, Pi)
∥∥∥2

(27)

where Pi and p fcur
i denote the ith 3D spatial point and its corresponding pixel coordinates,

respectively, and π(·) is the projection function from world coordinates to pixel coordinates.
The reprojection error of the ith line feature is expressed as follows:

Eli =
∥∥∥l fcur

i − π(K, Rw
fcur

, t, Li)
∥∥∥2

(28)

where Li and l fcur
i are the line segments in 3D space and the corresponding line segments in

the image plane, respectively. Herein, line features are represented by Plucker coordinates.
Figure 7 illustrates the reprojection error relation for the point-line feature, where Li

and Pi denote line segments and points in 3D space, respectively; l
fre f
i and p

fre f
i are the line
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segments and points corresponding to Li and Pi on the image of the reference frame fref,

respectively; the black line segment l′i is the projection of l
fre f
i on fcur; d1 and d2 denote the

distances from the two endpoints of l fcur
i to the line segment l′i , respectively; and p′i denotes

the projection of p
fre f
i on fcur.

Xw

Yw

Zw

fref fcur

(R ,t)

Pi
Li

curf
il

reff
il il

d1

d2

reff
ip

curf
ip

ip

Figure 7. Reprojection error of point-line features.

It should be noted that in environments that do not meet the Manhattan world’s
assumption or in cases where Manhattan coordinate extraction fails, it is not possible to
calculate the camera rotation matrix of the current frame using the Manhattan coordinate
system. In this case, we project map points and map lines to the current frame, calculate the
motion of two sets of 3D–2D feature pairs, and directly solve the minimum error function
through Equation (25) to optimize the camera’s pose.

3.6. Loop Closure Detection

To improve the accuracy and robustness of loop closure detection in indoor dynamic
scenes, we combine the conventional BOW model with line features to transform the current
image into a point-based features visual vocabulary vector and the form of a line-based
features set. Then, the set of closed-loop candidate keyframes is obtained on the basis of
the similarity score of the BOW vector of point features, and then the Jaccard index values
of the line features in the current keyframe and each closed-loop candidate keyframe is
compared. If the similarity threshold is satisfied, it means that a closed-loop candidate
frame with the test of the line features is obtained at f key

cur .
In conventional BOW, the similarity score between two images is compared by calcu-

lating the following BOW vector, i.e.,

Si
bow = 2

n

∑
i=1

|wi|+ |oi|+ |wi − oi| (29)

where oi denotes the BOW vector of f key
cur , wi denotes the BOW vector of a covisibility

keyframe f i
ke f . By calculating the similarity score between the point feature BOW vector of

f i
ke f and f key

cur , the set Icand of t closed-loop candidate keyframes are obtained, i.e.,

Icand = { f j
cand|j ∈ 1, · · · , t} (30)
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Since the BOW model only considers the number of occurrences of visual words when
filtering candidate keyframes, and does not take into account the distribution of visual
words in the image and their semantic relevance, it is prone to more false-positive detection
results. Therefore, we further utilize the line feature to calculate the Jaccard index value of
f key
cur with each f j

cand, i.e.,

SJac =

∣∣∣∣AL
f key
cur

∩ BL
f j
cand

∣∣∣∣∣∣∣∣AL
f key
cur

∣∣∣∣+ ∣∣∣∣BL
f j
cand

∣∣∣∣− ∣∣∣∣AL
f key
cur

∩ BL
f j
cand

∣∣∣∣ (31)

where AL
fcur

denotes the array of line features in f key
cur , BL

f j
cand

denotes the line feature array of

the jth closed-loop candidate keyframe f j
cand calculated by the BOW model,

∣∣∣∣AL
f key
cur

∩ BL
f j
cand

∣∣∣∣
denotes the number of line features successfully matched in the two frames, and SJac is
within the interval [0, 1].

