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Abstract: In this paper, a progressive image transmission and recovery algorithm based on hybrid
attention mechanism and feature fusion is proposed, aiming to solve the challenge of monitoring the
signal-less region of transmission lines. The method combines wavelet transform, Swin Transformer,
and hybrid attention module with the Pixel Shuffle upsampling mechanism to achieve a balance
between quality and efficiency of image transmission in a low bandwidth environment. Initial
preview is achieved by prioritizing the transmission of low-frequency subbands through wavelet
transform, followed by dynamic optimization of the weight allocation of key features using a hybrid
attention and local window multi-scale self-attention mechanism, and further enhancement of the
resolution of the decoded image through Pixel Shuffle upsampling. Experimental results show that
the algorithm significantly outperforms existing methods in terms of image quality (PSNR, SSIM),
transmission efficiency, and bandwidth utilization, proving its superior adaptability and effectiveness
in surveillance scenarios in signal-free regions.

Keywords: progressive image transmission; wavelet transform; hybrid attention mechanism; Swin
Transformer; Pixel Shuffle upsampling module

1. Introduction

With the continuous expansion of power systems and the growing coverage of trans-
mission lines, ensuring the stable operation and reliable monitoring of transmission infras-
tructure has become a critical issue in the power industry. However, many transmission
lines are located in remote areas, such as mountains and wilderness, where communication
signals are unavailable, making it particularly challenging to obtain real-time monitoring
images. The presence of these signal-free areas not only hampers fault detection and emer-
gency response, but also threatens the stable operation of the power grid. Consequently,
achieving efficient image transmission and progressive recovery in areas with limited
communication has become a key challenge in the operation and maintenance of power
grids [1].

Traditional surveillance systems typically rely on fixed or wireless communication
networks for image transmission. However, in low-bandwidth or completely signal-free
environments, these conventional methods often fail to meet surveillance requirements
due to slow transmission speeds and high latency. While previous image compression
and transmission techniques can partially alleviate bandwidth limitations, they struggle
to preserve image quality and retain essential details—particularly in complex natural
environments. The loss of crucial image information can delay fault detection, leading to
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increased maintenance costs and operational risks. Therefore, there is a pressing need for
an algorithm that can not only transmit images efficiently, but also progressively enhance
image quality throughout the transmission process.

To address the above challenges, this paper proposes a progressive image transmission
algorithm based on a hybrid attention mechanism. The algorithm effectively balances
image quality and transmission efficiency under low-bandwidth conditions by integrating
wavelet transform, the Swin Transformer, a hybrid attention mechanism, and the Pixel
Shuffle upsampling module. Specifically, the wavelet transform decomposes the image
into low- and high-frequency subbands, prioritizing the transmission of low-frequency
subbands to provide a fast preview, thereby reducing unnecessary data transfer. The
hybrid attention mechanism combines channel attention and pixel attention modules to
dynamically adjust the weights of key image features, enhancing detail recovery. The Swin
Transformer captures both global and local features through a local window multi-scale
self-attention mechanism, improving the model’s overall feature comprehension. Finally,
the Pixel Shuffle upsampling module enhances resolution by rearranging channel data,
ensuring the decoded image is of high quality with rich details.

Compared to existing algorithms, the proposed algorithm significantly improves im-
age quality (PSNR, SSIM), transmission efficiency, and bandwidth utilization, making it
better suited for monitoring needs in extreme environments. This paper verifies the effec-
tiveness of the algorithm through experiments conducted in various scenarios. The results
demonstrate that the method delivers excellent performance and stability in monitoring
transmission lines in signal-free areas. Additionally, this paper outlines the following key
contributions.

(1) A progressive image transmission and recovery algorithm based on the hybrid atten-
tion mechanism is proposed, which achieves a balance between image quality and
transmission efficiency in low bandwidth environments and is particularly suitable
for transmission line monitoring in signal-free regions.

(2) The wavelet transform is innovatively combined with Swin Transformer, hybrid
attention module, and pixel rearrangement upsampling mechanism to optimize the
feature extraction and image recovery process, which significantly improves the clarity
and detail retention of the recovered images.

(3) Experimental results show that the algorithm performs superiorly in terms of image
quality (PSNR, SSIM), transmission efficiency, and bandwidth utilization compared
with mainstream methods, demonstrating its excellent adaptability and stability in
extreme environment monitoring scenarios.

2. Related Work
2.1. Approaches Based on Attention Mechanisms

In recent years, numerous studies have explored attention mechanisms to enhance the
efficiency and quality of image processing. Wang et al. [2] introduced an efficient channel at-
tention (ECA) module that employs one-dimensional convolution to facilitate cross-channel
interactions and adaptively adjusts the convolution kernel size to improve performance.
This method achieves notable performance gains with minimal parameter overhead but
fails to address both spatial and channel information simultaneously. In response, our hy-
brid attention mechanism integrates channel- and pixel-level attention to comprehensively
capture image features and optimize image reconstruction in low-bandwidth environments.
Additionally, efficient image transmission is vital in medical imaging for telemedicine
applications [3], particularly under constrained bandwidth conditions. While existing
research employs compression-aware and deep learning-based compression strategies to
maintain diagnostic accuracy, our work advances bandwidth efficiency and ensures higher
transmission performance through progressive recovery techniques.

