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Abstract: Buildings are one of the most important goals of human transformation of the Earth’s
surface. Therefore, building extraction (BE), such as in urban resource management and planning, is
a task that is meaningful to actual production and life. Computational intelligence techniques based
on convolutional neural networks (CNNs) and Transformers have begun to be of interest in BE, and
have made some progress. However, the BE methods based on CNNs are limited by the difficulty in
capturing global long-range relationships, while Transformer-based methods are often not detailed
enough for pixel-level annotation tasks because they focus on global information. To conquer the
limitations, a multi-scale Transformer (MSTrans) is proposed for BE from high-resolution remote
sensing images. In the proposed MSTrans, we develop a plug-and-play multi-scale Transformer
(MST) module based on atrous spatial pyramid pooling (ASPP). The MST module can effectively
capture tokens of different scales through the Transformer encoder and Transformer decoder. This
can enhance multi-scale feature extraction of buildings, thereby improving the BE performance.
Experiments on three real and challenging BE datasets verify the effectiveness of the proposed
MSTrans. While the proposed approach may not achieve the highest Precision and Recall accuracies
compared with the seven benchmark methods, it improves the overall metrics F1 and mIoU by 0.4%
and 1.67%, respectively.

Keywords: building extraction; computational intelligence; multi-scale Transformer; atrous convolution;
remote sensing images

1. Introduction

With the rapid development of remote sensing technology, high-resolution (HR) and
very-high-resolution (VHR) remote sensing images have been popularized in practical
applications. In particular, many scholars have focused on the study of building extraction
(BE) and building change detection algorithms in urban scenes [1–3]. As one of the most
valuable Earth surface targets, effective BE can be used for dynamic assessment and
monitoring of urban development, urban disaster assessment and monitoring, and urban
management and construction [4–6].

BE has received much attention in recent decades, and many methods have been pro-
posed. Buildings usually have special characteristics such as spectrum, texture, context, and
shape [7,8]. In this context, early BE methods focused on introducing building auxiliary in-
formation or designing artificially crafted building features for BE. The classical algorithms
for BE algorithms based on building-assisted features are terrain and surface models [9],
airborne laser scanning data [10], and digital elevation models [11,12]. In the early stage,
the land cover classification result is adopted to acquire candidate building objects by
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approximate location and shape in [13], thereby reaching BE. Afterwards, the representa-
tive algorithms for BE algorithms based on artificially crafted features are the pixel shape
index [14], building index [15], morphological building/shadow index [16], building con-
tours and color features [17], etc.

Over the years, BE methods have made great progress. Since the advent and applica-
tion of deep learning, it has become the most mainstream method of BE. The existing BE
approaches can be broadly summarized into two categories: CNN-based and Transformer-
based BE methods.

In the last decade, the development and application of deep learning techniques have
brought more new solutions for BE and have been greatly improved [18,19]. BE based on
deep learning can utilize convolutional neural networks (CNNs) to extract buildings by seg-
menting their roofs. Specifically, BE can be viewed as a single-target semantic segmentation
task. Hence, conventional end-to-end segmentation networks, such as U-Net [20], Seg-
Net [21], Deeplab [22], etc., can be exploited to identify buildings. However, conventional
segmentation networks still have low accuracy and completeness in extracting buildings of
various scales due to their insufficient ability to perceive multi-scale features of buildings.
Therefore, many networks dedicated to BE have been proposed in a steady stream. For
example, Ji et al. released a BE dataset, and provided a Siamese U-Net (SiU-Net) for BE [23].
A new network was designed for BE, named Res2Unet, which aims to aims to enhance
the network’s ability to extract features of buildings of different scales, thereby improving
BE performance [24]. Similar methods can also be found in [25–27]. These multi-scale
techniques can significantly boost the accuracy of complex multi-scale BE. With the rise
of attention mechanisms, BE networks based on attention mechanisms have attracted
attention and promotion, and provide a new solution for multi-scale building extraction.
Researchers have comprehensively developed a BE network based on hybrid pyramid and
attention, which further strengthens multi-scale feature extraction and reduces the inter-
ference of background non-building targets, thereby significantly improving BE accuracy.
Some methods combine different pyramid structures and attention mechanisms for BE
to adapt to different multi-scale building targets, such as BRRNet [28] and AGPNet [29].
Other networks can be found in [30]. These approaches further improve the BE extraction
performance by combining pyramid and attention modules.