If at least three consecutive frames in Icand satisfy SJac(AL
f key
cur

, BL
f j
cand

) > κ (κ is the

threshold for dividing the line feature Jaccard index between two frames), it indicates that a
closed-loop is detected at f key

cur and subsequent global optimization will be performed. Since
the line features have better structural properties than the point features, after obtaining
the closed-loop candidate keyframes using the BOW model, the geometric consistency
verification can be better carried out by calculating the similarity of the line features, which
effectively reduces the probability of false positives and improves the accuracy of loop
closure detection. The loop closure detection strategy that integrates point-line features is
described in Algorithm 2.

Algorithm 2 Loop closure detection incorporating point-line features

Require: Queue of keyframes to be processed F_Queue, ORB vocabulary OV, Keyframe
ID of the last loop closure detection KF_id

Ensure: List of candidate keyframes for closed-loop Icand

1: f key
cur ⇐ Get_F_Queue(F_Queue)

2: if f key
cur _id > (KF_id + 10) then

3: pKF1 ⇐ GetCovKF( f key
cur )

4: minScore ⇐ Sbow( f key
cur , pKF1, OV)

5: KF2 ⇐ GetConKF( f key
cur )

6: if KF2 is empty then
7: return 0
8: end if
9: pKF3 ⇐ FindSharKF( f key

cur , KF2)
10: if pKF3 is empty then
11: return 0
12: end if
13: pKF4 ⇐ Sbow( f key

cur , pKF3, minScore, OV)
14: if pKF4 is empty then
15: return 0
16: end if
17: pKF5 ⇐ SelectBestCovK( f key

cur , pKF3, minScore)
18: if pKF5 is empty then
19: return 0
20: end if
21: Icand ⇐ JacLScore( f key

cur , pKF5, LScore)
22: end if
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3.7. Map Building

On the basis of obtaining the keyframe’s pose in the visual odometry of the front-
end, we further combine the RGB and depth information of the keyframe to calculate
the 3D point coordinates corresponding to each pixel in the keyframe. Then, we utilize
a transformation matrix to convert it to the world coordinate system and splice it with
the previous 3D point cloud to obtain the global 3D dense point cloud at the current
time. First, traverse all the keyframes according to the pinhole camera model, convert
the 2D coordinates of each pixel in the RGB map and depth map to the 3D coordinates
corresponding to it under the world coordinate system, and then obtain a set of 3D point
clouds. For the ith pixel, the following result holds:

zi[ui, vi, 1]T = KTPi (32)

where [ui, vi, 1]T and zi denote the homogeneous coordinates and the depth of the ith
pixel, respectively, Pi is the 3D point corresponding to the ith pixel in the world coordinate
system, and T is a transformation matrix composed of the camera rotation matrix R and
the translation vector t.

It should be noted that for each inserted keyframe, we need to traverse each pixel point
in the keyframe to eliminate the points with abnormal depth values, and when processing
the keyframe pixel information, for the kth depth interval [slower

k , supper
k ] that has the most

dynamic features, if the pixel depth information satisfies the following condition:

slower
k ≤ zi ≤ supper

k (33)

then the pixel is no longer involved in the construction of the 3D dense map. By this
method, we can effectively build a global consistency map for static background.

Further, a 3D point cloud map can be obtained by projecting the pixel points of the
keyframes into the 3D coordinate system for point cloud splicing. To obtain high-quality
point clouds, we employ statistical filtering to preprocess the 3D point cloud and model
the distance dij from Pi to k points in its domain using Gaussian distribution. Assuming
that the distance between a point Pi and its neighboring points in the point cloud is dij,
i = 1, 2, ..., m; j = 1, 2, ..., k, the mean and standard deviation of the distance from Pi to all
its neighboring points are as follows:

µ =
1

mk

m

∑
i=1

k

∑
j=1

di j (34)

σ =

√√√√ 1
mk

m

∑
i=1

k

∑
j=1

(di j − µ)2 (35)

Traversing each point, only the points whose mean distance falls within the confidence
interval of the Gaussian distribution are retained, i.e.,

µ − τσ <
k

∑
j=1

dij < µ + τσ (36)

where τ is the coefficient of standard deviation to control the effect of the standard deviation
on the distance threshold. According to Equation (36), outliers introduced by sensor noise,
measurement error, or system error can be effectively eliminated.