The Residual Channel Attention Network (RCAN) developed by Zhang et al. [4]
utilizes a residual-in-residual (RIR) structure that bypasses low-frequency information via
multiple skip connections, concentrating on high-frequency feature learning. While RCAN
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excels at preserving fine details, its high computational complexity limits adaptability across
varying bandwidth constraints. Our approach mitigates this complexity by incorporating
Swin Transformer and Pixel Shuffle upsampling modules, enhancing both global and local
feature comprehension. This makes it particularly effective for transmission line monitoring
in signal-blind areas. Similar to the bandwidth limitations encountered in satellite remote
sensing [5], which employs hierarchical image coding and lossless compression to prioritize
essential information transmission, our method demonstrates superior adaptability for
handling complex textures and maintaining detailed information.

The SCA-CNN developed by Chen et al. [6] integrates spatial and channel atten-
tion mechanisms to improve feature selection for image description tasks. However, this
approach is not designed for progressive image recovery in bandwidth-constrained envi-
ronments. By contrast, our method leverages the wavelet transform in conjunction with
the Swin Transformer module to enable efficient image transmission and reconstruction in
signal-blind areas using progressive transmission and recovery techniques. This approach
aligns with the requirements of disaster management and emergency response [7], where
low-bandwidth radio networks and progressive image reconstruction are employed to
address urgent situations. Our algorithm further enhances image quality and transmission
efficiency in these critical scenarios.

2.2. Image Restoration Technology

In the field of image restoration, Zhao et al. [8] developed a lightweight convolutional
network featuring a pixel attention (PA) mechanism to enhance image reconstruction
quality through self-calibrating convolution and efficient upsampling. Although this
method achieves strong performance with minimal parameter overhead, it struggles with
preserving complex textures. Our algorithm addresses this challenge by combining a hybrid
attention mechanism with a window-based multi-scale self-attention strategy, enhancing
image clarity across various scenes. Similarly, in applications such as autonomous driving
and robotics, where real-time image data transmission is crucial under limited bandwidth
conditions [9], edge computing and feature-prioritized transmission methods are commonly
employed. Our approach further optimizes image recovery and transmission by leveraging
multi-scale information extraction and upsampling techniques.

Xiao et al. [10] proposed a multi-feature selection method for small target detection
in complex backgrounds, enhancing detection performance through a bidirectional multi-
scale feature fusion network. However, this method primarily addresses target detection
rather than progressive image recovery. In contrast, our research focuses on enhancing
image transmission efficiency and recovery quality in signal-blind surveillance scenarios.
Related studies have utilized wavelet transform and compression algorithms to optimize
image transmission in underwater and space detection. Our approach, however, further
refines detail recovery in complex environments by employing pixel shuffling upsampling
and advanced attention mechanisms.

The SwinIR model developed by Liang et al. [11] demonstrates outstanding perfor-
mance in denoising and artifact removal tasks. However, its high computational resource
requirements limit its applicability in bandwidth-constrained scenarios. Similarly, the Hier-
archical Swin Transformer (HST) proposed by Li et al. [12] effectively captures hierarchical
features but also faces significant resource consumption challenges. Our approach offers a
more efficient solution for low-bandwidth environments by prioritizing the transmission
of essential subbands and employing the Pixel Shuffle module for optimized upsampling.

The single-image super-resolution (SISR) method proposed by Nascimento et al. [13]
combines the Pixel Shuffle and attention mechanisms, achieving strong performance in
static scenes but lacking the capability to handle dynamic transmission conditions. Our
approach extends Pixel Shuffle within an asymptotic recovery framework, ensuring high
adaptability for real-world surveillance tasks.
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3. The Structure of the Model Architecture
3.1. Wavelet Transform

Wavelet transform is a multiresolution analysis tool used to decompose an image
signal into low- and high-frequency subbands, allowing the extraction of various levels of
image information [14]. The low-frequency subbands primarily capture the global structure
and most of the image’s energy, serving as a rough representation of the image, while
the high-frequency subbands retain details and edge information. By processing these
frequency components, wavelet transform enables effective progressive recovery during
image transmission. In each wavelet transform, the image is decomposed into one low-
frequency and several high-frequency subbands. After N levels of wavelet transformation,
the image is divided into a low-frequency subbands (LLN) and multiple high-frequency
subbands (HLi, LHi, HHi), where i = 1, 2, 3. . ., N. The low-frequency subbands contain
most of the image’s energy, providing the main content and structural information, while
the high-frequency subbands capture details such as edges and textures.

According to the energy analysis of different frequency subbands, the low-frequency
subbands contain most of the image’s energy. Table 1 illustrates this using the classical
Lena image as an example [15], where the low-frequency subbands account for over
90% of the total energy, while the energy proportion in the high-frequency subbands
decreases progressively across levels. The high-frequency subbands are further divided
into horizontal (HLi), vertical (LHi), and diagonal (HHi) components, each capturing
specific structural details of the image. Typically, the high-frequency subbands in the
vertical and horizontal directions represent prominent features, such as edges and contours,
making their information particularly significant.