Nevertheless, many studies that have presented the meaningful features of buildings,
such as edges or outlines, have not been effectively utilized. To this end, some novel
models target building edge and contour representations to improve BE capabilities, e.g.,
CFENet [31] and CBRNet [32]. In [33], multi-task loss is promoted, which focuses on
the accurately detecting of pixels near building boundaries. The above edge- or contour-
based methods can obtain more accurate BE results. Subsequently, some methods improve
the accurate detection of building contours by enhancing edges. In [34], Chen et al. de-
vised a contour-guided end-to-end network for BE through considering local structure.
Zhu et al. designed an edge-detail-network in [35], which is composed of an edge sub-
network and a detail subnetwork for elevating the performance of building edges. There
are also other related methods [36,37]. Some scholars regard the edges of buildings as
high-frequency information in the frequency domain. To this end, they have enhanced
the detail information of buildings by enhancing different frequency components in the
frequency domain, thus improving the accuracy of pixel detection near the edges of build-
ings, such as [38–40]. In addition, some scholars also focus on using instance segmentation
for effective building extraction [41,42]. For instance, Wen et al. devised a deep instance
segmentation network based on Mask R-CNN to realize building instance extraction [43].
Wu et al. applied an improved anchor-free segmentation network in [44], which can achieve
individual building instance extraction. Although these methods can extract building in-
stance targets, they are unable to acquire the detailed shape, edge, and other information of
the building well.

Recently, Transformer-based networks have been proposed to model long-range depen-
dencies between global buildings, which can help improve BE performance. For instance,
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in [45], a dual-path vision Transformer was designed to extract global spatial contextual
features for fine-grained BE. Zhang et al. adopted a spatial attention Transformer network
in [46], which fuses the local and global features by introducing local and global attention
paths. In [8], a named Fusion-Former is proposed based on self-attention with depth-wise
convolution for multi-scale feature extraction of BE. And Mask2Former and a shape-aware
enhancement Transformer are proposed in [47,48]. The authors exploit Transformers with
shifted windows and shape information to capture global information and detailed context
information to improve building extraction performance. Some scholars have also proposed
shape-based perception methods to extract buildings [47,49,50]. In addition, some studies
have also introduced cross-modal images to assist traditional optical images to improve the
accuracy of BE [51,52]. Notably, a multi-scale feature-based Transformer has been proposed
to further improve the performance of BE. In [53], a hierarchical vision Transformer based
on shifted windows is presented to capture multi-scale features for BE. Recently, Chang et
al. developed a multi-scale attention network for BE in [54], which employs the multi-scale
channel attention and spatial attention mechanism to extract multi-scale building features.
Overall, the aforementioned approaches have greatly developed BE and further increased
the practicality of the algorithm. Although the aforementioned research has made good
progress, there are still some challenges that need to be continuously studied and resolved.
Firstly, multi-source remote sensing images may show different spectral, texture, shape,
and scale characteristics of buildings in remote sensing images from different sensors due
to various imaging conditions such as altitude, weather, lighting, cloud thickness, season,
etc. Therefore, in complex multi-sensor remote sensing images, the robustness and general-
ization of the current networks still need to be further explored and enhanced. Secondly, in
BE tasks, the vision Transformer network often focuses on global features, which facilely
brings the loss of spatial information and it cannot handle fine-grained pixel-level anno-
tation tasks well. Thirdly, the existing BE methods based on vision Transformers mostly
use Transformers to extract features at a single scale, while ignoring global features or
long-range dependencies at different scales. In order to overcome these problems, some
scholars recently proposed some CNN and Transformer hybrid networks to capture and
aggregate local and global features for BE [55,56]. For instance, ref. [56] proposed an asym-
metric network for BE, which can combine CNNs and Transformers to extract and fuse
detailed information and long-dependencies relationships. Yuan et al. developed a CNN
and Transformer hybrid network based a modified multi-head self-attention mechanism
in [57], which can further explore multi-scale feature extraction of buildings. In summary,
these recent hybrid CNN–Transformer networks are an effective solution for BE.

Facing the above challenges, this study proposes a multi-scale Transformer network
(MSTrans) for BE. The motivation of our proposed MSTrans is summarized in the following
two points. For one thing, although the pure vision Transformer can capture global building
features, it is prone to missing spatial detail locations, which may lead to limited detail
detection performance for pixel-level fine-grained annotation tasks. Therefore, introducing
local features and effectively coupling local and global features are beneficial to improve
BE detection performance. For another thing, the existing BE methods based on vision
Transformer often employ single-scale tokens to capture global features, while ignoring
the positive impact of tokens of different scales on modeling long-range relationships
between buildings of various scales. Therefore, from the perspective of different scales,
effectively using tokens of different scales to mine multi-scale global features is conducive
to improving BE multi-scale feature extraction capabilities.

According to the above motivations, we propose MSTrans for BE from VHR remote
sensing images. The major contributions of this study are summarized as follows:

(1) We propose a novel end-to-end multi-scale Transformer network for BE, which is a
hybrid convolutional and Transformer network. The proposed MSTrans can effectively
extract and aggregate local and global features by fusing CNNs and Transformers.

