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Abstract: Effective gene feature selection is critical for enhancing the interpretability and accuracy
of genetic data analysis, particularly in the realm of disease prediction and precision medicine.
Most evolutionary feature selection algorithms tend to become stuck in local optima and incur high
computational costs, particularly when dealing with the complex and high-dimensional nature of
genetic data. To address these issues, this study proposes a multitasking feature selection method
based on clone selection for high-dimensional microarray data, which identifies optimal features by
transferring useful knowledge across two related tasks derived from the same microarray dataset.
First, a dual-task generation strategy is designed, where one task selects features based on the Relief-F
method, and the other task is generated from the original features. Second, a new mutation operator
is introduced to share useful information between the multiple tasks. Finally, an improved clonal
selection algorithm is proposed to strengthen the global and local search abilities. The experimental
results on six high-dimensional microarray datasets demonstrate that our method significantly out-
performs four state-of-the-art feature selection methods, highlighting its effectiveness and efficiency
in tackling complex feature selection problems.

Keywords: gene feature selection; evolutionary multitasking; clonal selection algorithm; immune
algorithm; evolutionary algorithm

1. Introduction

In the fields of medicine and biology, gene feature selection (FS) plays a crucial role
in disease diagnosis [1], enhances the accuracy of genetic association studies [2], and
advances personalized medicine [3]. This process involves identifying the most relevant
genetic features from the original microarray datasets, which helps mitigate the challenges
associated with the ‘curse of dimensionality’, thereby typically enhancing classification
accuracy and decreasing computational expenses [4].

Feature selection methods are commonly classified into four categories: filter, wrapper,
embedded, and hybrid [5]. Filter methods [6] evaluate features based on their inherent
characteristics, employing statistical metrics to determine their relevance to the target
variable. Wrapper methods [7] select feature subsets by directly evaluating the performance
of a particular learning algorithm. Embedded methods [8] integrate feature selection into
the model training process itself. They automatically select relevant features while building
the model. In general, filter methods are independent of any specific algorithm and
offer high computational efficiency, while wrapper methods achieve better accuracy by
considering feature interactions; however, they are computationally expensive. In contrast,
embedded methods balance efficiency and accuracy by considering feature interactions
during training, although they can be complex to implement and are dependent on the
chosen model. Hybrid methods [9] combine the strengths of different feature selection
techniques, enhancing both accuracy and efficiency.
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Clonal selection algorithms (CSAs) [10], based on the natural immune response of the
human body to foreign antigens, have been widely used in the field of feature selection [11].
These algorithms have several advantages for feature selection, such as the ability to find
optima due to the diversity introduced by the cloning and mutation processes. Moreover,
they are easy to implement for feature selection. For example, a two-stage hybrid FS
method was proposed in [12], in which Fisher scoring is used to reduce the dimensionality
of the search space in the first stage, and then an improved CSA method is employed to
select a feature subset. Chai et al. [13] proposed a decomposition multi-objective CSA
method for FS, which initializes the population based on symmetric uncertainty and uses a
population update strategy to improve the evolutionary process. However, most CSAs are
limited by premature convergence and significant computational costs, particularly in the
context of high-dimensional data.

Evolutionary multitasking (EMT) [14,15] is an innovative approach for tackling op-
timization problems, allowing for the simultaneous resolution of multiple related tasks
by sharing information across different tasks. Consequently, these approaches provide
benefits such as robust search capabilities and rapid convergence rates. Chen et al. [16]
proposed a novel high-dimensional feature selection method based on particle swarm
optimization, in which evolutionary multitasking is used to enhance feature selection
performance and decrease computational costs. It generates two tasks from the same
dataset: one task involves selecting features from the whole dataset, while the other focuses
on choosing promising features based on Relief-F. Li et al. [17] introduced three filtering
methods to improve a multitask generation strategy and employed a competitive swarm
optimizer to tackle the four associated tasks by facilitating the transfer of useful knowledge.
Lin et al. [18] integrated an innovative searching technique and a transformation method
into the evolutionary multitasking framework, significantly boosting the efficacy of the
multi-objective feature selection algorithm.