Table 1. Statistics of the energy ratios for each wavelet subband of the Lena image.

Resolution Levels Wavelet Sub-Band
ub-Band Energy Ratio (%)

The Sub-Band
Energy Ratio is the

Sum of the Total

low frequency LL4 91.6367 91.6367

Layer 4 HF
(LH4+HL4+HH4)

LH4 0.7001
3.896HL4 2.5976

HH4 0.3913

Layer 3 HF
(LH3+HL3+HH3)

LH3 0.5021
2.3257HL3 1.5530

HH3 0.2706

Layer 2 HF
(LH2+HL2+HH2)

LH2 0.3473
1.4489HL2 0.9484

HH2 0.1532

Layer 1 HF
(LH1+HL1+HH1)

LH1 0.2302
0.8998HL1 0.5696

HH1 0.1001

During image reconstruction, the low-frequency subbands are first used to generate a
low-resolution version of the image through wavelet inversion. As the subsequent high-
frequency subbands are progressively transmitted and decoded, the image details are
incrementally restored, resulting in a continuous improvement in image quality [16]. This
gradual recovery of image details not only reduces the bandwidth requirements for the
initial transmission, but also allows users to assess whether the image meets their needs at
the low-resolution stage, thereby minimizing unnecessary data transmission.

The energy of each subband is calculated by summing the squares of all its coefficients,
as expressed in the following formula:

Esub-band = ∑
i,j

c2
i,j
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The statistical results in Table 1 show that the low-frequency subbands contain most
of the image’s energy, while the high-frequency subbands account for only a small portion.
Additionally, as the resolution decreases, the proportion of energy in the high-frequency
subbands increases. Even at the same resolution, the energy distribution varies among the
high-frequency subbands: the vertical direction (HLi) contains the highest energy, followed
by the horizontal direction (LHi), with the diagonal direction (HHi) containing the least.
During the reconstruction stage, the system first generates a low-resolution preview image
using the low-frequency subbands. As the high-frequency subbands are gradually decoded,
the image details are progressively restored, leading to continuous improvement in image
quality. This approach ensures that essential details are incrementally recovered, even
under limited bandwidth conditions.

3.2. Hybrid Attention Module

To enhance performance during feature extraction and ensure the network effectively
filters out unimportant image regions while retaining key details, we designed a hybrid
attention module, as illustrated in Figure 1 [17]. The blue section on the left represents
the pixel attention (PA) mechanism, which assigns weights at the pixel level by capturing
the local spatial relationships between pixels [18]. For pixels containing critical details, PA
assigns higher weights to enhance texture and detail representation in the reconstructed
image, while for less important pixels, it assigns lower weights, effectively reducing noise
and preserving essential information. The right section depicts the channel attention (CA)
mechanism, which emphasizes important feature channels and suppresses less relevant
ones by dynamically adjusting their weights [19]. At the top is the blending module, which
multiplies the pixel-level and channel-level correlation matrices and adds the result to
the input feature map. This mechanism enables the network to focus on the most critical
channel features during image reconstruction, improving its comprehension of the overall
image content. By incorporating multiple attention mechanisms, this module enhances the
network’s ability to capture essential image features, generating clearer and more accurate
reconstructed images.
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The hybrid attention module combines channel attention (CA) and pixel attention
(PA) to focus on key information within an image in a multi-layered manner, effectively
enhancing the representation of image details. It employs a residual connection structure
to seamlessly integrate the CA and PA mechanisms into a unified and efficient framework.
The specific calculation process is outlined as follows:

Fi = PA(CA(Conv(Conv(Fi−1) + Fi−1))) + Fi−1

Let Fi−1 denote the input to the ith hybrid attention module, CA(·) represent the
channel attention operation, and PA(·) the pixel attention operation. The calculation
process begins with Fi−1 undergoing a convolution operation, followed by a residual
summation with the original input Fi−1. The resulting feature is then processed through
another convolution operation, followed sequentially by the channel attention and pixel
attention operations. Finally, the output feature Fi is obtained through a residual summation
with Fi−1.

3.3. Swin Transformer Module

The Swin Transformer incorporates a windowed multi-scale self-attention mechanism
to capture global image information, enhancing its ability to extract local features and
spatial relationships, and thereby improving the capture of detailed information [20]. This
mechanism allows the network to focus on key features within smaller localized areas of
polar targets, preserving useful information that facilitates more accurate image recovery.
At the same time, it effectively reduces model complexity and improves performance,
enabling the network to handle larger-scale images or more complex tasks with the same
computational resources.

