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Abstract: With over 1.6 million traffic deaths in 2016, automated vehicles equipped with automated
driving systems (ADSs) have the potential to increase traffic safety by assuming human driving tasks
within the operational design domain (ODD). However, safety validation is challenging due to the
open-context problem. Current strategies, such as pure driving and requirement-based testing, are
insufficient. Scenario-based testing offers a solution but necessitates appropriate scenario selection,
testing methods, and evaluation criteria. This paper builds upon a method to calculate the covered
ODD using tested scenarios generated from logical scenarios, considering parameter discretisation
uncertainty. Acceptance criteria for the safety argumentation are proposed based on parameter
space coverage and variance introduced via discretisation, thus contributing to quantifying the
residual risks of safety validation. The approach is demonstrated through two logical scenarios with
probability density functions of the parameters generated using a trajectory dataset. These criteria
can serve as risk acceptance criteria, providing comparability and explainable results. By developing
a robust scenario-based testing approach, ADS safety can be validated, leading to increased traffic
safety and reduced fatalities. Since ADSs incorporate AI models, this proposed validation strategy can
be extended to AI systems across multiple domains for the respective assurance argument required
for deployment.

Keywords: automated vehicles; autonomous vehicles; automated driving; validation; coverage;
operational design domain; automotive safety; vehicle safety; safety argumentation

1. Introduction

In 2016, more than 1.3 million traffic deaths happened worldwide [1]. Globally,
the death rate has stagnated whilst the overall population is still growing. To some degree,
this is attributed to the increased safety measures in vehicles. In particular, the European
Union (EU) has reduced deaths due to traffic accidents in recent decades [2]. This reduction
is primarily due to the advent of advanced driver assistance systems (ADASs) in modern
vehicles, which take over part of the human driving task. In contrast, automated vehicles
(AVs) are cyber–physical systems equipped with an automated driving system (ADS),
taking over the complete driving task of the human in the target operational domain
(TOD) [3]. The TOD represents the area of ADS deployment and can include certain
conditions outside of the operational design domain (ODD) of the ADS. The ODD is used
to describe the boundaries of the ADS-equipped vehicle and the conditions under which
the ADS is designed to operate, including environmental, geographical, and time-of-day
aspects, as well as potential restrictions [4]. The differences between the TOD and the ODD
of an ADS highlight the limitations of such systems [5]. In addition, the respective AV
behaviour is defined by the behaviour capabilities [6].

In any case, ADS-equipped vehicles operate in an open-context environment, which
cannot be described during the system’s design time fully and which constantly changes
over time [7,8]. Despite these difficulties, the potential benefits of AVs are manifold. The
expected benefits range from ecological and economic benefits to increased accessibility,
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comfort and traffic safety. Overall, global megatrends such as demographic and societal
changes, rapid urbanisation, and climate change are influencing the evolution of smart
mobility, with shared AVs being one of the core elements [9,10].

The aforementioned open context, in addition to other challenges in the respective
ODD (such as complex urban environments, including the behaviour of other traffic partic-
ipants, such as pedestrians), presents enormous difficulties, especially for the perception
system of such vehicles. Despite recent advancements in real-time perception [11], the safety
validation of the complete ADS remains challenging [12]. Different validation strategies to
overcome these challenges are discussed in [13,14]. Section 1 presents a detailed discussion
of current challenges in the safety validation for ADS-equipped vehicles.

Challenges of Safety Validation for ADS

Due to the mentioned open-context environment, ADS-equipped vehicles are de-
ployed, and various challenges appear. On the one hand, technical failures can occur due to
(random) software- or hardware faults. ISO26262 [15] tackles such functional safety aspects.
On the other hand, ensuring the system’s intended functionality is safe is tackled in the
safety of the intended functionality (SOTIF) standard [16]. The SOTIF standard requires the
safety assessment of ADS-equipped vehicles. Previously, a function-based approach was
the standard procedure for ADAS functions. This approach means that pre-defined tests to
confirm the functionality (e.g., UN ECE R131 for advanced emergency braking systems)
are defined. However, this approach is unsuitable for AVs, as it would lead to performance
optimisation based on the chosen tests and would not accurately determine an the safety
performance of an AV in its ODD. Hence, another approach emerged for more complex
ADASs and for ADSs in general, which is scenario-based testing (SBT). It is based on the
scenario concept introduced in [17] and extended in [18]. Various standardisation activities
are ongoing considering the usage of the scenario concept for the development, testing,
and validation activities of AVs [19].

Based on the concept of scenarios, there exist various validation strategies [20–22].
The two main techniques to distinguish are falsification- and testing-based approaches.
Falsification-based approaches are trying to find counterexamples violating the safety
requirements. However, such approaches cannot provide general statements about the AV
performance in the ODD but do serve a purpose for the efficient development of ADSs [20].
The testing-based approach, as defined in [20], determines if the requirements regarding
safety are satisfied based on a finite set of test scenarios. In principle, testing-based SBT
can provide statements about the AV performance in the respective ODD if an unfeasible
number of scenarios is executed [20]. Hence, efficient methods for selecting scenarios and
quantifying their contribution towards the coverage of the respective scenario space are
required. In addition, approaches for interpreting the scenario space coverage regarding
the target ODD in an explainable manner are necessary [23].

Overall, the challenges of SBT regarding safety validation concern the selection of
scenarios, test methods, and the actual assessment of the testing results at the microscopic
and macroscopic levels (see Figure 1):

• Scenarios: If used for AV safety validation using SBT, scenarios must be generated to
uncover as many unknown hazardous situations as possible, in line with the SOTIF
principle. Based on [24], such scenario generation techniques can be data driven (e.g.,
using datasets [25]), optimisation based, combinational, or expert based (e.g., [18,26]).
Combinations of these approaches are also possible. Usually, various continuous
parameters (CPs) define a logical scenario (LS), which, after discretisation, leads
to concrete scenarios (CSs) that can be tested. The coverage-based testing method
(see Section 4), used as a basis for the risk acceptance criteria in Section 5, utilises
a combination of scenario generation techniques. Concretely, the method combines
a statistical data-driven and combinational approach. Based on the analysis of [24],
these two approaches complement each other concerning hazardous situations.
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• Test methods: The scenarios are tested using different test methods, ranging from
virtual to real-world approaches. An overview is given in [27].