Based on the aforementioned analysis, we propose a multitasking feature selection
method based on clone selection for high-dimensional microarray data, called CSA-EMT,
which aims to improve the quality of feature subsets and reduce computational costs by
introducing evolutionary multitasking. To the best of our knowledge, little attention has
been given to combining a clonal selection algorithm with multitasking to improve the
performance of high-dimensional feature selection algorithms. The key contributions of
this study are summarized as follows:

(1) An effective multitasking feature selection method is proposed, which improves the
performance of FS by transferring useful knowledge across two related tasks;

(2) A dual-task generation strategy is adopted, in which one task is constructed using
the Relief-F method, while the other is derived from the original features;

(3) A clonal selection algorithm is improved to enhance search capabilities and accelerate
the rate of evolution by introducing a new mutation operator that shares useful
information between multiple tasks.

The structure of the rest of this paper is as follows. Section 2 reviews the related works
on evolutionary multitasking, clonal selection algorithms, and feature selection. Section 3
introduces the proposed CSA-EMT method in detail. Section 4 presents the experimental
setup and results. Finally, Section 5 concludes this paper with a discussion of the findings
and future directions.

2. Related Works
2.1. Evolutionary Multitasking

Evolutionary multitasking is an emerging research field in optimization that aims to
solve multiple optimization tasks simultaneously. Instead of focusing on a single problem,
EMT leverages the synergies between different tasks, enabling knowledge transfer across
tasks during the evolutionary process. EMT methods are usually classified into two cate-
gories: multifactorial-based methods and multi-population methods [19]. Multifactorial-
based methods are a type of evolutionary multitasking that use a single population to solve
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multiple optimization tasks simultaneously. In these methods, each individual in the popu-
lation is evaluated on multiple tasks, and the knowledge transfer between tasks happens
implicitly as the population evolves. Gupta et al. [20] proposed a famous multifactorial
evolutionary algorithm (MFEA) that optimizes multiple tasks simultaneously by evolving
a single population within a shared search space. The method begins by initializing a pop-
ulation where each individual is associated with a task based on its skill factor. Crossover
operations are then performed between individuals with high skill factors from different
tasks, enabling cross-domain knowledge transfer. Since then, a large number of variant
algorithms have been proposed. For example, Bali et al. [21] proposed an enhanced MFEA,
in which an online transfer parameter estimation mechanism is used to allow effective mul-
titasking across multiple tasks, even with varying intertask relationships. Xing et al. [22]
developed an adaptive multifactorial evolutionary algorithm for constrained optimization
problems, which incorporates an archiving strategy, an adaptive mutation probability, and a
mutation strategy. Additionally, empirical research has explored multifactorial differential
evolution [23] and multifactorial particle swarm optimization [24].

Multi-population EMT methods are another class of multitasking algorithms, where
each task is assigned to a separate population, which evolves independently. The popula-
tions are designed to solve specific tasks, but controlled interactions between populations
allow for knowledge transfer (such as migration or crossover), enabling the sharing of
useful information between tasks. For example, Feng et al. [25] employed explicit genetic
transfer using autoencoders to transfer useful information between different tasks, helping
improve overall performance across tasks. Lin et al. [26] used an effective positive transfer
strategy to improve the convergence of the target task, wherein solutions are transferred
from the neighbors of those that achieved successful knowledge transfer. Zhang et al. [27]
introduced adaptive dual knowledge transfer into differential evolution, which integrates
unified search space-based transfer with domain adaptation-based transfer to enhance the
performance of EMT. Li et al. [28] employed dual information transfer alongside a mating
strategy to minimize the negative effects of migration. Compared with multifactorial-based
methods, multi-population methods allow for task-specific evolution, enabling each popu-
lation to focus on solving its own task without interference from others. They also carefully
control the interactions between populations, allowing for more flexible and targeted
knowledge sharing between tasks. Therefore, our algorithm adopts a multi-population
EMT pattern.