For line features, we discretize each line segment into a series of points and add them
to the 3D dense point cloud. Herein, we discretize the line features by setting the sampling
interval δ and the minimum number of sampling points as follows:

Pli = Pstart +
i
N

· −→L (37)
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where Pstart denotes the start point of the line segment,
−→
L denotes the direction vector of a

line segment, N is the number of sampling points, and N ≥ 5 in this paper.
After the sampling of the line features is completed, the point features corresponding

to them are fused with the 3D dense point cloud to obtain a 3D dense map. This approach
integrates line features into the mapping, effectively increasing the consistency of the map.
Finally, in order to enable the map to be applied to autonomous navigation, we further
transformed the obtained 3D dense map into a 3D dense octree map using Octomap [49].
The detailed process is shown in Figure 8.

k=1

The kth keyframe

Depth anomaly 
pixel removal

Dynamic pixels elimination

Dynamic feature 
depth interval

Discretization of line features

Convert pixel points to real point clouds

Statistical filtering & Splicing point clouds

3D dense point cloud  with 1: k keyframes

3D dense octree map

Keyframe 
pose

k=k+1

Figure 8. Scenarios for the 3D dense octree map building.

4. Experiments and Results

To verify the feasibility and effectiveness of the proposed algorithm, a series of simula-
tion studies under the TUM dataset and further experimental tests using a mobile robot
are given in this section. The TUM dataset [50] is a vSLAM experimental scene dataset
created by the Technical University of Munich, which includes RGB-D image sequences
and camera movement trajectories in different scenes and is popular within the dynamic
vSLAM research community. In this study, all of the experiments were performed on a
mobile computer with a 13th Gen Intel(R) Core (TM) i7-13700H 2.40 GHz with 16 GB of
RAM and GeForce RTX4060 GPU, running under Ubuntu 18.04.

4.1. Simulation Studies

To evaluate the performance of our method in an indoor dynamic scene, we conducted
comparative experiments for ORB-SLAM2 [1], MSC-VO [51], DS-SLAM [52], MR-DVO [53],
PL-SLAM [4] and our method on the TUM dataset sequence. In the simulation, we adopted
absolute trajectory error (ATE) and relative pose error (RPE) as indicators to measure the
accuracy of the algorithm’s pose estimation. Among them, ATE intuitively reflects the
global positioning accuracy of the algorithm by directly calculating the error between the
true and estimated poses of the system, while RPE calculates the difference between the
changes in the true and estimated poses of the system at every identical period of time to
assess the drift of the system. Then, the statistical value of the overall error of the system is
obtained by calculating the root mean square error (RMSE) between the estimated pose
and the reference pose at all time points.
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The RMSE of the experimental results are shown in Tables 1–3, and all the listed data
come from the papers of the corresponding algorithms as well as our experimental results,
where “-” indicates that the algorithm did not provide relevant experimental results, and
bold indicates the best value on the corresponding dataset sequence. Although some of the
algorithms, such as ORB-SLAM2, MSC-VO, and PL-SLAM, have calculated corresponding
ATE and RPE; these algorithms were running with tracking failures for part of the time,
and thus, these two indicators mainly focus on the error in the successful tracking stage.
Moreover, for the monocular PL-SLAM, its initialization time was relatively long and its
camera trajectory cannot be obtained in experiments. Therefore, this paper adopted its
keyframe trajectory for ATE and RPE calculations, but we believe that it still has a certain
reference value.