• Safety assessment: The actual safety assessment can be split into microscopic and
macroscopic assessments. In the microscopic assessment, the individual scenarios
used to test the ADS are evaluated using respective metrics [20,28]. In the macroscopic
assessment, (mostly statistical) statements about the overall impact on AVs can be
made [20,29]. The macroscopic statement must serve as an essential argument for
introducing AVs into real-world traffic. For example, such a statement can be achieved
by providing proof of a lower accident probability than human drivers.

TestingScenario Safety Argument

Knowledge-driven

Data-driven
Proving ground

Field operational testing

Virtual testing Microscopic 
Assessment

Macroscopic 
Assessment

Coverage-
based testing

Scenario-
based testing

Figure 1. The different stages of SBT are displayed, from the scenarios and the testing methods to the
approaches towards safety argumentation. Adapted from [20,30].

SBT is already utilised in various large research projects developing scenario-based
methodologies in Germany [31], Japan [32], and across the EU [33]. Furthermore, the United
Nations Economic Commission for Europe (UNECE) proposed a regulatory framework
for the safety assessment of ADSs [34,35]. Moreover, the UNECE WP.29 Working Party on
Automated/Autonomous and Connected Vehicles developed the New Assessment/Test
Method (NATM) to certify AV. It contains a multi-pillar approach towards demonstrating a
valid safety assessment of an ADS by incorporating pre-market deployment and in-service
operation [36].

Although SBT is considered the most promising option for AV safety assurance,
additional aspects are needed for mixed-traffic environments. As the penetration rate
of AVs increases, impacts regarding traffic flow and other metrics are expected [37]. In
addition, greater AV penetration could lead to greater exposure to critical events, which
could dilute the positive effects of AV deployment [38]. This could lead to changes in
the distribution of scenario parameters, which needs to be considered going forward.
Furthermore, an increasing AV penetration rate needs to be considered in the scenario
design, using an SBT strategy and including behaviour models in simulation—not related
to human driving behaviour but to an AV.

Overall, SBT is widely acknowledged as one of the critical aspects of ADS safety
validation. However, there is currently a gap between assessing the capabilities of ADS-
equipped vehicles on a microscopic level and deriving an actual macroscopic statement
concerning the targeted ODD in an explainable manner. Hence, this paper proposes an
advancement in that regard, building on top of the presented concept of ODD coverage
in [23].

2. Structure of the Article

The remainder of the article is structured as follows. First, Section 3 introduces the
relevant aspects to consider for the safe deployment of ADS-equipped vehicles, namely,
the requirement of a compelling safety case. Second, in Section 4, various ways to define
coverage—a term used in many domains for different aspects—are discussed. The article
then uses the definition provided in [23]. Furthermore, the process of coverage determi-
nation based on [39] is discussed and used as the basis for the subsequent sections, as it
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details ways to identify, select, and test scenarios based on a set of requirements, including
the respective target ODD of an AV.

Third, Section 5 presents novel risk acceptance criteria as part of the safety argumen-
tation necessary for any ADS-equipped vehicle deployment. Next, Section 6 presents
the results of an application example. Section 7 discusses the generated results and their
implications. The article concludes with a summary and an outlook in Section 8.

3. Safe Deployment of ADS-Equipped Vehicles

For the safe deployment of ADS-equipped vehicles, there needs to be an absence of un-
reasonable risk (AUR). This is an often-used definition of safety also used in ISO 26262 [15].
To achieve and argue for an AUR, a safety case—a structured argument supported by
evidence—needs to be provided [40]. A goal-structuring notation (GSN) is often used
to construct such a safety case. Essentially, respective safety evidence is utilised to form
a safety argument to meet the overall safety requirements and objectives, the top goals
formulated in the GSN [41]. Aurora provides a publicly available example of a safety
case for an AV [42]. Consequently, to achieve and argue for AUR, the global top goal has
to be safe behaviour in the target ODD [43], which includes functional safety [15] and
cybersecurity as sub-goals, amongst others. Another sub-goal is the AUR, specifically
due to insufficient performance and robustness regarding the intended functionality of
the ADS-equipped vehicle in the target ODD—required by the SOTIF standard [16]. To
showcase that the risk across the entire ODD, including the behaviour capabilities of the
AV, is below an acceptable level (and therefore arguing for AUR) requires quantifying the
residual risk levels in the target ODD.

In the safety literature, many concepts exist that can be used to argue for the AUR:

• ALARP (as low as reasonably practicable) [44] describes reducing the tolerable risk
until negligible. However, many other interpretations exist (see [45]).

• GAMAB (globalement au moins aussi bon (translation: as a whole at least as good
as) ([44], Annex D) would define, in the ADS context, that the introduced AV is at least
as safe as the state of the art in current road traffic.

• MEM (minimum endogenous mortality) sets a threshold based on the rate of fatalities
per operational metric (e.g., hours of operation) [45].

• Another type of concept is the notion of positive risk balance (PRB) [46]. It is a
quantitative safety measure introduced by the German Ethics Commission and was
further reworked in the informative ISO Technical Report 4804 [47,48]. However,
the concept of PRB can be interpreted in several ways as stated by [45], which provides
two potential interpretations. The first interpretation places PRB as the high-level
goal in the overall assurance process. The second interpretation describes PRB as a
method to determine tolerable risk, which in turn allows the use of it as a criterion for
unacceptable risk and is subsequently used in [49].

Blumenthal et al. interpret safety as a process, threshold, and measurement [50].
The consideration of safety as a process is necessary for the overall system design of an
ADS. However, for the SOTIF-related sub-goal of the overall safety case, using safety as
a threshold and measurement to determine if the ADS-equipped vehicle behaviour can
be carried out with the AUR is equally essential. Concretely, this must be determined
before and after the deployment (pre- and post-deployment phase). This notion of pre-
and post-deployment phases is similar to the concept of the AI life cycle [51,52], which
contains the phases design, develop, and deploy (for the pre-deployment), and operational
use, monitor, and evaluate and analyse (for the post-deployment).