2.2. Clonal Selection Algorithm

The clonal selection algorithm is an important technique derived from the immune
system’s adaptive mechanisms, particularly focusing on the clonal selection theory [29]. In
this theory, immune cells recognize antigens and undergo proliferation and mutation to
better adapt to detected foreign entities. This biological process is emulated in computa-
tional applications by cloning candidate solutions, introducing controlled variations, and
then selecting the best-adapted clones. Through iterative selection, clonal expansion, and
mutation, the algorithm can search the solution space effectively, avoiding local optima
while enhancing global search capabilities.

Initially introduced by de Castro [30], the CSA has been widely used in various op-
timization tasks due to its ability to maintain diversity while ensuring convergence. In
recent years, a large number of variant algorithms have been proposed. Yan et al. [31] used
a non-uniform mutation along with an arithmetic crossover to improve the performance of
the CSA. In [32], a CSA was combined with a negative selection algorithm to accelerate
searches, and network suppression was employed to reduce premature convergence. Wang
et al. [33] employed multiple mutation strategies based on differential evolution and an
adaptive parameter mechanism derived from [34] to mitigate the semi-blindness caused by
hypermutations. To enhance population diversity, Li et al. [35] adopted vertical distances
instead of crowding distances to determine the number of clones for each antibody. The
effectiveness of CSAs in the field of optimization has been proven, especially when applied
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to high-dimensional datasets. Therefore, this study utilizes a CSA for feature selection, aim-
ing to identify the most relevant features while maintaining diversity within the population
and improving overall search efficiency.

2.3. Feature Selection for Microarray Data

Feature selection is a critical step in the analysis of microarray data, which typically in-
volves a high-dimensional dataset with a large number of gene expressions and a relatively
small sample size. The primary goal of feature selection in microarray data is to identify the
most relevant genes that contribute significantly to classification or prediction tasks, thereby
improving model performance and interpretability while reducing computational costs.

Various methods have been proposed to address the challenge of feature selection
in microarray data. These methods can be broadly classified into four categories: filter,
wrapper, embedded, and hybrid methods. Filter methods are typically based on statistical
techniques that evaluate the relevance of features independently of the learning algorithm.
Ouaderhman et al. [36] proposed the Psitop filter FS method for mixed-type DNA microar-
ray data, which ranks features based on Psitop scores derived from two nonparametric
association coefficients: Psicor and partial Psicor. Lee et al. [37] proposed a Markov blanket-
based multivariate feature ranking method, which considers both feature relevance and
redundancy to improve gene selection and microarray data classification accuracy. A least-
loss feature selection method was proposed in [38], which reduces data dimensionality by
removing weakly correlated variables while maintaining classifier performance through
probability-based similarity scoring. Filter methods are computationally efficient and easy
to implement, but they evaluate features independently, often ignoring feature interactions,
which can result in suboptimal subsets for complex tasks.

Wrapper methods incorporate a learning algorithm to evaluate subsets of features
by directly optimizing the performance of a classifier. Techniques such as particle swarm
optimization [39], CSAs [40], and gray wolf optimization [41] have been extensively used
for wrapper-based feature selection in microarray data. They provide high accuracy by
evaluating feature subsets using a learning algorithm but are computationally expensive,
especially with high-dimensional data.

Embedded methods perform feature selection during the learning process of a model,
and examples include decision trees and regularization techniques. For example, in [42],
four embedded FS methods were compared, and the most effective one was selected for
the diagnosis of Alzheimer’s disease. Fu et al. [8] proposed an embedded FS method for
GMM, which accounts for feature interdependencies and offers feature relevance ranking
as a byproduct. These FS methods strike a balance between computational efficiency and
effectiveness, as they take into account interactions between features while being integrated
with the learning algorithm.