(2) In the proposed MSTrans, an elegant and plug-and-play multi-scale Transformer (MST)
module is introduced, which is effectively integrated with ASPP. The proposed MST
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module can effectively represent tokens of different scales through the Transformer
encoder and Transformer decoder, and it can enhance multi-scale feature extraction
of buildings.

(3) Experimental results show that the proposed MSTrans reaches a competitive perfor-
mance on three public and challenging BE datasets.

The rest of this study is organized as follows. Section 2 introduces the proposed
MSTrans in detail. In Sections 3 and 4, experimental results and analysis are given and
discussed. Finally, the conclusion and future works are generalized in Section 5.

2. Methodology
2.1. Overview

Based on the wide spread of the CNN–Transformer hybrid architecture in the remote
sensing field [58], we employ it in the proposed multi-scale Transformer network (MSTrans)
for precise BE. In most cases of CNN–Transformer hybrid architectures, there is a CNN
encoder to firstly extract deep features of the input remote sensing data. Then the Trans-
former is employed to improve the extracted features with its self-attention mechanisms.
Finally, another CNN architecture is adopted as the decoder to fuse the features to obtain
final predictions of the networks. Similar designs are utilized in the proposed method, as
shown in Figure 1.
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Figure 1. Overview of the proposed MSTrans BE framework.
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We firstly use several convolutional feature extraction layers to extract building fea-
tures from the input remotely sensed imagery. Then the feature maps from deep layers
with rich contextual information are input into the proposed multi-scale Transformer mod-
ule, which can improve the spatial recognition of building objects since the deep features
usually lack location information. Different from other Transformer-based remote sensing
image processing models, the proposed MSTrans utilizes several different branches of
Transformers to acquire the multi-scale feature representation of buildings and refine the
input deep features with both rich spatial information and contextual information, which
has been validated as beneficial for the detection of buildings in the experiments. Given the
refined deep features, the convolutional building annotation layers leverage the building
information within the deep features to detect buildings and obtain the final binary building
annotation map. Notably, the feature extraction layers and building annotation layers are
connected by the skip connections proposed in [20], which can keep precise boundaries for
detected buildings, thus further improving the BE performance.

As for detailed composition of the proposed model, the convolutional feature extrac-
tion layers are composed of convolutional layers with batch normalization (BN) and linear
rectification functions. A max-pooling layer is also used in the feature extraction stage to
build the multi-scale feature pyramid for better feature representation. The convolutional
building annotation layers share a similar composition with the feature extraction layers.
Different from feature extraction layers, the building annotation layers use bilinear up-
sampling layers instead of max-pooling layers. And we will subsequently introduce the
detailed structure of the proposed MST module in the next sections.

2.2. Multi-Scale Transformer

Transformers have been commonly adopted in recent remote sensing applications. The
multi-head self-attention mechanisms within can better uncover the contextual informa-
tion of input features, which enrich the semantic information, thus further promoting the
recognition of land cover objects with variant categories. BE tasks require better semantic
segmentation performance, since the building objects share similar features with many
other man-made land cover objects such as roads and squares. And the better semantic
representation ability needed by BE can be offered by Transformer architectures. However,
most existing BE Transformers uncover semantic information over a single scale of feature
maps, which neglects the representation of multi-scale semantic information, thus dimin-
ishing the detection of multi-scale buildings. To address these problems, we firstly use
different convolutional layers to extract multi-scale features and subsequently acquire the
semantic tokens for different scales with the tokenizer. Then we utilize five non-Siamese
Transformers with the same structure to enrich the semantic information of multi-scale
feature maps. Finally, these multi-scale features are fused and input into building annota-
tion layers, as shown in Figure 2, where the detailed procedure of the multi-scale feature
tokenizer and multi-scale feature fusion can be seen.

2.2.1. Multi-Scale Feature Tokenizer

The proposed multi-scale feature tokenizer is conceived to obtain multi-scale feature
tokens through extracted multi-scale features, thus enhancing the multi-scale semantic
representation, which can be demonstrated in mathematical style as follows. Firstly, we use
I ∈ Rh×w×c to denote the input feature maps of the proposed multi-scale feature tokenizer,
where h, w, c denote the height, width, and channel size of the input features, respectively.
Then, a set of modified convolutional layers derived from atrous pyramid pooling [22] are
employed to capture multi-scale representation from the input feature maps, which elicits
the feature maps of five different scales, as shown below:

I1 = conv_1x1(I) (1)

I2 = d_conv_6(I) (2)
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I3 = d_conv_12(I) (3)

I4 = d_conv_18(I) (4)