From Table 1, it can be seen that in high-dynamic scene dataset sequences, our al-
gorithm reduced RSME by 70% compared with ORB-SLAM2, MSC-VO, and PL-SLAM
without involving dynamic feature removal, and overall performance was better than
MR-DVO using motion methods to remove dynamic features. However, for low-dynamic
and static scenes, our algorithm did not show significant advantages, and there was also
a gap compared with DS-SLAM based on SegNet deep network. The main reason is that
in low dynamic scenes, object motion changes were relatively small, making it difficult to
distinguish moving objects using optical flow and geometric methods, and the optical flow
method may result in making negative optimization due to camera jitter when calculating
the optical flow vectors in low dynamic scenes.

Table 1. Comparison of the RMSE (m) for absolute trajectory error (ATE) among different algorithms
on the TUM dataset sequence.

Dataset Sequence ORB-SLAM2 MSC-VO DS-SLAM MR-DVO PL-SLAM Ours

Static fr3/long_office 0.0149 0.0444 - - 1.2005 0.0589

Low-
dynamic

fr3/sitting_static 0.0085 0.0082 0.0065 - - 0.0133
fr3/sitting_xyz 0.0088 0.0145 - 0.0482 0.3253 0.0686
fr3/sitting_rpy 0.216 0.0182 0.0187 - - 0.0206
fr3/sitting_half 0.0312 0.0582 0.0148 0.0470 0.3766 0.0254

High-
dynamic

fr3/walking_static 0.4173 0.1488 0.0081 0.0656 - 0.0125
fr3/walking_xyz 0.8254 0.4870 0.0247 0.0932 0.2445 0.0628
fr3/walking_rpy 0.9269 0.9362 0.4442 0.1333 0.1684 0.2925
fr3/walking_half 0.5459 0.5263 0.0303 0.1252 0.4299 0.0650

To demonstrate the superiority of line features in the comparative analysis of RPE, we
further added DVO [54] and SLAM [31] to compare relative translation error (RTE) and
relative rotation error (RRE). As can be seen from Tables 2 and 3, in high-dynamic scenes,
for the methods that do not cull dynamic objects, the rotation and translation errors of
the line-feature-based SLAM algorithm were mostly better than those of the point-feature-
based ORB-SLAM2 and DVO, which is mainly due to the fact that the line-features have
good geometric properties that allow them to be more easily matched with features. In
addition, the introduction of the Manhattan world model greatly reduced the impact of pose
estimation drift. Thus, in high-dynamic scenes, especially in the f r3/walking_rpy dataset
sequence, the RMSE of our algorithm’s RRE was lower than that of all other algorithms, and
it was also comparable to the semantic network-based DS-SLAM on other high-dynamic
dataset sequences.
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Table 2. Comparison of the RMSE for relative translation error (RTE) among different algorithms on
the TUM dataset sequence.

Dataset Sequence
RMSE (m/s)

ORB-SLAM2 MSC-VO DS-SLAM MR-DVO DVO PL-SLAM SLAM Ours

Static fr3/long_office 0.0081 0.0095 - - 0.0231 0.1489 0.0263 0.0129

Low-
dynamic

fr3/sitting_static 0.0089 0.0098 0.0078 - 0.0157 - 0.0174 0.0130
fr3/sitting_xyz 0.0110 0.0170 - 0.0330 0.0453 0.1120 0.0301 0.0351
fr3/sitting_rpy 0.0247 0.0216 - - 0.1735 - 0.0836 0.0255
fr3/sitting_half 0.0271 0.0276 - 0.0458 0.1005 0.1366 0.0525 0.0240

High-
dynamic

fr3/walking_static 0.2508 0.0917 0.0102 0.0842 0.3818 - 0.0234 0.0128
fr3/walking_xyz 0.4064 0.2630 0.0333 0.1214 0.4360 0.2125 0.2433 0.0800
fr3/walking_rpy 0.4017 0.3058 0.1503 0.1751 0.4038 0.1651 0.1560 0.1011
fr3/walking_half 0.3338 0.2185 0.0297 0.1672 0.2628 0.1939 0.1351 0.0215

Table 3. Comparison of the RMSE for relative rotation error (RRE) among different algorithms on the
TUM dataset sequence.