Hybrid methods integrate multiple types of feature selection algorithms, combining
the strengths of both filter and wrapper approaches to enhance overall performance. These
methods usually first use filter techniques to quickly reduce the number of irrelevant
features or improve solution quality. Then, a wrapper method is applied to the reduced
feature subset to further refine and select the optimal set by evaluating the performance of a
learning algorithm on the selected features. For example, Vommi et al. [43] proposed a filter-
wrapper FS method for COVID-19 case classification, which uses Relief-F and fuzzy entropy
to remove unimportant features, followed by an improved equilibrium optimizer to further
refine the feature subset. Ke et al. [44] proposed a two-stage FS method, which improves
the quality of the initial population in the genetic algorithm or ant colony optimization by
utilizing the feature ranking information from the first stage.

In summary, compared to related FS approaches, the proposed method offers several
key contributions. While most multitasking feature selection methods rely on particle
swarm optimization, genetic algorithms, or competitive swarm optimizers, integrating a
clonal selection algorithm with multitasking remains relatively unexplored. This integration
presents a promising alternative for optimizing high-dimensional feature selection, thanks
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to its robust search capabilities and ease of implementation. Additionally, we introduce an
enhanced clonal selection algorithm that enables efficient knowledge transfer across tasks,
population initialization based on feature weights, and an adaptive parameter control
mechanism, all of which support robust global and local search performance.

3. The Proposed CSA-EMT Method

This section introduces the CSA-EMT method, covering its general framework, dual-
task generation strategy, an improved clonal selection algorithm for enhanced performance,
and a runtime complexity analysis, offering a comprehensive feature selection approach
for high-dimensional data.

3.1. The General Framework of CSA-EMT

The proposed method integrates an immune algorithm with evolutionary multitasking
to optimize gene feature selection. The flowchart of CSA-EMT is shown in Figure 1. It
primarily encompasses two critical steps: a dual-task generation strategy and an improved
clonal selection algorithm tailored for gene selection. The dual-task generation strategy
is initially employed to create two related tasks, as explained in detail in Section 3.2. This
approach allows the algorithm to effectively explore diverse search spaces. Next, an
improved clonal selection algorithm is applied to optimize feature selection by facilitating
knowledge transfer between the two tasks, thereby enhancing the search process and
preventing the algorithm from becoming trapped in local optima, as discussed in Section 3.3.
In the final step, the best-performing antibodies from both tasks are selected and output as
the final solution, ensuring robust and efficient feature selection. The pseudocode for the
CSA-EMT framework is shown in Algorithm 1.

Figure 1. The general framework of CSA-EMT.
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Algorithm 1 Framework of CSA-EMT

Input: training data Data,
maximum number of iterations Gmax.

Output: best antibody abb.
1: G = 1;
2: task1,task2 = GenerateTasks(Data);
3: InitializePopulation(task1);
4: InitializePopulation(task2);
5: while G <= Gmax do
6: ExecICSA(task1);
7: ExecICSA(task1);
8: G = G + 1;
9: end while

10: abb = GetBestAntibody(task1,task2);
11: return abb

3.2. Dual-Task Generation Strategy

In this study, Task 1 retains all features from the original dataset. Task 2 contains
important features identified by the Relief-F and knee point methods. In Task 2, features are
ranked according to their weight values, which are computed using the Relief-F algorithm.
Then, the knee point method, based on these weights, is used to automatically determine
the important features. Features are included in Task 2 if their weight values exceed the
threshold defined by the knee point method.

3.3. An Improved Clonal Selection Algorithm

The CSA-EMT method uses a modified clonal selection algorithm to simultaneously
address two relevant tasks. The flowchart is shown in Figure 2. It primarily includes
population initialization, affinity evaluation, selection, cloning, mutation, and memory
cell formation. Specifically, the process begins by generating an initial population of
antibodies for Task 1, selected randomly, and for Task 2, based on feature weights. This
initialization provides a diverse starting set for optimization. In each iteration, antibodies
are evaluated for their affinities, and those with higher affinity values are selected for
cloning. Following cloning, each clone undergoes a mutation process. This step introduces
diversity by making small alterations and facilitates knowledge transfer between the
two tasks, enabling the algorithm to explore a broader range of potential solutions and
avoid local optima. Finally, the best clones are selected to form the updated population,
replacing the weakest antibodies from the previous generation. This iterative process
ensures that the population’s overall quality improves with each generation and continues
until a termination condition is met. Here, we focus on introducing the improvement
steps (population initialization, an affinity function, and a mutation strategy), which are
described as follows:

(1) Population initialization
Real numbers are used to characterize the feature masks of antibodies, which allow

for smoother mutation operations in continuous space. When the value is greater than
0.5, the corresponding feature is selected; otherwise, it is not selected. For Task 1, each
component of the antibody is randomly generated from a uniform distribution in the [0, 1]
range. For Task 2, each component corresponds to a normalized weight value determined
by the Relief-F method.

(2) Affinity function
CSA-EMT uses Equation (1) as the affinity function, which aims to minimize the error

rate and the number of selected features:

A f f inity = γ×Errb + (1 − γ)× |F|
|D| (1)



Electronics 2024, 13, 4612 7 of 15

Errb = 1 −
(

1
C

C

∑
i=1

Acci

)
(2)

where Errb represents the balanced error rate, which offers particular benefits in handling
imbalanced datasets. It calculates the average error rate for each class and ensures that all
classes contribute equally to the final error rate, regardless of their frequency in the dataset.
C is the number of classes, and Acci is the accuracy for class i. The right-hand side of the
equation represents the ratio of the number of selected features (|F|) to the total number of
features (|D|). The value of γ is set to 0.999999.

(3) Mutation strategy
Knowledge is transferred between Task 1 and Task 2 through the mutation strategy

applied to each antibody, which can improve the quality of antibodies and lead to faster
convergence. During the mutation process, a transfer probability, Pt, is predefined to
determine whether to perform information exchange between the two tasks. Then, a
random number is generated between 0 and 1. If its value is greater than Pt, the knowledge
transfer will occur using Equation (3); otherwise, antibodies will undergo mutation without
knowledge transfer, using Equation (4).

vi = xi + Fi · (xgbest − xi) + Fi · (xr1 − x̃r2) (3)

vi = xi + Fi · (xcbest − xi) + Fi · (xr1 − x̃r2) (4)

Figure 2. The flowchart of the improved clonal selection algorithm.

These mutation operators are DE-based mutation strategies, which use superior and
inferior antibodies to guide the search directions. Two integers, r1 and r2, are randomly
selected from the range of 1 to the population size. They are distinct from each other
and neither equals i. The antibodies xcbest and xgbest are randomly selected from the best-
performing antibodies of the current task and from all tasks, respectively. The antibody
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x̃r2 is randomly selected from a set that combines an external archive of inferior solutions
with the current population. Fi is a scaling factor for the ith antibody within the range [0, 1].
After mutation, the mutant antibodies will undergo crossover:

uj
i =

{
vj

i i f rand ≤ CRi or j == jrand

uj
i otherwise

(5)

where j denotes the jth feature of the ith antibody. The parameter CRi refers to the crossover
probability of the ith antibody, with a value that ranges between 0 and 1. The term jrand is
randomly selected between 1 and the number of features.

The parameter update process for Fi and CRi in SHADE 1.1 [45] is retained, with
the modification that the last elements in the memory pools start with a value of 0.9. In
particular, it initializes with two memory pools that store the historically successful values
of Fi and CRi. Each element, except for the last one, is initialized with a value of 0.5, while
the last element is set to 0.9. In each generation, the control parameters Fi and CRi are
computed based on the following equations:

Fi = randc(MPF
rk

, 0.1) (6)

CRi =

{
0 MPCR

rk
=⊥

randn(MPCR
rk

, 0.1) otherwise
(7)

Fi is sampled from a Cauchy distribution with a location parameter MPF
k and a scale

parameter of 0.1. If the sampled value exceeds 1, it is clipped to 1. If the sampled value is
less than 0, it is resampled from the Cauchy distribution until it falls within the valid range
(0, 1]. The index k is randomly selected from 1 to the memory pool size. CRi is sampled
from a normal distribution, with a mean of MPCR

k and a standard deviation of 0.1, and the
clipped value stays within [0, 1].