The feed-forward network, based on a multilayer perceptron (MLP) in the Swin Trans-
former, has limitations in capturing local context. However, in the field of image recovery,
neighboring pixels serve as essential reference points, and convolutional neural networks
(CNNs) excel at extracting local features, effectively capturing local information and tex-
ture details [21]. To address these limitations, the Swin Transformer is combined with
convolutional operations to form a feed-forward Swin Transformer module, as illustrated
in Figure 2. This module leverages the windowed self-attention mechanism and hierarchi-
cal visual Transformer structure to extract key features from target images in unsignaled
regions and capture contextual information at multiple scales. By achieving a seamless
fusion of global and local information, it enhances the network’s ability to comprehend
and represent image features. As a result, the network captures structural and textural in-
formation more effectively, aiding in the recovery of missing or damaged parts, improving
image recovery accuracy, and accelerating processing. Additionally, it maintains strong
generalization ability, enabling consistent performance across diverse tasks.

Figure 2a illustrates the Swin Transformer structure, which is computed as follows:

Ẑn = W − MSA(LN(xn−1)) + xn−1

xn = Feed
(

LN
(

Ẑn

))
+ Ẑn

Ẑn+1 = SW − MSA(LN(xn)) + xn

xn+1 = Feed
(

LN
(

Ẑn+1

))
+ Ẑn+1

Let xn−1 denote the input to the Swin Transformer module, LN represent the layer
normalization operation, W-MSA(·) the window-based multi-head self-attention operation,
Ẑn and Ẑn+1 the intermediate features, Feed(·) the feed-forward neural network, and SW-
MSA(·) the multi-head self-attention operation based on a moving window. The output of
the Swin Transformer is denoted as xn.
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The calculation process begins by normalizing the input feature xn−1 using layer
normalization. Then, a window-based multi-head self-attention operation produces the
intermediate feature Ẑn by adding the residuals of xn−1. Next, layer normalization, followed
by the feed-forward neural network and a residual operation, yields the output of the first
block xn. In the second block, xn is normalized using layer normalization and processed by
the moving window-based multi-head self-attention operation, producing the intermediate
feature Ẑn+1 b through residual addition with xn. Finally, the second block applies layer
normalization, the feed-forward neural network, and a residual operation to produce the
final output feature xn+1.

Figure 2b illustrates the structure of the feed-forward neural network, which is com-
puted as follows:

xn+1 = Conv(Flatten(Dept − wiseConv(Reshape(Conv(xn))))) + xn

Let xn denote the input features of the module, Conv(·) the 1 × 1 convolution op-
eration, Reshape(·) the reshaping of 1D features into 2D features, Dept-wiseConv(·) the
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depthwise separable convolution, and Flatten(·) the transformation of 2D features back
into 1D features.

The computation begins by altering the feature dimension of xn using a 1 × 1 convolu-
tion. The resulting feature is then reshaped into a 2D feature map, and a 3 × 3 depthwise
convolution is applied to capture local information. Afterward, the feature is flattened into
1D form, and a 1 × 1 convolution adjusts the feature dimension to match that of the input.
Finally, the output is summed with the residuals of the input feature xn to produce the final
output feature xn+1.

3.4. Pixel Shuffle Upsampling Module

Pixel Shuffle is an upsampling method that rearranges the channel data of a feature
map, commonly used in super-resolution and image restoration tasks [22]. By reorganizing
multiple channels from a low-resolution feature map into a high-resolution feature map, it
significantly enhances detail retention and edge sharpness. In this algorithm, Pixel Shuffle
upsampling is employed to optimize the features produced by the feed-forward Swin
Transformer module, thereby improving the accuracy of image restoration.

Pixel Shuffle increases the resolution of a feature map by rearranging its depth dimen-
sion (number of channels) into the spatial dimensions (width and height). Compared to
traditional interpolation methods, Pixel Shuffle better preserves detail information and
reduces the occurrence of checkerboard artifacts and other distortions [23].

The specific computation process of Pixel Shuffle upsampling is as follows:

yn+1 = Conv(PixelShu f f le(yn))

Let yn denote the input feature map, Pixel Shuffle denote the Pixel Shuffle operation,
and Conv(·) the 1 × 1 convolution operation. The Pixel Shuffle operation remaps the
number of channels in the feature map from C × r2 to the spatial dimensions, thereby
increasing the resolution. The convolution operation further enhances the representational
capacity of the feature map after upsampling.

The specific design flow of the Pixel Shuffle upsampling module is illustrated in
Figure 3. First, the features produced by the feed-forward Swin Transformer module are
used as input. Assume that the dimensions of the input feature maps are (H, W, C × r2),
where H and W represent the height and width of the input feature maps, respectively. C is
the number of channels in the final output, and r is the amplification factor for upsampling.
The initial number of channels, C × r2, contains the additional dimensional information
needed to scale the feature map to the target resolution.
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Second, channel rearrangement and mapping are performed to divide the channels
of the input feature map into r × r subgroups, each containing C channels. This process
produces r × r subfeature maps, each of size (H, W, C). These subfeature maps correspond
to different regions of the target high-resolution feature map. The channel data of each
subfeature map are redistributed into the spatial dimensions, resulting in an upscaling
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of the feature map’s size from (H, W) to (H × r, W × r), while the number of channels is
reduced to C.