Dataset Sequence
RMSE (deg/s)

ORB-SLAM2 MSC-VO DS-SLAM MR-DVO DVO PL-SLAM SLAM Ours

Static fr3/long_office 0.4638 0.4418 - - 1.5689 1.0345 1.5173 0.4789

Low-
dynamic

fr3/sitting_static 0.2814 0.2860 0.2735 - 0.6084 - 0.7842 0.3501
fr3/sitting_xyz 0.4759 0.5181 - 0.9828 1.4980 0.6182 1.0418 0.7364
fr3/sitting_rpy 0.7970 0.6756 - - 6.0164 - 5.3861 0.7191
fr3/sitting_half 0.7363 0.7636 - 2.3748 4.6490 0.4939 2.8663 0.6848

High-
dynamic

fr3/walking_static 4.4196 1.8105 0.2690 2.0487 6.3502 - 1.8547 0.3098
fr3/walking_xyz 7.6186 4.8967 0.8266 3.2346 7.6669 1.6678 6.9166 1.6627
fr3/walking_rpy 7.8268 6.1438 3.0042 4.3755 7.0662 1.7541 5.5809 2.0076
fr3/walking_half 6.8215 4.4585 0.8142 5.0108 5.2179 0.6583 4.6412 1.3622

For dynamic rejection methods that also utilize point-line features, SLAM [31] ignored
the effect of dynamic point features on the whole system, while MR-DVO utilized the
foreground model to remove dynamic pixels. In the case of large scene changes, its effect
was unsatisfactory. In contrast, the proposed method can effectively adapt to scene changes
and detect dynamic objects. Also, the Manhattan world model effectively reduced the
error accumulations caused by rotation, thereby improving the accuracy of the robot’s pose
estimation in indoor dynamic scenes.

Furthermore, for the challenging high-dynamic walking_xyz dataset sequence, we
utilized the evaluation tool EVO [55] developed by Grupp et al. to display the generated tra-
jectories of different algorithms to evaluate their performance in dynamic scenes. Figures 9
and 10 describe the ATE and visualization trajectories of different algorithms, respectively.
It can be observed that owing to the interference of dynamic objects, there was a significant
drift in the estimated pose of ORB-SLAM2 and MSC-VO, while PL-SLAM remained in
the initialization process due to tracking failure. Instead, the trajectory estimated by our
algorithm was more consistent with the real trajectory and maintained stable tracking
throughout the entire process, which is mainly due to the fact that our method eliminated
dynamic feature points in the front-end and reduced the influence of dynamic objects
on the relative positional transformation of the camera during continuous tracking, thus
improving the robot’s localization accuracy in dynamic scenes.
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(a) ORB-SLAM2 (b) MSC-VO (c) PL-SLAM

(d) Point+optical flow (e) Point+line+optical flow (f) Point+line+optical flow+geometry

Figure 9. Comparison of the absolute trajectory error (ATE) among different algorithms under the
walking_xyz dataset sequence.

(a) ORB-SLAM2 (b) MSC-VO (c) PL-SLAM (d) Ours

Figure 10. Trajectories estimated by different algorithms under the walking_xyz dataset sequence.

Figure 11 further compares the absolute pose error (APE) of different algorithms.
Our algorithm exhibited the best global consistency in generating the entire trajectory
compared with other testing algorithms. Therefore, we could reasonably conclude that our
algorithm possessed smaller errors in various data evaluation indicators in high-dynamic
environments and had good robustness.

Figure 12 shows the feature extraction performance of different algorithms on the
walking_xyz dataset, we find that ORB-SLAM2 and MSC-VO extracted many features
on pedestrians, which introduced a lot of error accumulation in subsequent localization
and mapping. However, our algorithm can effectively get rid of features on pedestrians,
which is due to the merging and optimization of the line features, and in the region where
the point features were sufficient, the extracted line features will no longer be tracked.
Additionally, we have marked dynamic features and selected dynamic depth intervals
in the tracking thread, so the extracted point features on the image were less than the
other two algorithms that did not filter out dynamic features. This ensured stable tracking
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while reducing the time consumption of feature tracking and BA optimization, and thus
improved the real-time performance of the entire system.