It is crucial to consider if all of the above metrics are leading or lagging metrics [16,50]
(also known as primary or secondary metrics in the AI domain). Leading metrics are
evaluated using measures available in the pre-deployment phase, such as evaluation
results from various test methods, from simulation to test tracks. Lagging metrics are
evaluated using measures derived from statistical data gathered in the post-deployment
phase. Figure 2 showcases this based on the ADS life cycle. Many of the mentioned metrics
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to determine the AUR are much more accurate when implemented as lagging metrics. To
implement metrics such as the MEM as a leading metric would require estimation, as the
actual probability for failure is unknown for a specific ADS in a respective target ODD,
which introduces error potential in the overall safety argumentation [22]. Hence, to make
an informed deployment decision, safety validation strategies that explore the whole target
ODD and respective scenario space and can determine certain residual risks before the
actual deployment are required.

Time (ADS life cycle)

M
et

ri
c

Pre- Post-
Deployment

Leading metrics Lagging metrics

Figure 2. Leading metrics can be utilised in the pre-deployment phase, whereas lagging metrics are
effective in the post-deployment phase.

4. Coverage-Based Testing Method

As explained in the previous section, a PRB is more straightforward to prove when
using lagging metrics. However, such traditional distance-based statistical approaches,
which can provide lagging metrics [22], are not available before or at the decision point for
a specific AV deployment without using vague assumptions that can significantly deviate
from the actual safety within the target ODD. Therefore, PRB and, most importantly,
the AUR need to be proven additionally by assessing the safety performance of the ADS-
equipped vehicle within the target ODD in the pre-deployment phase.

Hence, methods for scenario-space exploration are required. In [53], potential
methods for identifying critical scenarios are provided, essentially using a guided-search
or naive-search approach, mostly sampling or combinatorial testing. Another way
of interpreting these two options is to see the guided search as a way to determine
adversarial scenarios and the naive search as coverage-based testing. The guided-search
approaches are based on optimisation regarding the search and identification of critical
or adversarial scenarios rather than covering the scenario parameter space [54]. Another
method for criticality identification to provide coverage estimates is proposed in [55].
However, certain assumptions about the behaviour of the ADS-equipped vehicle are
made, which are difficult to sustain if a complete, production-ready ADS should be
validated in terms of safety. Overall, the objective of the safety validation process is
not to seek critical scenarios or specific edge cases (e.g., [56,57]). This search is crucial
during these systems’ development and internal validation, particularly across various
design iterations, as it can impact certain development decisions. However, these edge
cases inherently rely on the performance of the tested ADS concerning the experienced
criticality based on the pre-defined metrics.
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Overall, it needs to be mentioned that different test and scenario generation strategies
can tackle different aspects of AV safety assessment in the context of SOTIF [24]. However,
coverage-based testing appears to be the most promising option for generating evidence of
AV safety across the defined target ODD. Concretely, the strategy of coverage-based testing
is to execute concrete tests to cover the scenario space [54]. Furthermore, the parameter
space is discretised into bins, which introduces an error in understanding where the AV will
pass/fail across the entire parameter space. Tu et al. [54] present a coverage-based testing
approach that is effective for determining performance boundaries of ADS sub-systems,
especially the planner. They perform this by estimating the probability of failure across
the entire parameter space, acknowledging that the discretisation becomes inefficient in
higher dimensions when no further measures are taken. Another coverage-based testing
approach is presented by Li et al. [58,59], who use a limited set of scenarios to evaluate the
performance of an AV, coined as the few-shot testing problem. They formulate this as an
estimation problem and optimise the evaluation error by using a surrogate model instead
of actual ADS. Overall, this highlights the importance of validation strategies considering a
realistic and finite testing budget (both in terms of cost and time). However, using an SM
instead of an actual ADS to optimise the scenario set poses limitations for more complex
ODDs and respective ADS implementations.

Since the scenario parameter space is infinite due to the CPs of the LS, every coverage-
based testing method needs to address parameter discretisation to arrive at CSs to test.
Mori et al. [60] showcase that particular discretisation processes cannot provide sufficient
argumentations for safety validation. However, the underlying experimental setup focuses
purely on perception. In the discretisation process, one can utilise the respective parameter
distributions of the CPs for each LS. These parameter distributions can, for example, include
the likelihood of exposure to given scenarios. As opposed to using uniform distributions,
realistic parameter distributions enable a more efficient design of the sampling process.
For example, they consider that higher probabilities of exposure in the real world are
highly significant for the safety validation of ADSs. Kaiser et al. [61] state the possibility of
dividing the probability density function (PDF) of a CP into equivalence classes, either in
an equidistant manner or using other methods. Furthermore, there are a few more methods
to increase efficiency for these assumptions (see [62], or [63]). In [63], different concepts
for the coverage calculation are based on the past scenario in the overall scenario space. A
method for drawing efficient test case samples, independent of ADS implementations, will
be shown in Section 4.3 based on [23].

A coverage-based testing method requires a dedicated process to determine the ODD
coverage. In [39], such an ODD coverage process is proposed. Since it is essential to under-
stand the respective assumptions and limitations when determining the ODD coverage
to correctly utilise this information for the risk acceptance criteria proposed in Section 5,
Section 4.1 briefly explains this process. Figure 3 displays the most basic idea of the concept.
Theoretically, one can determine the coverage as the ratio of passed and failed executed
scenarios [23].

1

Automated driving system 

(ADS)
Scenario outcome

Scenario (input 

parameters)

Operational design domain 

(ODD) coverage

Scenarios Pass/Fail

Figure 3. The achieved ODD coverage depends on the ratio of passed and failed executed scenar-
ios [23].
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A coverage-based testing method should be independent of specific ADS imple-
mentations, including different versions and manufacturers. Furthermore, it should be
independent of the test method, and, therefore, it is possible to use more than one specific
test method, not only simulation, which opens up possibilities regarding the allocation of
scenarios to test methods. Also, the extension towards various target ODDs is required.
In addition, a coverage-based testing method should provide the necessary values for
the decision of an AV deployment in an interpretable and explainable manner. Hence,
concrete criteria are required and will be presented in Section 5 as part of this work. Finally,
the underlying process should cover the target ODD of an ADS in an efficient and traceable
manner. Section 4.1 gives more details regarding such a process for coverage evaluation.