After each generation, our method collects information about F and CR from the
successful individuals and updates the memory pools using Algorithm 2.

Algorithm 2 Memory update process

Input: array of F values from successful individuals SF,
array of CR values from successful individuals SCR.

Output: Memory Pools MPF and MPCR.
1: if SF ̸= ∅ and SCR ̸= ∅ then
2: if MPCR

k ̸= ⊥ and MPCR
max ̸= 0 then

3: MPCR
k = meanL(SCR);

4: else
5: MPCR

k = ⊥;
6: end if
7: MPF

k = meanL(SF);
8: k = k + 1;
9: if k > PoolSize then

10: k = 1;
11: end if
12: end if
13: return MPF and MPCR

The function meanL() computes the weighted Lehmer mean of the successful F and
CR values, as follows:

meanL(S) =
∑
|S|
k=1 wk · (Sk)

2

∑
|S|
k=1 wk · Sk

(8)
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wk =
|( f (vk)− f (xk))|

∑
|S|
i=1 |( f (vi)− f (xi))|

(9)

|.| is the improvement in fitness between the parent and the offspring.

3.4. Runtime Complexity Analysis

The analysis of the time complexity of CSA-EMT is as follows:
Step 1: Generate dual tasks by separately applying Relief-F and using the original

training data with m samples and d features. The time complexity follows O(mds), where s
represents the number of times the algorithm randomly samples instances from the dataset.

Step 2.1: Initialize the population with N antibodies and evaluate the affinity val-
ues. The time complexity follows O(Nd + EN), where E represents the time taken for
affinity evaluation.

Step 2.2: Select the Ns best antibodies for cloning, which has a time complexity of
O(Ns).

Step 2.3: Each selected antibody is cloned Nc times, which has a time complexity of
O(NsNcd).

Step 2.4: Each clone undergoes mutation and has its affinity value evaluated. The time
complexity follows O(NsNcd + ENsNc).

Step 2.5: Update the population, which has a time complexity of O((NsNc + N)
log(NsNc + N)).

Step 2.6: The evolutionary process runs for G generations.
The total time complexity is as follows:
O(mds + G(Nd + EN + Ns + NsNcd + NsNcd + ENsNc + (NsNc + N)log(NsNc + N))
= O(mds + G(Nd + EN + NsNcd + ENsNc + (NsNc + N)log(NsNc + N))
From this, it is clear that the population size N, the number of selected antibodies Ns,

the number of clones Nc, and the number of evolutionary iterations G are all key factors that
impact the algorithm’s time complexity. As our algorithm can achieve faster convergence
with a smaller population size N, it can reduce the number of evolutionary iterations and
effectively decrease the training time.

4. Experimental Results and Discussion

This section presents three experiments to evaluate the performance of CSA-EMT.
First, we compare CSA-EMT with the 1NN classifier using the full feature set. Second, we
benchmark CSA-EMT against other well-established feature selection methods. Finally, we
examine the impact of different generation strategies on the performance of CSA-EMT.

4.1. Experimental Setup

For this study, we utilized six microarray datasets to evaluate the performance of
the proposed CSA-EMT method. The details are provided in Table 1 and are available at
https://github.com/lyceia/FS-DB (accessed on 20 October 2024). The training and test sets
were generated using 10-fold cross-validation, which is widely used in feature selection
due to its ability to effectively balance bias and variance [17,46]. In this method, nine folds
are designated for training, and the remaining fold is used for testing. Furthermore, we
employed stratified sampling to ensure that the class distribution remained consistent
during the splitting of the datasets, which helps mitigate the impact of class imbalance
during cross-validation.