Figure 11. Comparison of the absolute pose error (APE) among different algorithms.

(a) ORB-SLAM2

(b) MSC-VO

(c) Ours

Figure 12. Feature extraction results of different algorithms on the walking_xyz dataset sequence.

To verify the mapping effect of the algorithm, we constructed local scene maps on the
f r3/walking_hal f sphere dataset sequence using the three algorithms mentioned above,
as shown in Figure 13. It can be seen that ORB-SLAM2 and MSC-VO did not deal with
dynamic objects, resulting in a more chaotic map, while the algorithm in this paper can
effectively eliminate the point cloud of dynamic objects and realize a clear reconstruction
of the real environment.
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(a) 3D dense map

(b) Octree map

Figure 13. Local mapping results of different algorithms under f r3/walking_ hal f sphere sequence.
From left to right: ORB-SLAM2, MSC-VO, and our algorithm.

Table 4 analyzes the mean execution time spent on each subtask in the “Tracking” and
“Local Mapping” threads of different algorithms on the walking_xyz sequence. For the most
time-consuming local BA, the performance of our algorithm has improved by 3–6 times
after dynamic feature removal. As can be found from the “Tracking” thread, although the
introduction of line features improved the accuracy and robustness of the system, it also
increased the complexity of the algorithm, thus increasing the overall running time of the
system. However, in a high-dynamic dataset sequence, the running time of our algorithm
in these two threads was smaller than the other two algorithms, and the efficiency was
significantly improved. As a note, ORB-SLAM2 and MSC-VO are prone to tracking loss as
they do not have good robustness in dynamic scenes, so we ran multiple times to obtain
their mean running time.

Table 4. Comparison of the mean execution time for different algorithms (ms).

Thread Operation ORB-SLAM2 MSC-VO Ours

Local Mapping

KeyFrame Insertion 54.19 23.38 37.76
Map Features Culling 0.01 0.54 0.45
Map Features Creation 0.61 2.91 2.81

Local BA 301.40 164.14 53.51
KeyFrame Culling 44.685 19.96 12.66

Tracking
Features Extraction 11.84 41.68 43.68

Initial Pose Estimation 9.47 76.89 20.88
Track Local Map 2.17 6.72 13.23

4.2. Experimental Testing

To evaluate the performance of the proposed algorithm in real scenes, we conducted
experimental tests using a “Wheeltec Ackermann” mobile robot equipped with a “Astra
Pro Plus” depth camera in an office with a size of 6.4 m × 8.4 m, as shown in Figure 14. In
the experiment, the robot moved around the room to form a closed loop and a pedestrian
was used to walk back and forth within the robot’s FOV to simulate unknown dynamic
objects in the scene. The mobile robot moved along the reference trajectory indicated by
the red dashed line at a speed of 0.2 m/s with a maximum steering speed of 0.3 rad/s. The
main parameters of the mobile robot are listed in Table 5.
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Depth cameraLaptop

Ackermann 
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Reference trajectory 
& motion direction
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Figure 14. Experimental scene. (a) The experimental platform of the mobile robot and the reference
trajectory; (b) “Astra Pro Plus” depth camera.

Table 5. The main parameters of the “Wheeltec Ackermann” mobile robot.

Parameter Properties

Size 271 mm × 189 mm × 151 mm
Weight 1.8 kg

Maximum speed 1.2 m/s
Load 3 kg

Main control board STM32F407VET6

Figure 15 compares the removal effects of dynamic features in real indoor scenes using
only sparse optical flow and combining sparse optical flow with geometric methods. In
Figure 15a, the green dots indicate the ORB feature points, the red line segments indicate
the merged LSD line features, and the blue line segments represent the directions of optical
flow. By comparing Figure 15b and Figure 15c, we observe that using only the optical flow
cannot accurately identify dynamic feature points in the scene, and cannot effectively detect
all dynamic feature points in body parts where pedestrian movements were not obvious.
In contrast, we integrated the geometric method on the basis of the optical flow, which can
accurately recognize and completely eliminate the dynamic features of the pedestrian.