Finally, reorganization and convolution operations are applied to further extract the
detailed information of the image. The convolution layer smooths the upsampling results
and fuses local information, enhancing the recovery of image details.

By mapping the channel information of the feature map to a higher spatial resolution,
Pixel Shuffle effectively preserves the image’s details and edge information. This rear-
rangement prevents the blurring effect often caused by traditional interpolation methods,
resulting in clearer texture features.

3.5. Network Infrastructure

The wavelet transform concentrates the main content and energy of the image in
the low-frequency subband. Although this subband is crucial for image reconstruction,
it contains a relatively small number of coefficients, which decreases inversely with the
number of wavelet transform levels, N. After a N-level, wavelet transform, the coefficients
in the low-frequency subband comprise only 1/4N of all the coefficients, and the resolution
of the image in this subband is also reduced to 1/4N of the original image’s resolution.
Therefore, in the progressive image transmission process, the lowest-resolution image (an
approximation of the original image) can be transmitted and displayed first, allowing users
to preview the overall content at low resolution. Based on this preview, users can decide
whether higher-resolution and higher-quality image information is needed.

If the image is not required by the user, the transmission of image data can be halted,
allowing other image information to be acquired, effectively saving bandwidth. If further
improvements to the image quality are needed, the transmission prioritizes subbands
containing important information, filtered through the hybrid attention mechanism mod-
ule. These subbands are processed by the feed-forward Swin Transformer module, which
divides them into small, localized regions (windows) and performs self-attention computa-
tions within these regions. This approach significantly reduces computational complexity
while preserving localized information.

Initially, these processed subbands are represented as low-resolution feature maps.
However, the Pixel Shuffle upsampling module rearranges the channel data of these
low-resolution feature maps into spatial dimensions (height and width), enhancing their
resolution. This ensures that key information in the image reaches a higher quality. Once
the key parts achieve satisfactory subjective quality—such that no obvious differences from
the original image are perceptible—the process shifts to transmitting subbands containing
less important background information. The goal is to use the limited bandwidth efficiently,
improving the quality of the background without compromising the overall subjective
visual effect, thereby enhancing the image’s overall appearance.

After the image undergoes wavelet transformation, the main content and energy
are concentrated in the low-frequency subband. Although this subband is essential for
image reconstruction, it contains relatively few coefficients and has low resolution, which
decreases inversely with the number of wavelet decomposition levels, N. Specifically, after
an N-level wavelet transform, the low-frequency subband contains only 1/4N of all the
coefficients, and the image resolution is reduced to 1/4N of the original image.

Based on this, it is a reasonable strategy in progressive image transmission to transmit
the image with the lowest resolution first—an approximate representation of the original
image after wavelet transformation. This approach allows users to preview the general
content of the image and decide whether to continue acquiring higher-resolution versions.

If the user determines that the image does not contain the desired content, the transmis-
sion can be halted immediately to save bandwidth. However, if a higher-resolution image
is required, the transmission can proceed by prioritizing the important high-frequency
information to enhance the image quality.

To optimize the efficiency of subsequent transmissions, a hybrid attention mechanism
module can prioritize the transmission of high-frequency subbands containing important
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information. The hybrid attention module integrates channel attention and pixel attention
mechanisms [24], dynamically adjusting the weights of channels and pixels to focus on
enhancing critical details. This process ensures that the subbands most beneficial for
improving image quality are prioritized for transmission.

Next, the filtered subbands are processed through the Swin Transformer module. The
Swin Transformer divides the image into chunks using a local window self-attention mecha-
nism, which captures local information (e.g., edges, textures) while reducing computational
complexity. This approach allows the model to retain critical local details and significantly
enhance the efficiency of image recovery.

Although the processed subbands are not particularly sharp, they remain low-resolution
feature maps. However, the resolution can be enhanced at this stage using the Pixel Shuffle
upsampling module. Pixel Shuffle improves the resolution of the feature map by rearrang-
ing its channel information into spatial dimensions (height and width), enabling further
enhancement of the key details in the image.

The system begins transmitting the remaining background information only after the
critical portions of the image have reached sufficient subjective visual quality—typically
when no significant differences from the original image are perceptible. This design ensures
that the quality of the most important parts is prioritized for improvement under limited
bandwidth conditions, while the background is transmitted complementarily without
affecting the overall visual effect. Ultimately, this strategy maximizes the overall quality of
the image while preserving its subjective visual integrity.

The network structure of this paper is shown in Figure 4.
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4. Experimental Results and Analysis
4.1. Data Sets and Parameter Settings

The dataset used in this experiment is composed of two parts. The first part includes
images of power towers captured by UAVs in Unsignalized area in southeastern Jilin
Province, China. This section contains a large volume of images, and several representative
examples are selected for the experiments presented in this paper (as shown in Figure 5).
The second part is the TowerDetection-v1 dataset, which comprises 2813 images, featuring
numerous power line images from signal-free regions. To ensure the model’s generalization
and reliability, the dataset is divided into a training set, validation set, and test set, with
proportions of 70%, 20%, and 10%, respectively. Specifically, the training set contains
1969 images, the validation set consists of 563 images, and the test set includes 281 images.
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During the data preparation stage, to enhance the model’s robustness in complex
backgrounds and varying environments, accelerate convergence, and improve training
stability, all images were normalized to ensure pixel values fall within the range [0, 1].
Special care was taken to preserve key target areas, such as towers and wires, ensuring they
remain intact and unobstructed, thereby improving detection accuracy.