I5 = g_conv(I) (5)

where In ∈ Rh×w×(c/4) [n = 1, 2, 3, 4, 5] indicate the extracted feature maps containing
representations of different scales. And conv_1 × 1(·) represents a convolutional layer with
the kernel size of 1 × 1. The d_conv_i(·)[i = 6, 12, 18] denote the dilated convolution layer
with the dilation rate of i. The g_conv(·) comprises a global average pooling layer and a
1× 1 convolutional layer. Notably, the aforementioned convolutional layers are followed by
BN and rectified linear unit (ReLU). Then, the extracted multi-scale features are tokenized
as follows:

Tn = So f tmax( f latten(conv(In)))⊙ f latten(In)
T (6)

where conv(·) is an 1 × 1 convolution layer that changes the channel size of In to the token
length of 4, the f latten(·) flattens the spatial dimension of the input feature maps, and ⊙
represents the matrix multiplication.
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Figure 2. The architecture of the MST module.
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2.2.2. Multi-Scale Feature Fusion

After the multi-scale semantic information is enhanced by several parallel Transform-
ers, the multi-scale feature maps are fused and further refined to integrate the multi-scale
semantic representation, which can be shown as follows:

O = conv_output(Concat[O1, O2, O3, O4, O5]) (7)

where On ∈ Rh×w×(c/4) [n = 1, 2, 3, 4, 5] and O ∈ Rh×w×c denote the enhanced multi-scale
features and the output features, respectively. And Concat(·) and conv_output(·) represent
the concatenation in channel dimension and a convolutional layer with the kernel size
of 1 × 1, respectively. Given the detailed information of the proposed MST module, the
complete procedure of the MST module can be clearly demonstrated in Algorithm 1.

Algorithm 1 Procedure of Multi-Scale Transformer
Input:
Input feature maps I ∈ Rh×w×c;
Output:
Output feature maps O ∈ Rh×w×c;
1: Acquire multi-scale features In (n = 1, 2, 3, 4, 5) with the convolutional layers as

follows:
2: In = Conv_Layer_n(I);
3: Extract multi-scale semantic tokens the tokenizer as follows:
4: Tn = Tokenizer(In);
5: Acquire rich semantic multi-scale representation as follows:
6: On = Transformer_decoder(Transformer_encoder(Tn),In);
7: Fuse the enhanced multi-scale semantic information as follows:
8: O = Conv_output([O1,O2,O3,O4,O5]);
9: return Output feature maps O;

Through the proposed MSTrans, we firstly acquire the multi-scale representation of the
input features through the multi-scale feature tokenizer. Then, these Transformer-enhanced
multi-scale feature maps are fused and input to the following convolutional building
annotation layers, which can better perceive the multi-scale semantic building inform-
ation within.

3. Experiments and Results

In this section, to test the performance of the proposed MSTrans, we perform a series
of experiments and analyses on three public datasets and challenge datasets. First, we
briefly describe the datasets for the three experimental datasets. Then, we provide the
benchmark methods and their implementation details for comparison with the proposed
approach. Subsequently, quantitative and visual results of different methods are analyzed
for comparison. Finally, we carry out ablation studies and feature visualization analysis of
the proposed MST module based on the Massachusetts and EastAsia datasets, respectively.

3.1. Dataset Descriptions

In the experiments, we selected three extensive used and challenging BE datasets,
namely the Massachusetts, EastAsia, and Inria datasets, as shown in Figure 3. The detailed
information of these datasets is listed in Table 1. All preprocessing strategies such as
cropping and partitioning of datasets are based on [59]. The relevant descriptions are
as follows.

The Massachusetts BE dataset is a set of VHR aerial images collected in the Boston area.
As presented in Figure 3a, different buildings exhibit different shapes, structures, textures,
and spatial distributions. The main challenge of the Massachusetts BE dataset is that it
contains a large number of densely packed tiny buildings as well as many large buildings.
This requires the BE network to be able to adapt to the capabilities of the multi-scale target,
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especially when tiny buildings and irregular large targets coexist in the scene. Hence, in
our experiments, the Massachusetts BE data are selected to test the performance of the
proposed method on buildings of different scales (tiny and large).

(a) Massachusetts Dataset

(b) EastAsia Dataset

(c) Inria Dataset

Figure 3. Dataset presentations: (a) WHU-CD dataset; (b) LEVIR-CD dataset; (c) GZ-CD dataset.

Table 1. Experimental datasets description in detail.

Datasets References Sensors Spatial Resolution Size Training/Test
Samples

Massachusetts Ji et al. [60] Aerial 1 m/pixel 512 × 512 548/40
EastAsia Chen et al. [23] Satellite 2.7 m/pixel 512 × 512 3153/903

Inria Peng et al. [61] Aerial 0.3 m/pixel 512 × 512 2025/891
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The EastAsia BE dataset is a set of HR satellite images collected in East Asia. As
presented in Figure 3b, buildings in different locations present completely different spectral
information. Moreover, buildings and backgrounds are extremely similar, which may cause
the accuracy of BE to be limited by the background and other objects. Therefore, this BE
dataset has great challenges, which requires the BE network to have the ability to extract
robust building features and be able to perceive long-range dependencies such as topology
between different buildings.