Figure 16 shows the feature extraction results of different algorithms and the corre-
sponding sparse maps in a real scene. It can be found that the sparse map constructed by
the proposed algorithm had better geometry and structure compared to ORB-SLAM2 and
was more concise and efficient than MSC-VO. Also, the sparse map points generated on
dynamic objects (pedestrians) were significantly less than the other two algorithms after
processing the dynamic features in the front end. This further validates that the proposed
algorithm effectively improves the real-time performance of the system while ensuring
stable tracking.
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(a)

(b)

(c)

Figure 15. Dynamic feature removal effects. (a) Extracted point-line features and optical flow
directions; (b) dynamic feature culling effect only using sparse optical flow; (c) dynamic feature
culling effect coupling sparse optical flow with geometric method.

(a). ORB-SLAM2 (b). MSC-VO (c). Ours

Figure 16. The feature extraction results of different algorithms and the corresponding sparse maps in
real scenes. The first and second rows show the feature extraction results and the corresponding sparse
maps for a certain frame, respectively, and the third row shows the sparse maps after transforming
the dynamic features into map points.
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Figures 17 and 18 illustrate the trajectory estimation results of different algorithms
and their APEs in real dynamic scenes. We find that when the robot moved to the corner,
the dynamic target occupied most of the robot’s FOV, which makes our algorithm unable
to extract sufficiently effective point-line features. This not only failed to leverage the
advantages of line features but also matched some incorrect point-line features, resulting in
the error in this area being slightly larger than that of ORB-SLAM2. Although MSC-VO also
improved the accuracy of pose estimation by extracting point line features and utilizing
Manhattan structural constraints, this method was mainly aimed at static scenes, so it failed
to detect closed-loop when affected by pedestrian movement back and forth. Conversely,
both ORB-SLAM2 and our algorithm can detect closed loops, but because ORB-SLAM2
cannot effectively process dynamic feature points, the robot’s pose estimation results were
greatly affected when pedestrians wandered within the robot’s FOV, which led to the
output trajectory having a large error with the reference trajectory in some regions, while
our algorithm can effectively identify and remove dynamic feature points, and developed
a loop closure detection that integrates point and line features, resulting in a higher degree
of fit between the generated trajectory and the reference trajectory.

Closed-loop 
Point 

Figure 17. Comparison of trajectories generated by different algorithms in real dynamic scenes.

Figure 18. Comparison of the absolute pose error (APE) among different algorithms in real scenes.
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To assess the performance of the proposed loop closure detection method, we com-
pared the results of different methods in indoor dynamic scenes and employed the precision–
recall curve (P-R curve) as a measurement indicator. Precision represents the proportion of
the actual number of closed loops detected by the robot in the loop results, whereas recall
represents the proportion of the number of real loops detected by the robot among all real
loops. The calculation of accuracy and recall is as follows:

P =
TP

TP + FP
R =

TP
TP + FN

(38)

where TP and FP denote the true positive and false positive, respectively, and FN denotes
the false negative.

As can be seen from Figure 19, the proposed method combined BOW and line features
with higher accuracy and recall, and under the same recall rate, it was higher in accuracy
than ORB-SLAM2 using only BOW. This is due to the fact that we culled the dynamic
features in the front-end, reducing the influence of dynamic objects on the similarity
calculation of the BOW model. Moreover, ORB-SLAM2 only used BOW for closed-loop
detection. Dynamic object interference would lead to mismatches, which in turn affects
the calculation of similarity in BOW. To quantitatively validate the performance of the
developed loop closure detection approach in a real scene, we conducted three experiments
using the three testing algorithms in the office. Each experiment included three loops and
a randomly walking pedestrian, and the tracking failure state considered loop closure
detection failures. Although introducing line features increased the running time of the
system, the proposed algorithm significantly reduced both the number of keyframes and
the tracking time compared with MSC-VO, which does not merely meet the real-time
requirements but also ensures stable tracking. The test results are listed in Table 6.