The experiments were conducted on a system equipped with a RTX 3080 GPU
(10 GB RAM), running Ubuntu 20.04.6. Development was carried out using CUDA 12.0,
Python 3.8, and the deep learning framework PyTorch 1.8. The training process consisted
of two stages: In the first stage, a batch size of eight was used, with the SGD optimizer set
to an initial learning rate of 0.002 over 200 epochs. The second stage employed a cosine
decay strategy for the learning rate, starting at 0.0002, with a weight decay of 0.02. The
Swin Transformer module was configured with a window size of 8 × 8 and an encoding
length of 256.

During the training process, the model is evaluated on the validation set after each
epoch, primarily assessing image reconstruction quality using PSNR and SSIM metrics.
Hyperparameters are adjusted based on validation results to optimize model performance.
The images in the validation set differ from those in the training set in terms of shooting
angle, lighting conditions, and background complexity, ensuring the model’s adaptability
and robustness across diverse scenes.

4.2. Evaluation Indicators

PSNR (Peak Signal-to-Noise Ratio) is a commonly used metric for evaluating the effec-
tiveness of image compression, particularly in the field of image and video compression. It
measures image quality by comparing the error between the original image and the com-
pressed or restored image. A higher PSNR value generally indicates that the compressed
image is closer in quality to the original.
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PSNR is calculated as:

PSNR = 10·log10

(
MAX2

MSE

)

MSE =
1

m × n

m

∑
i=1

n

∑
j=1

(
I(i, j)− K(i, j))2

Here MAX is the maximum possible pixel value of the image, and MSE is the mean
squared error between the original and compressed or recovered images, calculated as
the average of the squared pixel intensity differences between the two images. The image
size is m × n meaning it consists of m rows and n columns; I(i,j) represents the pixel value
of the original image at position (i,j); K(i,j) denotes the pixel value of the compressed or
processed image at the same position. It should be noted that PSNR does not always align
with human visual perception of image quality, so it is often used in conjunction with SSIM
(Structural Similarity Index).

SSIM (Structural Similarity Index or Structural Similarity Index Measure) is a metric
used to assess the visual similarity between two images, particularly in the fields of
image compression and super-resolution. It evaluates the quality of a processed image
by examining three aspects: brightness, contrast, and structure. This approach provides
a closer approximation to how the human eye perceives image quality, offering a more
reliable assessment than traditional metrics.

The SSIM calculation formula is:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

)
Here x and y are the two image windows being compared; µx and µy represent the

mean luminance of x and y, respectively; σ2
x and σ2

y denote the variances of x and y; and σxy
is the covariance of x and y. The constants c1 and c2 are used to prevent division by zero.
Typically, c1 =

(
k1L)2 and c2 = (k 2L)2 where L is the dynamic range of the pixel values,

and k1 = 0.01 and k2 = 0.03.

4.3. Ablation Experiment

To thoroughly evaluate the contribution of each module in the image transfer al-
gorithm, we incrementally add modules and conduct experiments on the dataset. All
experiments are evaluated using two metrics: PSNR and SSIM, to assess the quality of
image reconstruction. The experimental results are presented in Table 2.

Table 2. Results of ablation experiments with different modules stacked in sequence.

Experiment Wavelet
Transform

Hybrid Attention
Mechanism

Swin Transformer
Module

Pixel Shuffle
Upsampling Module PSNR/dB SSIM

Experiment I
√

27.032 0.813
Experiment II

√ √
29.913 0.854

Experiment III
√ √ √

33.174 0.916
Experiment IV

√ √ √ √
40.2 0.982

As shown in Table 2, this study conducts ablation experiments by gradually adding
modules to evaluate their contributions to the model’s performance. In the base model
(Experiment I), only the wavelet transform is used for image decomposition and recon-
struction, without the hybrid attention module, Swin Transformer module, or Pixel Shuffle
upsampling module. This configuration yields a PSNR of 27.032 dB and an SSIM of 0.813.
However, since only low-frequency information is preserved, the reconstructed image lacks
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detail, with blurred edges and significant texture loss, particularly in the high-frequency
regions.

In Experiment II, the hybrid attention mechanism module is added, enhancing the
feature weights of channels and pixels. This addition improves the PSNR by 2.881 dB
and the SSIM by 0.041, significantly enhancing the retention of key details and improving
the model’s feature extraction capabilities. Experiment III further incorporates the Swin
Transformer module, which captures global information through the local window self-
attention mechanism. This improves the PSNR by 3.261 dB and the SSIM by 0.062, allowing
the model to effectively capture contextual information while retaining local details, thereby
enhancing the overall visual quality of the image.