The Inria BE dataset is a set of VHR aerial images captured in five different ur-
ban settles. The five sub-datasets named Austin, Chicago, Kitsap, Tirol, and Vienna
make up the Inria BE dataset. Referring to [59], the five sub-datasets are divided into
2025 training samples and 891 testing samples, respectively. As shown in Figure 3c, dif-
ferent sub-datasets may have significant differences in the materials, scales, and shapes of
buildings due to the different cities where they were shot. As a result, we chose the Inria
BE dataset to verify the robustness and generalization of the proposed approach.

To sum up, the reasons why we selected three sets of BE datasets to verify the perfor-
mance of different methods mainly include the following aspects. On the one hand, these
three sets of data were acquired from different sensors and imaging conditions, including
two datasets based on aerial images and one satellite image. On the other hand, the build-
ings of different scales covered by the different datasets can effectively verify the ability of
different methods to extract multi-scale buildings.

3.2. Comparative Approaches and Evaluation Indicators

In this subsection, the comparative approaches and evaluation indicators in the exper-
iments are given. The details are as follows.

3.2.1. Comparative Approaches

• U-Net [20]: this network is a classic semantic segmentation network and also the
benchmark network for many BE networks. Here, we choose this network as a base
network for comparative analysis.

• SiU-Net [23]: the method is the benchmark model for the EastAsia dataset. It intro-
duces a Siamese branch based on U-Net, which enhances the model’s ability to adapt
and extract multi-scale building features through a downsampling generation image.

• Res2Unet [24]: this method is a novel deep building detection network that solves the
problems of missed detection of small buildings and mixing of building boundaries
and background through hierarchical fine-grained multi-scale learning. Therefore, it
is necessary to choose this method to compare with the proposed method.

• CFENet [31]: the model is a contextual feature representation focused on buildings by
designing a spatial fusion and focus enhancement module. Its purpose is to improve
the difficulty of low-level and high-level feature representation of complex and diverse
buildings. The challenges of our experimental dataset are the same as the purpose of
this method, so this method is selected as a comparison method.

• CBRNet [32]: the network is a boundary refinement network that introduces a bound-
ary refinement module and a coarse-to-fine learning strategy to alleviate false and
missed detections caused by small buildings, tree occlusions, and shadow interference.

• BBRNet [28]: the approach focuses on solving the incomplete detection of large-scale
buildings and inaccurate detection of complex-shaped buildings by designing residual
refinement and prediction modules.

• AGPNet [29]: the network combines attention and pyramid modules to alleviate the
limitation that a single receptive field cannot extract multi-scale building features well.
Its motivation is similar to that of our proposed model, so it is valuable to choose it as
a benchmark comparison method.
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3.2.2. Evaluation Indicators

In all experiments, we selected four evaluation indicators, Precision (Pre), Recall
(Rec), F1-Score (F1), and mean intersection over union (mIoU), to compare and analyze the
performance of the proposed MSTrans and other benchmark models. These indicators can
be calculated by a binary confusion matrix consisting of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). They have been widely used in binary
classification tasks such as change detection. Please refer to [31,32,59] as this article will not
repeat them here.

3.3. Implementation Details

In the experiment, to compare the performance of the models fairly and objectively,
and we did not employ any preprocessing or pretraining parameters for the models. For all
comparison network deployments and results please refer to [59] to ensure the reliability of
the results. In addition, implementation details of the proposed MSTrans are as follows.
We employed the PyTorch framework with CUDA 11.3 to deploy the proposed MSTrans,
and the MSTrans model was optimized using the Adam optimizer with an initial learning
rate of 0.0001. In addition, the network was trained using a single NVIDIA 3090 graphics
card in the experiment. Notably, to adapt to the video memory, we set the batch size for
training and inference to 4 in our experiments.

3.4. Comparison with Other Approaches
3.4.1. Results on Massachusetts Dataset

As shown in Table 2 and Figure 4, we obtained the quantitative accuracy and visual re-
sults of the proposed MSTrans and the compared benchmark models on the Massachusetts
BE dataset. The accuracy comparison listed in Table 2 shows that the proposed MSTrans
achieves the best accuracy in two comprehensive evaluation indicators, F1 and mIoU,
compared with the other seven baseline methods. Although our method does not achieve
the best in the Pre and Rec indicators, it is more balanced compared with other methods.
Visual comparison results also show the same conclusion, as presented in Figure 4. In our
MSTrans detection results (as shown in Figure 4j), the TP pixels in white are obviously the
most abundant, while the FN and FP pixels in green and red are relatively few. Overall, the
proposed MSTrans network demonstrates good detection capability for tiny buildings.