4.1. Exploring the Process of Coverage Evaluation

As mentioned in the previous section, Ref. [39] presents an ODD coverage process.
Only if the coverage-based testing strategy can practically provide the necessary ODD
coverage aspects can determining the risk acceptance criteria in Section 5 be viable. At first,
the target ODD is specified, describing the operating capabilities of the given ADS, using a
top-level taxonomy such as [4]. The next step introduces the concept of disturbances as
defined in [32], enhancing the SBT approach by acknowledging the underlying physical
principles of ADS operation. Essentially, the disturbances defined in the previous step are
used to generate the respective LS, and using available data, the individual CPs are defined
using PDFs.

This approach indirectly allows different traffic periods to be modelled into the sce-
nario design, e.g., by adapting the scenario parameter PDFs. In addition, the current traffic
flow could be considered an ODD parameter, setting certain operating limits in the first step
of the process. As the next step, concrete scenarios are generated using a dedicated strategy
for the discretisation process as previously explained and further detailed in Section 4.3.
Using such a discretisation process also allows the inclusion of parameter restrictions
(e.g., certain speed restrictions) for a single parameter. However, this is currently not
possible for multiple parameters or even certain combinations and needs to be expanded
on in the future. Overall, such parameter restrictions can be considered at the ODD, BC,
or scenario level.

The next step evaluates the concrete scenario based on distinct, mostly safety-related,
metrics. The last step evaluates the actual achieved ODD coverage, leading to specific
follow-up actions, such as immediate ADS deployment, adoption of the target ODD,
or adjustment of the testing effort.

4.2. Defining Coverage in the Evaluation Process

Depending on the concrete domain, there are many different definitions for the term
coverage. For example, in software, the term coverage is used for testing purposes or for
determining the covered amount of source code executed with a specific test suite [15,64].
Furthermore, in dependable and secure computing, the following definition for coverage is
introduced by [65]:

Coverage refers here to a measure of the representativeness of the situations to which the
system is subjected during its analysis compared to the actual situations that the system
will be confronted with during its operational life.

Such a definition of coverage is already very close to interpretations of coverage used
in the ADS domain, although it is still general and unspecific. In the ADS domain, different
coverage interpretations exist. Zhang et al. [53] discuss a selection of possible coverage
interpretations. For example, one potential way to interpret coverage is to connect it to
exploration within the given scenario space, while another is to define it in relation to the
critical scenarios covered. These two interpretations are quite different in terms of the
overall goal and the required methods to maximise either one or the other coverage. These
interpretations also showcase the difficulty of comparing methods and implementations
that use different definitions for coverage.
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Overall, in the ADS domain, most coverage definitions are based on simple pass/fail
ratios, which insufficiently cover the coverage aspect. A proper definition of coverage
needs to be based on the ODD since this is the overall aim, based on the safety argumenta-
tion, and therefore, the definition needs to be suitable for that. Hence, a domain-specific
definition of coverage needs to be embedded into an overall SBT-driven process for gener-
ating evidence for the safety argumentation. Such a definition is established in [23,30]. It
aligns with the SBT approach for ADS safety validation, as it is based upon LS descriptions
defined with PDFs (based on specific metrics) for the respective CPs. The following section
briefly explains this.

As mentioned, the following coverage definition aligns with an SBT approach and is
based on [23,30]. Based on this notion, the defined target ODD and the ADS behaviour
competencies lead to relevant LS. These LSs are defined using CPs with PDFs based on
certain metrics, such as the occurrence probability based on real-world data. Since the
CPs of each LS define a parameter space, a respective discretisation needs to decide on the
exact placement of the test case values to define the CSs, which are subsequently used to
test the AV. On the CP level, for each test case value (marked with red dots in Figure 4),
the individual coverage contribution is defined by the following equations, which is the
area under the PDF between two distinct values xi,a and xi,b, defined by the parameter
discretisation process:

Pr(xi,a ≤ X ≤ xi,b) =
∫ xi,b

xi,a

fX(x)dx. (1)

These values are used to determine the coverage contribution of each CS, which are
then aggregated to the LS and ODD levels, as shown in Figure 5a,b. The detailed equations
are given in [23]. Furthermore, Figure 5c showcases how, after sorting all CSs based on
their individual coverage contribution, a cumulative distribution function (CDF) can be
constructed. Based on this, a PDF can be generated. This approach will be essential to the
risk acceptance criteria in Section 5.

1Copyright © Infineon Technologies AG 2023. All rights reserved.restricted18 Mrz 2023

𝑓 𝑥 = 𝑃𝐷𝐹

𝑎 𝑏 𝑥𝑖

µ𝑖

𝑥𝑖,𝑎 𝑥𝑖,𝑏

Figure 4. Example PDF of a continuous parameter x as part of a concrete scenario. The area Ai

equals the area under the curve between xi, a and xi, b and defines the coverage for that parameter
range [23].
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All (sorted) 

CS coverage 

contributions

Figure 5. Overview of the concept for defining the target ODD, including the parameter discretisation,
based on [23]. (a) The different coverage levels, starting from the CP level, where the parameter
discretisation occurs (red dots represent the chosen test case values), up to the CS, LS, and the overall
target ODD. (b) The individual coverage contribution of two CPs towards one specific CS, which is
part of an LS. (c) Here, the sorted CS coverage contributions can be combined into a CDF and PDF,
which defines the respective thresholds.

4.3. Proposed Sampling Method for Efficient Test Case Generation

As presented in the previous chapters, an SBT-driven coverage-based testing method
(e.g., [39]) requires a parameter discretisation process providing a traceable approach
towards generating CS from given LS descriptions. The following sampling method is in
line with the provided definition of coverage in Section 4.2. It enables the determination
of the covered areas of LS’, and thus, coverage of the target ODD. The sampling method
is presented in [23] and briefly explained as a prerequisite for the risk acceptance criteria
presented in Section 5.