Finally, Experiment IV adds the Pixel Shuffle upsampling module, which improves
spatial resolution by rearranging the channel information of the feature map. This addition
increases the PSNR by 6.031 dB and the SSIM by 0.046, further enhancing the image clarity.
The Pixel Shuffle module also mitigates blurring and checkerboard artifacts often associated
with traditional interpolation methods, resulting in sharper edges and texture details. The
experimental results demonstrate that the modules complement each other, enhancing the
overall performance of the model. The complete model achieves optimal performance in
both PSNR and SSIM, verifying the necessity and effectiveness of each module.

To further verify the effectiveness of the modules, we show the feature map compari-
son after each ablation experiment. As shown in Figure 6, with the increase of modules, the
extracted features are gradually enhanced, especially in details and edge information.
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As shown in Figure 6, plots (a), (c), and (e) demonstrate the feature extraction results
at each stage of the traditional recovery algorithm, while plots (b), (d), and (f) show the
improvement of the model’s feature extraction results after the gradual addition of the
hybrid attention module, the feed-forward Swin Transformer module, and the Pixel Shuffle
upsampling module, respectively. In the traditional algorithm, the (a) plot has more noise,
the feature distribution is dispersed, and the edges and details are not clear enough, while
the (b) plot with the addition of the hybrid attention module has more concentrated features,
sharper contours, and less noise, which demonstrates a higher level of feature extraction
capability. (c) plot features are sparse and have fewer highlights, resulting in limited
expressive power; however, the Swin Transformer-processed (d) plot has increased feature
densities, especially in the key regions, with significantly enhanced highlights, capturing
more localized patterns and texture information. The features of (e) plot are concentrated
in localized areas with insufficient information coverage, while (f) plot after adding Pixel
Shuffle up-sampling shows a wider distribution of features, and useful information is
detected in several key locations, which improves the adaptability of the model in complex
scenes. Overall, with the gradual addition of each module, the feature extraction effect
is significantly improved, and the robustness and global sensing ability of the model are
effectively enhanced.

4.4. Comparison Experiment

The transmission time in this study is measured experimentally and is defined as the
total duration from the initiation of image transmission to the successful recovery of the
complete image. The measurement procedure is as follows: The timer starts when the
low-frequency subbands of the image begin transmission and stops when all necessary
high-frequency subbands have been transmitted and the complete image is successfully
recovered. This approach ensures an accurate recording of the entire process, from the start
of data transmission to the end of image recovery.

To simulate a realistic transmission environment in an unsignaled region, a network
emulator is used in the experiments, restricting the bandwidth to 110 KB/s and introducing
a network delay of 180 ms. This setup allows for an effective evaluation of the algorithm’s
adaptability and efficiency in a low-bandwidth environment.

Several well-established traditional progressive image transmission methods are
widely used to gradually transmit and display images under limited bandwidth conditions.
The core concept of these methods is to transmit low-resolution or basic information first,
followed by progressively more detailed information, thereby enhancing the image quality
step by step. Although these conventional methods are mature and widely adopted, their
efficiency and performance may be insufficient in signal-free regions. To address this limita-
tion, the proposed algorithm integrates the attention mechanism with a local self-attention
model to improve transmission quality under restricted bandwidth conditions.

To verify the superiority of the proposed method in unsignaled regions, compara-
tive experiments were conducted against mainstream methods, including MPRNet [25],
DiffLight [26], Uformer GAN [27], Fourier Prior Architecture [28], and Progressive Disen-
tangling [29]. The results of these experiments are presented in Table 3.

Table 3. Comparison of this paper’s method with mainstream progressive image recovery methods.

Method PSNR (dB) SSIM Bandwidth Consumption
(KB) Transmission Time (s)

MPRNet 39.7 0.970 400 3.5
DiffLight 37.5 0.945 450 3.9

Uformer GAN 38.8 0.955 420 4.0
Fourier Prior Architecture 38.2 0.950 430 3.8
Progressive Disentangling 36.9 0.940 460 4.2
Methodology of this paper 40.2 0.982 300 2.8
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As shown in Table 3, the proposed algorithm significantly reduces bandwidth con-
sumption and transmission time while maintaining high image quality, outperforming
mainstream methods such as MPRNet, DiffLight, and Uformer GAN. Specifically, the
algorithm achieves a PSNR of 40.2 dB and an SSIM of 0.982, demonstrating superior
performance in both bandwidth consumption and transmission efficiency.

The algorithm’s efficiency is attributed to the use of wavelet transform and the Pixel
Shuffle module, which prioritize the transmission of low-frequency subbands and employ
efficient feature mapping, minimizing redundant information. As a result, the band-
width consumption is reduced to only 300 KB, and the transmission time is shortened to
2.8 s—about 1 s less than other algorithms. Additionally, the hybrid attention and Swin
Transformer modules reduce computational complexity while preserving edge and texture
details, ensuring excellent performance even in extreme environments.

The experimental results confirm that the proposed method achieves a well-balanced
performance in complex scenarios such as unsignaled regions, improving image recovery
accuracy while significantly reducing resource overhead. Future research can explore
multi-module co-optimization and real-time adaptive strategies to address more complex
transmission requirements and further enhance efficiency by integrating deep learning-
based compression techniques.