Table 2. Comparison of the quantitative accuracy (in %) of different models on the Massachusetts BE
dataset. Bold is the best accuracy.

Methods Pre (%) Rec (%) F1 (%) mIoU (%)

U-Net [20] 88.66 72.19 79.58 79.52
SiU-Net [23] 84.82 75.80 80.06 79.76

Res2Unet [24] 81.04 65.65 72.54 73.79
CFENet [31] 73.48 63.67 68.23 70.34
CBRNet [32] 64.86 67.55 66.18 68.22
BRRNet [28] 79.48 81.46 80.46 79.83
AGPNet [29] 84.72 74.86 79.48 79.28

Proposed
MSTrans 84.27 80.14 82.16 81.50
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

TP FNTN FP

Figure 4. The BE maps of different methods on the Massachusetts dataset: (a) image, (b) label,
(c) U-Net [20], (d) SiU-Net [23], (e) Res2Unet [24], (f) CFENet [31], (g) CBRNet [32], (h) BBRNet [28],
(i) AGPNet [29], and (j) proposed MSTrans.

3.4.2. Results on EastAsia Dataset

In the experiments, the accuracy and visual results of different networks on the
EastAsia BE dataset are provided in Table 3 and Figure 5. Compared with other methods,
the proposed MSTrans achieves better accuracy in terms of the three evaluation indicators
of Rec, F1, and mIoU. Specifically, the F1 and mIoU indicators of the proposed MSTrans
are improved by 1.21% and 1.23%, respectively, over the second-best CBRNet [32]. In
particular, compared with the second-best CBRNet [32], the Rec of the proposed model is
significantly improved by 4.06%. Although U-Net acquires the best Pre, the Rec indicator
accuracy is 10.91% lower than that of the proposed method. Visual comparison also
supports comparison of quantitative results well. From Figure 5, we can see that the
proposed method obtains a more complete building detection result, that is, very few FN
and FP pixels in green and red. Moreover, the proposed method outperforms other baseline
methods in BE of various scales in complex backgrounds. The effectiveness and superiority
of the proposed MSTrans are verified by the quantitative accuracy and visual results on the
East Asian BE dataset.

Table 3. Comparison of the quantitative accuracy (in %) of different models on the EastAsia BE
dataset. Bold is the best accuracy.

Methods Pre (%) Rec (%) F1 (%) mIoU (%)

U-Net [20] 88.41 71.22 78.89 81.57
SiU-Net [23] 88.29 70.85 78.62 81.38

Res2Unet [24] 84.07 69.14 75.88 79.42
CFENet [31] 85.26 73.13 78.73 81.43
CBRNet [32] 84.84 78.07 81.32 83.32
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Table 3. Cont.

Methods Pre (%) Rec (%) F1 (%) mIoU (%)

BRRNet [28] 84.06 78.02 80.93 83.02
AGPNet [29] 86.37 76.59 81.19 83.24

Proposed
MSTrans 82.93 82.13 82.53 84.55

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

TP FNTN FP

Figure 5. The BE maps of different methods on the EastAsia dataset: (a) image, (b) label, (c) U-
Net [20], (d) SiU-Net [23], (e) Res2Unet [24], (f) CFENet [31], (g) CBRNet [32], (h) BBRNet [28],
(i) AGPNet [29], and (j) proposed MSTrans.

3.4.3. Results on Inria Dataset

The Inria dataset consists of sub-datasets of five cities with different building styles,
materials, shapes, and distribution, which can further demonstrate the robustness and
superiority of the proposed MSTrans. As listed in Table 4 and Figure 6, the accuracy
and visual results of different networks on the Inria BE dataset are provided. Observing
the accuracy comparison results of the five sub-datasets, the proposed MSTrans achieves
better accuracy performance compared with other models. For example, compared with
BRRNet [28] and AGPNet [29], the proposed MSTrans reached improvements ranging
from 0.08% to 3.84% in terms of Rec, F1, and mIoU on the four sub-datasets of Austin,
Chicago, Kitsap, and Tyrol. On the whole, although AGPNet’s Pre accuracy achieved
the best performance, the comparison of the average accuracy of the five sub-datasets
shows that the proposed method has obvious advantages in terms of Rec, F1, and mIoU
in different scenarios. The visual comparison in Figure 6 demonstrates that the proposed
MSTrans can obtain results that are closer to real buildings, as displayed in Figure 6j.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

TP FNTN FP

Figure 6. The BE maps of different methods on the Inria dataset: (a) image, (b) label, (c) U-
Net [20], (d) SiU-Net [23], (e) Res2Unet [24], (f) CFENet [31], (g) CBRNet [32], (h) BBRNet [28],
(i) AGPNet [29], and (j) proposed MSTrans.