In line with the coverage definition of Section 4.2, the presented sampling method
uses prior information at the CP level to determine the respective test case values (red
points in Figure 5). Concretely, this prior information can come from sources like real-
world data, actual AV operation, or virtual testing. Utilising prior information reduces the
necessary testing (quantified using the proposed sampling method) while simultaneously
enabling parallel execution of the CSs with no restriction regarding the test methods,
which also allows efficient test case allocation. In comparison, most other methods solely
rely on virtual testing to perform optimisation-driven coverage-based testing, such as
determining performance bounds. This is problematic because current virtual testing
frameworks lack the necessary fidelity to accurately represent the complete target ODD
(e.g., regarding realistic environmental effects). Thus, the gap between the simulation and
the real world can falsify the outcome and eventually guide the optimisation in incorrect
ways. Hence, the outcome of such simulation studies should only be used to feed the
prior CPs of the respective LS to reduce the test effort rather than to determine the final
deployment decision.

The following presents the basic principle of the sampling method for the one-
dimensional case. This means that the PDF is solely defined for one specific CP, assuming
all other CPs of one particular LS are independent of this CP. More details, including the
respective algorithms and benchmarks against other sampling methods, can be found
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in [23]. Essentially, such a sampling method needs to answer the following question: how
can the parameter range be discretised to obtain concrete values needed for CS definition
and generation?

To enable an overall calculation of the achieved ODD coverage, each concrete value is
assigned to a respective area under the PDF—or put otherwise, for a respective PDF area,
one representative value, most of the time this will be the expected value (mean, assuming
a random variable), will be chosen. Therefore, the aim should be to choose values that are
as follows:

• As representative of the respective PDF area as possible. Hence, the variance needs to
be reduced.

• As “different” from the other chosen values as possible. Hence, the in-between-
variance needs to be maximised.

Overall, this leads to choosing the unsupervised learning technique k-means clustering
to generate such values (the centroids of the clusters). Considering the relationship between
the different variances leads to the following equation:

Vtotal = W + B, (2)

where Vtotal is the overall variance in the PDF, W is the mean of the variance in each
cluster (within-variance), and B is the variance in the centroids (between-variance). The
clustering maximises B (by minimising W, as Vtotal stays the same). This also showcases
the importance of using a prior, as Vtotal is reduced (and therefore W).

To summarise, the sampling method aims to achieve two goals. The first one is to
minimise the distance between the occurring and chosen values. This can be reformulated
to an unsupervised learning problem, where k-means is chosen. This is because k-means
is a well-known method with many optimised implementations available, and it scales
well towards higher dimensions. This allows scaling towards more complex scenarios,
with more parameters influencing each other.

Figure 6 shows this in the first two steps. The second goal concerns individual test
cases where the initial k-means clustering solution is adapted to stay within the pre-defined
variance boundaries. Figure 6 shows this in the third and fourth steps. As mentioned in the
beginning of this section, further details can be found in [23].

x

f(x)
Draw samples from 

the distribution
f(x)

Apply clustering 

(k-means)

Probability of a sample 

being inside a cluster

With-in cluster variance

Boundary

Probability of a sample 

being inside a cluster

With-in cluster variance

Adapt clusters by 

applying developed 

algorithm
Goal 2

Goal 1

x

1 2

4 3

Figure 6. The proposed method for efficient sampling from PDFs defined for CPs of LS descriptions.
In the first two steps, samples are drawn from the distribution, and k-means clustering is applied.
In the third and fourth steps, the initial clusters are adapted to comply with the defined boundary
condition. Illustrated is the one-dimensional case. The detailed algorithm is part of [23].
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5. Risk Acceptance Criteria for the Safety Argumentation

In theory, after applying all relevant safety measures along the development process of
an ADS—including the necessary safety factors—to determine the validation stop criteria,
there will be a remaining residual risk [40]. The industry and, ultimately, society need to
answer the question of what an acceptable level of residual risk is [46]. However, providing
new risk acceptance criteria (RACs) can help answer this question, especially regarding the
actual AV deployment decision and the complete ADS life cycle. Also, in the context of
explainable AI for automated driving, Ref. [66] states that quantitative acceptance criteria,
as requested by the SOTIF standard, still need to be included. This further amplifies the
motivation for explainable risk acceptance criteria in the safety argumentation.

In Section 3, the need for RACs to decide on AV deployments is already explained.
Furthermore, Section 4 presented a coverage-based testing method, including a sampling
strategy for the parameter discretisation—both based on past work [23,39]. These methods
provide the necessary foundation to define meaningful RACs for use in the pre-deployment
phase of AV development and to make informed decisions about potential AV deployments.

In principle, residual risks are introduced inherently into the overall safety validation
process. Quantitizing this introduces uncertainty as a residual risk, and one can control
it accordingly. Looking at the ODD coverage process reveals residual risks throughout
the process. For example, the residual risk between the TOD and the ODD (and thus the
potential risk for an ODD extension) is tackled in [67].

The proposed RAC in this work covers a particular residual risk for coverage-based
testing methods as part of an overall ODD coverage process. Since each relevant LS is
defined by a parameter space, an infinite amount of CSs is possible. Hence, parameter
discretisation needs to be performed, which introduces a residual risk of missing certain
parameter combinations, which could reveal unsafe AV behaviour. The proposed RAC
can guide and help determine if and how the discretisation affects the residual risk. Such
quantification becomes possible using a coverage-based testing safety assessment strategy,
with a respective parameter discretisation allowing such estimates. Concretely, the bounded
variance in the parameter discretisation process, which is included by design in the sam-
pling method, enables a bounded variance for each CS (see Section 4.3 or [23] for details).
Defining the required levels for coverage and the boundaries for the variance enables the
determination of the required amount of CS. These coverage and variance levels can be
defined for each LS separately. It needs to be explicitly mentioned that this RAC does not
represent one value (e.g., the performance of an AV or the overall accident probability) but
gives an overall perspective of the depth of testing of an LS and, hence, the target ODD.
Hence, the RAC contains two proposals for acceptance criteria, which can also be combined.
Eventually, this will provide an explainable way to argue for the achieved coverage of the
target ODD relevant to the potential AV deployment.