Overall, the proposed algorithm offers an innovative solution to image transmission
challenges in signal-free regions, achieving an optimal balance between transmission
efficiency and resource utilization while ensuring high-quality image recovery.

Quantitative metrics in image denoising, such as PSNR and SSIM, provide a numerical
evaluation of algorithm performance but may not fully capture the differences in image
quality perceived by the human eye. Therefore, the effectiveness of image restoration is
also assessed through visual comparison. As shown in Figure 7, a comparison of the image
recovery effect of the proposed method with that of other algorithms.
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4.5. Image Target Detection

In order to verify the effectiveness of the proposed algorithm for transmission line
monitoring in signal-free areas, we conducted a two-step detection process. First, we take
the images taken by the group in the signal-free region of Jilin Province and input them
into the YOLOv10 model for testing in order to observe the recognition performance of
the recovered images in complex environments. Second, in order to test the generalization
ability of the algorithm, we used the public dataset TowerDetection-v1 as a benchmark to
further evaluate the structural integrity and detection accuracy of the recovered images.
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In each experiment, we use images recovered by different algorithms as inputs to ana-
lyze the performance differences of each method in the structural detection of transmission
towers and lines. This process not only helps us quantify the effectiveness of different
recovery strategies, but also visualizes the advantages and disadvantages of each algorithm
in image detail processing.

As shown in Figure 8a, the image recovered using YOLOv10 to detect the Progressive
Disentangling method only identifies the right transmission tower, with a confidence level
of 0.62. In Figure 8b, the image recovered using YOLOv10 to detect the MPRNet method
achieves a confidence level of 0.56 for the left transmission tower and 0.77 for the right
transmission tower. In contrast, as shown in Figure 8c, the image recovered using our
method achieves a confidence level of 0.74 for the left transmission tower and 0.78 for
the right transmission tower. Overall, the confidence levels for both transmission towers
detected using YOLOv10 with our method are higher than those of the other two methods.
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Figure 9 illustrates the varying performances of different methods on a publicly
available dataset, as evaluated by YOLOv10. As shown in Figure 9a–d, the Progressive
Disentangling method excels in restoring low-frequency structures but struggles with
high-frequency detail processing, resulting in incomplete detection of key transmission line
details. Figure 9e–h show that the MPRNet method offers strengths in edge sharpening
and basic structure detection but has limited retention of complex textures, impacting
detection comprehensiveness and accuracy. In contrast, Figure 9i–l demonstrate that our
method significantly enhances detail recovery through the integration of a hybrid attention
mechanism and the Swin Transformer. This approach accurately identifies the fine struc-
ture of transmission lines and towers, exhibiting superior robustness and generalization
in detection.
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The experimental results highlight that the quality of the recovered image is crucial
for accurate and comprehensive target detection. Compared to other algorithms, our
method performs exceptionally well on both datasets, demonstrating excellent detail
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fidelity and edge detection. Additionally, it maintains stable detection results across
various complex environments.

By prioritizing the transmission of critical regions and utilizing the Pixel Shuffle
upsampling module to enhance resolution, our algorithm achieves efficient image trans-
mission and recovery under limited bandwidth conditions. Whether applied to complex
environments in self-constructed datasets or detection tasks in public datasets, our method
demonstrates exceptional adaptability and performance, offering a reliable solution for
transmission line monitoring in signal-free areas.

5. Conclusions

This study proposes a progressive image transmission method based on BeiDou short
message communication and an attention mechanism to meet the needs of transmission
line monitoring in signal-free areas and address the bottlenecks of traditional image trans-
mission methods in low-bandwidth environments. By integrating wavelet transform with a
hybrid attention mechanism, Swin Transformer, and Pixel Shuffle upsampling module, the
proposed method significantly enhances the clarity and visual quality of image restoration
while reducing transmission time and bandwidth consumption.

Experimental results show that, compared with other mainstream methods, the algo-
rithm proposed in this paper not only achieves significant improvements in image quality
(PSNR, SSIM) but also demonstrates higher transmission efficiency in terms of resource con-
sumption. Through the incremental optimization of each sub-module, the final algorithm
achieves the optimal balance between the subjective visual quality of images and resource
utilization under limited bandwidth conditions. Furthermore, visualization comparison
experiments and target detection verify the practical applicability of the recovered images,
confirming the effectiveness and superiority of the proposed method for surveillance in
signal-free areas.

However, the current method still has certain limitations. First, although the hybrid
attention mechanism enhances the ability to recover fine details, the overall computational
complexity remains high, potentially restricting its use on resource-constrained devices.
Second, the algorithm’s real-time adaptability may be insufficient in scenarios with extreme
dynamic environments or frequent changes in signal conditions. Future research can further
optimize multi-module collaboration strategies, explore adaptive transmission mechanisms
to meet more complex scene requirements, and integrate compression techniques with deep
learning to enhance the efficiency of image transmission. This study offers an innovative
solution to address image transmission challenges in signal-free regions, demonstrating
high application value.
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