Table 4. Comparison of the quantitative accuracy (in %) of different models on the Inria BE dataset.
Bold is the best accuracy.

Methods U-Net
[20]

SiU-Net
[23]

Res2Unet
[24]

CFENet
[31]

CBRNet
[32]

BRRNet
[28]

AGPNet
[29]

Proposed
MSTrans

Austin

Pre 89.92 90.48 86.86 89.20 68.14 89.14 91.72 90.16
Rec 87.03 86.95 84.70 77.40 85.67 89.26 86.81 90.02
F1 88.45 88.68 85.77 82.88 75.92 89.20 89.20 90.09

mIoU 88.07 88.29 85.60 83.20 76.83 88.75 88.79 89.61

Chicago

Pre 87.61 81.40 79.20 81.31 77.76 87.20 86.37 86.18
Rec 73.50 78.27 78.06 75.96 75.80 75.78 78.69 79.03
F1 79.94 79.81 78.63 78.54 76.77 81.09 82.35 82.45

mIoU 77.26 76.62 75.34 75.49 73.59 78.28 79.39 79.47

Kitsap

Pre 84.03 84.42 77.74 82.21 60.62 80.90 85.91 84.66
Rec 73.16 73.55 72.40 72.27 62.72 77.57 76.24 77.84
F1 78.22 78.61 74.97 76.92 61.65 79.20 80.79 81.11

mIoU 80.80 81.08 78.42 79.85 69.77 81.46 82.71 82.93

Tyrol

Pre 87.62 88.15 85.61 86.14 84.83 85.39 90.30 88.14
Rec 83.37 82.00 83.09 84.78 79.82 84.43 82.71 86.50
F1 85.44 84.97 84.33 85.45 82.25 84.91 86.34 87.31

mIoU 86.41 86.03 85.49 86.40 83.86 85.95 87.17 87.96

Vienna

Pre 89.65 89.49 86.06 88.17 58.33 88.46 91.45 88.16
Rec 85.33 84.76 84.90 81.63 86.70 85.78 85.11 88.34
F1 87.43 87.06 85.48 84.78 69.74 87.10 88.17 88.25

mIoU 85.21 84.82 83.06 82.50 65.60 84.81 86.04 85.98
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Table 4. Cont.

Methods U-Net
[20]

SiU-Net
[23]

Res2Unet
[24]

CFENet
[31]

CBRNet
[32]

BRRNet
[28]

AGPNet
[29]

Prposed
MSTrans

Average

Pre 87.77 86.79 83.09 85.41 69.94 86.22 89.15 87.46
Rec 80.48 81.11 80.63 78.41 78.14 82.57 81.91 84.35
F1 83.90 83.82 81.83 81.72 73.27 84.30 85.37 85.84

mIoU 83.55 83.37 81.58 81.49 73.93 83.85 84.82 85.19

3.4.4. Comparison and Analysis of Model Efficiency

In this subsection, we construct experiments to further compare and analyze the rela-
tionship between the efficiency and accuracy of the proposed approach. As illustrated in
Table 5, several U-Net-based methods, such as SiU-Net and Res2Unet, achieve acceptable
performance with relatively low graphics memory consumption. The building detection
performance of U-Net even surpasses that of some state-of-the-art building extraction meth-
ods. The proposed method, which occupies a similar amount of graphics memory as most
other SOTA building detection methods, achieves the best change detection performance
across multiple datasets.

Table 5. Graphics memory size (M) and performance analysis (in %) of different models on
three BE datasets.

Datasets Graphics Memory (M)
Massachusetts EastAsia Inria

F1 mIoU F1 mIoU F1 mIoU

U-Net [20] 6656 79.58 79.52 78.89 81.57 83.90 83.55
SiU-Net [23] 6664 80.06 79.76 78.62 81.38 83.82 83.37

Res2Unet [24] 6643 72.54 73.79 75.88 79.42 81.83 81.58
CFENet [31] 7670 68.23 70.34 78.73 81.43 81.72 81.49
CBRNet [32] 7626 66.18 68.22 81.32 83.32 73.27 73.93
BBRNet [28] 7662 80.46 79.83 80.93 83.02 84.30 83.85
AGPNet [29] 7667 79.48 79.28 81.19 83.24 85.37 84.82

Proposed MSTrans 7623 82.16 81.50 82.53 84.55 85.84 85.19

4. Discussion

In this section, to further test the effectiveness of our MSTrans, we conduct ablation
experiments and feature visualization analysis. The details are as follows.