5.1. Acceptance Criteria

As Section 4 has shown, it is necessary to define respective methods to derive mean-
ingful acceptance levels for coverage. Coverage and variance together form a meaningful
macroscopic assessment, which can be used to compare different ADS solutions or versions,
including changes in behaviour competencies or the target ODD. Hence, two different
criteria are presented, one for the coverage and one for the variance. Both strongly rely on a
coverage-based testing method for ADS safety validation, including a respective parameter
discretisation process. The resulting residual risk can be quantified using the two criteria
presented next.
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5.1.1. Coverage Criteria

Having defined the term coverage across all required levels (see Section 4.2, Figure 5,
and [23] for the details) enables to set a dedicated threshold for the required coverage.
However, this begs the question: how do we define and argue for such a threshold? In a
mathematical expression, this looks like the following equation:

Coverageachieved ≥ Coveragethreshold, (3)

where Coverageachieved stands for the actual achieved coverage, based on the testing results,
and Coveragethreshold stands for the respective coverage threshold. Being able to calculate
the individual coverage contribution for each CS of an LS enables one to compute the
respective (discrete) CDF (see Figure 5c). This, in turn, enables the determination of the
PDF. Both shapes of CDF and PDF are determined by the underlying CPs PDFs, and
will, therefore, differ for each LS. The coverage level could be defined as the percentage
of the area covered under the PDF. Hence, assuming a Gaussian distribution for the
PDF, a concrete and meaningful threshold would be the x-sigma levels. For example,
the threshold for µ ± 3 sigma would be 99.73%. Even if the actual PDF is not Gaussian,
the value (e.g., 99.73% in the 3-sigma level case) is still useable and meaningful, as it means
that 99.73% of the PDF area is covered.

5.1.2. Variance Criteria

Having defined the term coverage across all required levels and using a dedicated
sampling method (see Section 4.3, Figure 6, and [23] for the details) enables to set a
maximum threshold for the variance of each resulting CS. However, how do we define—and
argue for—such a threshold? Once again, the mathematical expression can be formulated as

VarCS,i ≤ Varthreshold (4)

where VarCS,i is the resulting variance of the i-th CS, and Varthreshold stands for the respec-
tive variance threshold. The resulting CS PDF is different for each CS and depends on
each CP and its individual PDF, which is part of the respective LS. Figure 5b shows this
for one specific CS qualitatively. Such a PDF can be determined a posteriori (after the
parameter discretisation) for each CS but is not known prior. Hence, thresholds for the
variance without knowledge of the PDF are difficult. Overall, the variance is considered
a weak risk measure since it cannot accurately summarise all risk aspects in all relevant
circumstances [68]. However, it can be compared against other variance values, as smaller
variances are preferred. This can be explained by the fact that in the case of smaller vari-
ances for a certain parameter section that one specific test case value should represent, there
is a clearer notion of which area is to be considered more important since this depends on
the shape of the PDF of the individual CP, which is based on the prior information. Since,
due to the necessary parameter discretisation, one representative test case value has to be
chosen for each parameter section, smaller variances are preferred.

For each LS, n CPs are defined by their probability distribution. Therefore, the follow-
ing assumption (for each CS) is made:

X1 + X2 + · · ·+ Xn = YCS,i, (5)

with Xi being the random variable with the associated probability distribution from CPi
and Y being the sum of all CP random variables. Since it is defined that the individual
CPs are independent (for now, as only 1D is considered; however, an extension to ND is
possible as well), the following can be stated:

Var(
n

∑
i=1

Xi) =
n

∑
i

Var(Xi). (6)
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From this equation, it follows that the overall variance in CSi is bounded if the variance
in each test case value X1,...,n for the individual CP1,...,n is bounded as well. The overall
variance is the result of a linear combination:

Var(X1) + Var(X2) + · · ·+ Var(Xi) = Var(Y). (7)

If the variances in the individual Xi can be described as a function of the occurrence
probability pc,i, the overall variance in each CS becomes a function of the probability
of occurrence.

Therefore, the definition of the variance boundary should be on the CP level for each
CP. As a baseline, a well-known distribution that assumes no prior information can be
used. Concretely, this could be a uniform distribution with range [0, 1], U[0,1], as it has a
well-defined variance. Using the range [0, 1] can be argued without restriction of general
validity, as, for example, the sampling technique in [23] resamples and scales everything to
the [0, 1] range. In doing this, the achieved variance level can be compared with the number
of required test cases to achieve the same variance for U[0,1]. This enables the showcase of
the test case reduction potential of using a prior and presents itself as an interpretable way
to compare the achieved variance levels.

To achieve meaningful results, all test cases’ overall variance must be weighted based
on their occurrence value (which represents the area under the PDF; see Figure 4). For U ,
everything stays the same, as all generated test cases have the same amount of occurrence
probability. For the CP with a PDF that is different from U (and therefore uses a prior),
this acknowledges that values with higher occurrence are more important (defined by the
prior). Concretely, this means

Wc,i,weighted = ∑ pc,iWc,i, ∑ pc,i = 1, (8)

with Wc,i,weighted being the weighted within-variance, Wc,i being the within-variance, and pc,i
being the occurrence probability of one specific test case value. This also leads to the desired
behaviour of CSs with higher coverage contributions and lower variance levels. Otherwise,
comparing the uniform distribution is unfair and meaningless when only the maximum
variance value is used. A certain maximum value for the allowed variance can be set
nonetheless, e.g., using a line as the boundary condition. This is already implemented in
the sampling method presented in [23]. The boundary line defined in the sampling method
considers this by forcing lower variance values to test case values with higher occurrence
probabilities. Therefore, it minimises this weighted variance to a certain degree.

A comparison of the achieved variance levels with the (fractioned) U[0,1] can be used
to showcase the effectiveness of the used sampling method or, in general, the depth of
the executed testing effort. In principle, one can showcase that fewer than j test cases are
required to achieve the same variance levels as the U[1/j] (the fractioned uniform distribu-
tion, with each fractions covering the parameter range of 1/j). Defining the risk measure
based on the achieved variance levels compared to the U[1/j] leads to the risk measure
being a function of j, with j being the number of test cases for the U case. Additionally,
this represents the residual risk, as higher j means lower variance, which is subsequently a
lower risk measure and a lower residual risk. Eventually, this enables a combined view of
coverage level and risk measures.