Table 6. Comparison of comprehensive performance for different loop closure detection algorithms.

Algorithm Number of
keyframes

Mean
Tracking Time

Number of
Closed-Loop TP FP FN Tracking

Failure Precision Recall

ORB-SLAM2 481 0.027 3 1 0 1 1 100% 33.3%
MSC-VO 860 0.158 3 0 0 1 2 0 0

Ours 209 0.092 3 3 0 0 0 100% 100%

Figure 19. Comparison of the P-R curves for different algorithms.

To demonstrate the global mapping result of the proposed method, we constructed 3D
dense maps and corresponding octree maps of the real indoor dynamic scenes, as shown in
Figure 20. Apparently, the global map obtained by MSC-VO underwent significant distor-
tion, while the map constructed by ORB-SLAM2 had residual shadows of the pedestrian
movement process. Combined with the results in Figure 17, although ORB-SLAM2 can
find the correct closed-loop and eliminate the pose drift of the robot to a certain extent,
its generated map was distorted and shifted in some regions due to dynamic interfer-
ence. In contrast, the global map obtained by our algorithm exhibited the best consistency
and almost no residual shadow of dynamic objects, which does not merely effectively
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avoid the interference caused by dynamic objects but also better reflects the structure
of the environment and provides a reliable reference for the autonomous navigation of
mobile robots.

(a) 3D dense map

(b) Octree map

Figure 20. Global mapping results of different algorithms in indoor dynamic scenes. From left to
right: ORB-SLAM2, MSC-VO, and our algorithm.

5. Conclusions and Future Work

Aiming at the problem of low localization accuracy and poor consistency of map con-
struction in vSLAM systems in indoor dynamic scenes due to the interference of dynamic
objects, this paper proposes a vSLAM algorithm for mobile robots based on point-line
features and the Manhattan world model. One of the important works is to complete the
extraction and optimization of LSD line features, i.e., the line features are processed mainly
for the low-texture region, while the line features are weakened in the feature-rich region,
which in turn improves the real-time performance of the system. In order to obtain high-
confidence static features to complete the pose estimation and background reconstruction,
we combine LK optical flow, image depth, and geometric constraints to identify and reject
dynamic point-line features. We also utilize the orientation vectors of the line features to
construct a Manhattan world coordinate system, which reduces the cumulative error of
rotational estimation during the process of pose estimation. In addition, on the basis of
obtaining the closed-loop candidate keyframe using the BOW model, we further add the
structural consistency judgment of line features to increase the accuracy and robustness of
loop closure detection through the assistance of line features. Simulation results on a public
dataset show that line features are more stable than point features, and compared with
existing SLAM algorithms based on ORB point features or point-line fusion, this proposed
algorithm reduces the RTE and RRE in indoor dynamic environments and improves the
accuracy by at least 40%. In terms of dynamic feature processing, the combination of optical
flow, limiting geometric constraints and depth can effectively reject features on dynamic
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objects; compared with ORB-SLAM2 and MSC-VO, the RSME of ATE in dynamic scenes is
reduced by 70% in our algorithm, improving the accuracy of the pose estimation.

In future work, we intend to combine optical flow networks with line features and use
light-weight networks to improve the dynamic feature removal effect, thereby making pose
estimation more accurate. Moreover, we also plan to deeply combine line features with
Manhattan model optimization to better handle robot movement and rotation. Although
processing line features may reduce the real-time performance of the SLAM system, it
provides more constraints that can greatly improve the robustness and accuracy of the sys-
tem. Thus, another perspective of this research is to further consider how to coordinate the
optimization of point-line features in indoor scenes to improve the real-time performance
of the system.
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