4.1. Ablation Study on Massachusetts Dataset

In addition to the comparative experiments, we also constructed ablation studies on
the Massachusetts BE dataset to verify the effectiveness of the proposed MST module. To
achieve this, we roughly summarized the proposed MSTrans method into three submodules,
including Backbone, atrous spatial pyramid pooling (ASPP) [22], and MST. Specifically,
Backbone is an end-to-end segmentation network consisting of only convolutional feature
extraction layers and convolutional building annotation layers. The proposed MST module
has a similar structure to ASPP, and ASPP is used here for comparison. Therefore, we
set the scale of ASPP to be the same as that of MST to further verify the effect of our
MST module.

Based on the aforementioned settings, we obtained results for different submodule
combinations on the Massachusetts dataset, as shown in Table 6 and Figure 7. Table 6
demonstrates that the performance using only the Backbone network is low. With the
introduction of the Backbone network into ASPP, Rec, F1, and mIoU are improved by
1.29%, 0.43%, and 0.34%, respectively. In addition, when the proposed MST module is
combined with Backbone, the performance is the best. The improvements of 0.41–2.68%
can be obtained by introducing our MST module into the Backbone network in terms of the
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three indicators of Rec, F1, and mIoU. Similarly, the visual results of different submodule
combinations also support the conclusion of the accuracy comparison.

Table 6. Quantitative accuracy (in %) of different modules on Massachusetts dataset for ablation
studies. Bold is the best accuracy.

Methods Pre (%) Rec (%) F1 (%) mIoU (%)

Backbone 85.37 77.46 81.22 80.75
w/ASPP 84.79 78.75 81.65 81.09
w/MST 84.27 80.14 82.16 81.50

(c) Backbone (d) Backbone+

ASPP

(e) Backbone+

MST

1

7

37

25

(a) Image (b) Label

TP FNTN FP

(c) Backbone (d) Backbone+

ASPP

(e) Backbone+

MST
(a) Image (b) Label

TP FNTN FP

Figure 7. The BE maps of different submodule combinations on the Massachusetts dataset for
ablation studies.

4.2. Feature Visualization Analysis on the EastAsia Dataset

To further analyze the impact of our MST module, we acquired the feature heatmaps
of different submodule combinations on the EastAsia dataset, as shown in Figure 8. Com-
paring Figure 8c,d, it can be found that, after introducing ASPP, a more complete BE result
can be obtained, and the false detection caused by background interference is significantly
reduced. The main reason is that the introduction of ASPP can increase the multi-scale
perception ability of the network through atrous convolutions of different scales, which
effectively increases the ability to represent building features of various scales. When the
MST module is added to the Backbone network, the feature heatmaps of the building are
more accurate in BE. Unlike ASPP, the proposed MST module captures global features
from different scale perspectives through the multi-scale feature tokenizer and Transformer,
which helps to obtain long-range relationships between different buildings. Moreover,
local features and global features are subtly aggregated in the proposed MST module
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to alleviate the omission of local detail information of buildings that is easily caused by
the pure Transformer. Therefore, the proposed MST model can better enhance the ability
to extract building features in complex scenes and various scales, thereby improving BE
accuracy. In summary, the visualization feature heatmap analysis once again verifies the
effectiveness of the proposed MST module.

Backbone Backbone+ASPP Backbone+MST

(a) Image (b) Label (c) Backbone (d) Backbone+

ASPP

(e) Backbone+

MST

(a) Image (b) Label (c) Backbone (d) Backbone+

ASPP

(e) Backbone+

MST

Figure 8. The visual feature heatmaps of the proposed MSTrans on different submodules.

5. Conclusions

In this paper, a novel end-to-end multi-scale Transformer (MSTrans) was proposed
for BE from HR remote sensing images. In the proposed MSTrans, a plug-and-play MST
module was introduced to fuse the local and global features of buildings, which can
enhance multi-scale feature representation. The proposed MSTrans was applied to three
real and challenging BE datasets. Experimental results demonstrate the effectiveness of the
proposed method, and comparison with the other seven methods also shows the superiority
of the proposed method. In addition, ablation studies and feature visualization analysis
also verify the effectiveness of the proposed MST module and MSTrans. However, there
are two aspects that need to be further studied in future works:

(1) The proposed method still relies on a large number of labeled samples for training to
achieve high-performance BE. Future work will focus on reducing the proposed net-
work’s dependence on labeled samples while maintaining the network’s performance
as much as possible.

(2) The effectiveness of the proposed method is only validated under homologous data,
and the effectiveness of heterogeneous data still needs further testing. In particu-
lar, due to the differences in sensors and imaging principles, heterogeneous remote
sensing data can supplement more information and improve BE performance by
combining building information from different data. However, how to extract and
fuse heterogeneous data to improve the robustness and generalization of BE remains
a challenge. At the same time, the BE detection capability of the proposed method in
cross-domain scenarios will be studied in the future, which is the focus of promoting
the practicality of the algorithm.
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