Figure 7 qualitatively compares the resulting within-variance of U[0,1] with a different
number of sections (representing j) with exemplarily sampled test cases using the sampling
method from [23] (see also Section 4.3). Each big black dot represents one test case value,
with the individual occurrence probability displayed on the x-axis. The y-axis represents
the within-variance. The boundary line mentioned above is also included. Overall, this
showcases the different levels of within-variance for different U[1/j] compared to another
sampling technique using prior information.
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Figure 7. A qualitative comparison between the within-variance of the fractioned U[0,1], with the
number of sections ranging from 0 to 20, and a result of the sampling technique from [23] is displayed.

5.1.3. Combining Coverage and Variance Criteria

The overall safety argumentation regarding AV safety in the target ODD is a combined
argument based on the achieved ODD coverage for a particular risk measure. Hence,
the additional risk measure information can distinguish certain ODD coverage values
(or compare certain coverage values). As a simple example to showcase the necessity of
this, one can imagine the following situation, assuming the same target ODD. For one
ADS implementation, its provider claims to have achieved total coverage of the target
ODD. However, this may only be achieved by not testing accurately enough, leaving much
room for uncertainty. Another ADS provider may also claim to have achieved nearly total
coverage for another ADS implementation. However, because this ADS implementation is
tested much more accurately, the uncertainty of error is reduced. Hence, only introducing
the additional risk measure based on variance allows for a meaningful comparison of ADS
implementations using coverage-based testing.

Furthermore, this is associated with a deterministically determined amount of required
test cases to achieve certain risk measure levels (and coverage levels; however, this also
depends on the respective ADS performance and not solely on the test effort) assuming
U[0,1] for all underlying CPs. Hence, an explainable way to achieve the necessary number
of test cases is achieved. As previously explained, by using prior information, a reduction
in test cases can be achieved, and by comparison with U[0,1], quantifiable and explainable
comparison is enabled. Additionally, a reasonably well-defined boundary separating the
acceptable and non-acceptable areas (in terms of the safety argument) can be established. A
simple example of such a function could be

f (r) = 1 − 1
250x + 10

, r =
1
j
, (9)

where x is the residual risk, and the resulting f (r) is the ODD coverage. The achieved safety
margin can also be quantified as the perpendicular distance to the separating function. The
following section (Section 6) further showcases this with an application example.
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6. Application Example

A simplified example consisting of two LSs is presented below. This application
example aims to showcase how scenario design can influence the prior. It thus leads to
test case reduction while simultaneously providing an explainable argument for the ODD
coverage required for AV deployment. The example is based on [30]. Based on the presented
scenario design and overall setup, the RACs of Section 5 can be applied to quantify the test
case reduction in a proper manner. In principle, two LSs are defined at a specific intersection
in the INTERACTION dataset [69]. For each LS, the traffic participant’s starting position
is chosen. Based on this, one distinct lanelet (a data format to represent road networks,
see [70]), which is relevant for the future trajectory of the traffic participant, is chosen.
The available data in the INTERACTION dataset from all recorded traffic participants are
analysed to compile PDFs for the velocity, heading, lateral position, and time offset (which
is used to delay the start of the traffic participant in the scenario). These four CPs define
the individual LS. Figure 8 displays the first LS (LS 1) and the second LS (LS 2).

1Copyright © Infineon Technologies AG 2023. All rights reserved.restricted18 Mrz 2023 (a) (b)

Figure 8. (a) The starting position of the traffic participant and the considered routes for the LS
1. The extracted data from the relevant lanelet with ID: 41 are used to construct the PDFs for LS 1.
(b) The starting position of the traffic participant and the considered routes for LS 2. The extracted
data from the relevant lanelet with ID: 79 are used to construct the PDFs for the LS 2.

The generated PDFs for the CPs are used as prior information. For LS 1, analysis of
the data at the distinct lanelet with ID: 41 show a high correlation between lateral position
and heading of the traffic participant. This is shown in Figure 9 and utilised to construct a
2D PDF to perform the sampling.

Using the sampling technique explained in Section 4.3 (which is presented in detail
in [23]) enables the generation of test case values that are much more efficient compared to
using no prior knowledge. This can be quantified using the RACs from Section 5. Overall,
the performance of the sampling method is quantified using the weighted within-variance
defined in Equation (8) and compared with the uniform distribution case. This enables
determining how many test cases are necessary, in the case of a uniform distribution (no
prior), to reach the same level of weighted within variance. Hence, a meaningful approach
to quantifying the test case reduction potential of utilising prior information on the CP
level is achieved. Concretely, Table 1 shows the detailed numbers. LS 1, which uses the
2D prior, achieves a reduction of 83.23%, while LS 2 achieves 75.89%. Each row shows
the exact achieved numbers for each LS—with and without a prior. LS 1 achieves this
reduction mostly because a 2D prior for lateral position and heading is utilised, whereas
LS 2 achieves the reduction due to a combination of individual reductions for each CP.
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Figure 9. The correlation between the individual features extracted from the INTERACTION dataset
(for lanelet with ID: 41) is displayed. An exceptionally high correlation between the lateral position
of a vehicle (in the respective lanelet) and its heading angle can be observed and utilised.

Table 1 shows that LS 2 contains four individual CPs. For the case of no prior knowl-
edge, a uniform distribution for each CP leads to a high number of required test cases
to achieve certain thresholds for the residual risk. This is shown in Figure 10 concretely,
as different values for the residual risk and the resulting amount of test cases are displayed.
The values for the residual risk at the x-axis of Figure 10 are exemplary. Based on these
values and the assumption that LS 2 contains four individual CPs, the variance is a fourth
of the respective residual risk value. Assuming a uniform distribution allows us to calculate
the resulting test cases in Figure 10.
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Figure 10. The required amount of test cases to achieve a certain residual risk assuming four
individual CP with a uniform distribution.
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Table 1. Both considered LSs and their respective properties, the number of test cases, and the test
case reduction.

Parameter Dimensions LS 1 (With Prior) LS 1 (Without
Prior) LS 2 (With Prior) LS 2 (Without

Prior)

Velocity 1D 6 values 7 values 6 values 8 values
Heading 1D - - 6 values 8 values

Time offset 1D 3 values 4 values 3 values 6 values
Lateral position 1D - - 6 values 7 values

Lateral position &
heading 2D 6 values 23 values -

Number of test
cases - 108 644 648 2688

Test case reduction - 83.23% - 75.89% -

7. Discussion

The presented example shows two main aspects: Firstly, using prior information
to construct the overall LS, concretely as PDF on the CP level, offers great reduction
potential in terms of the required number of test cases. Secondly, quantifying such a test
case reduction becomes possible and meaningful with the RACs of Section 5, concretely,
the variance criteria implemented as the weighted within-variance. In addition to these
two aspects, combining the two acceptance criteria introduced in Section 5 offers further
potential. This is shown in Figure 11 in a qualitative example. Using the achieved residual
risk values of both the LS and a simple equation to define a separating function enables
distinguishing between acceptable and non-acceptable areas in terms of residual risk and
coverage combinations. Concretely, the necessary threshold for coverage can be determined
for given values of residual risks and vice versa. For example, for a residual risk of 0.02,
a coverage level of at least 93.3% is required (based on Equation (9)). In addition, a safety
margin for the coverage (but in principle also for the residual risks) can be defined. The
separating function is chosen to require total coverage in cases of very high residual risk
and vice versa, with a minimum amount of coverage required regardless of residual risk.
This function is defined in a simplified manner and should showcase the possibilities of
using the acceptance criteria, coverage, and variance together.

Figure 11. The combination of residual risk and ODD coverage (simplified based on LS coverage)
displayed for the presented LS 1 and 2, including the separating function. Based on the achieved
residual risk, threshold values for the coverage can be determined (and vice versa).
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8. Conclusions and Outlook

AVs are on the brink of introduction, with deployments in specific ODDs already
happening across the globe. However, the safety validation of ADS-equipped vehicles
is still a significant issue. Among the different existing validation strategies, coverage-
based testing offers a possibility of determining ADS safety across the target ODD. Current
methods mainly rely on pure simulation studies to determine performance boundaries
instead of providing methods which do not rely on specific assumptions regarding the test
method and offer a way to determine ADS safety.

This work showcases that meaningful RACs can be defined for safety argumentation
as part of the deployment decision. The RACs directly lead to a more explainable and
interpretable way to argue for ADS safety. This is based on an existing coverage-based
testing method that utilised a sampling technique to generate CS with bounded variance
by design. The notion that a CS with a greater coverage contribution should have a lower
variance can be included on the CP level using the boundary line of the applied sampling
method. Hence, quantifying such a test case reduction becomes possible and meaningful
with the proposed RACs. Furthermore, using prior information enables a real test effort
reduction potential. In addition, the definition of threshold levels enables the determination
of the CS amount and can act as a viable risk measure.

However, the application possibilities go beyond one specific ADS. Concretely, using
the proposed RACs enables a comparison between different sensor setups or ADS versions
and, in principle, also between completely different ADS. Regarding the overall validation
process, the proposed RACs can act as validation stop criteria due to the enabled quan-
tification of coverage and residual risk—explicitly regarding the parameter discretisation.
This provides meaningful measures to quantify necessary test efforts for specific target
ODDs and potential ODD extensions. Another vital aspect to mention is scalability: every
proposed method for ADS safety validation needs to scale to massive amounts of LS’ and
respective CPs. The proposed RACs in this work also provide meaningful measures for
these cases, especially considering the use of prior information.

Multiple future research directions are possible based on this work’s findings. This
work has shown that using prior information offers great test reduction potential. Focusing
on the prior information for the sampling strategy to further increase efficiency, e.g., using
methods to determine reasonably foreseeable parameter ranges, can combine different
coverage-based testing methods to achieve ADS safety validation. Also, cases where real
data are scarce need to be considered. This negatively affects the prior knowledge and
potentially leads to reduced test case reduction potential. Various aspects to mitigate such
situations need to be explored in future research. In addition, it needs to be mentioned that
further exploration is required to accurately ensure that the incorporated knowledge fulfils
the required standards in terms of quality and relevance so as not to guide the testing effort
in the wrong direction. Hence, only managing the prior well guarantees meaningful test
case reductions.

Furthermore, the RACs presented in this work can benchmark the sampling strat-
egy against other methods (e.g., performance boundary estimation) in light of potential
insufficiencies across the entire parameter space, not only due to physical boundaries. In
addition, by extending the approach for combining the achieved coverage of different LS to-
wards the target ODD, including the behaviour competencies, a joint coverage of the target
ODD and behaviour capabilities of ADS-equipped vehicles can be achieved. Additionally,
the residual risks need to be quantified not only for the parameter discretisation process
but throughout the ADS life cycle. This must include dedicated methods for estimating
and handling pre- and post-deployment risks. In line with this, respective RAC thresholds
across the different ADS life cycle phases need to be defined. While this article proposes a
concrete RAC for the parameter discretisation, this must be further discussed and explored
in future research.
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Eventually, this needs to lead to a robust, explainable, scalable, and updatable con-
tinuous safety argumentation across the life cycle by further investigating failure rates,
including the respective acceptance criteria. Since ADSs include AI models, this pro-
posed validation strategy can be exploited for AI systems across multiple domains for the
respective assurance argument required for deployment.
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Abbreviations
The following abbreviations are used in this manuscript:

EU European Union
ADAS Advanced driver assistance systems
AV Automated vehicle
ADS Automated driving systems
TOD Target operational domain
ODD Operational design domain
SOTIF Safety of the intended functionality
SBT Scenario-based testing
CP Continuous parameters
LS Logical scenario
CS Concrete scenario
UNECE United nations economic commission for europe
NATM New assessment/test method
AUR Absence of unreasonable risk
GSN Goal-structuring notation
ALARP As low as reasonably practicable
GAMAB Globalement au moins aussi bon
MEM Minimum endogenous mortality
PRB Positive risk balance
CDF Cumulative distribution function
RAC Risk acceptance criterion
PDF Probability density function
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