The experiments were conducted on a system with an Intel Core i9 processor and
32 GB of RAM in a Windows 11 environment. The CSA-EMT algorithm was implemented
using the JAVA WekaClassalgos development package, which can be accessed at http:
//wekaclassalgos.sourceforge.net (accessed on 20 October 2024). The main parameters
were as follows: the population size for each task was set to 5; the top 20% of antibodies
were selected for cloning, with each selected antibody producing one clone; the historical
memory pool size for each task was set to 5; the maximum number of evolutions was set

https://github.com/lyceia/FS-DB
http://wekaclassalgos.sourceforge.net
http://wekaclassalgos.sourceforge.net
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to 50; and the 1NN classifier was used to evaluate the performance of the methods. Each
method was run 20 times on each dataset to reduce bias.

Table 1. The details of the benchmark datasets.

Dataset Features Instances Classes Imbalance Ratio

SRBCT 2308 83 4 2.64
Leukemia1 5327 72 3 4.22

DLBCL 5469 77 2 3.05
Brain Tumor1 5920 90 5 15.00
Brain Tumor2 10,367 50 4 2.14

Leukemia2 11,225 72 3 1.40

4.2. Performance Evaluation

We evaluated the performance of CSA-EMT based on accuracy and the number of
selected features. Figures 3 and 4 illustrate the comparative results between CSA-EMT and
the 1NN classifier using all features.

Figure 3. The accuracy (%) of CSA-EMT vs. that of the 1NN classifier using all features.

In Figure 3, the accuracy (%) of the proposed CSA-EMT method is compared with that
of the 1NN classifier using all feature sets across six datasets. The x-axis represents the
datasets, while the y-axis indicates the classification accuracy as a percentage. As shown,
CSA-EMT consistently outperformed the 1NN classifier across all datasets, demonstrating
its effectiveness in selecting high-quality feature subsets, which improved classification
accuracy. Compared to using all features, the classification accuracy increased by at
least 7.44% on five datasets, with SRBCT showing the largest improvement, achieving a
16.27% increase.

In Figure 4, the percentage of the average number of selected features relative to
the total number of features is presented, with the x-axis representing each dataset and
the y-axis indicating the proportion of selected features. The results show that CSA-EMT
significantly reduced the feature subset by at least 95.86%, selecting a smaller subset
while retaining relevant information. Leukemia1 exhibited the most significant reduction,
decreasing by 99.01%.
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Figure 4. The percentage of selected features relative to the total number of features (%).

In summary, these results highlight the robust feature selection capability of CSA-
EMT, which significantly reduces dimensionality while enhancing the predictive power of
the classifier.

4.3. Comparison with Feature Selection Methods

To demonstrate the effectiveness and efficiency of CSA-EMT, we compared it with four
state-of-the-art, well-known feature selection algorithms, including MF-CSO [17], VLPSO-
LS [47], the GA (genetic algorithm), and the CSA (clonal selection algorithm). MF-CSO is
an evolutionary multitasking-based feature selection method that employs a competitive
swarm optimizer to tackle the four tasks generated using three filtering methods. VLPSO-
LS is a one-stage feature selection method that employs a variable-length representation
to accelerate the search speed. The GA and CSA are well-known evolutionary algorithms
with powerful global search abilities.

Table 2 presents the comparison results with other state-of-the-art feature selection
methods, where |S| represents the number of selected features, |Avg| represents the average
accuracy, and |T| represents the running time. The symbols “−”, “+”, and “≈” denote
whether the compared methods outperformed, underperformed, or performed similarly
to CSA-EMT.

The results indicate that CSA-EMT outperformed the comparative methods in both
accuracy and running time on five out of six datasets. Compared with the traditional GA
and CSA-based feature selection methods, CSA-EMT not only achieved the highest accuracy
but also required fewer features across all datasets. The average accuracy improved by
at least 8.07%, except for Brain Tumor1. Compared with VLPSO-LS, although CSA-EMT
selected more features on four datasets, it enhanced the performance across all datasets
except for SRBCT, surpassing VLPSO-LS in overall effectiveness. This is because CSA-EMT
adopts the evolutionary multitasking technique to share information across different tasks.
Compared with MF-CSO using EMT, CSA-EMT showed obvious advantages in average
accuracy across all datasets. The most notable enhancement was observed in Brain Tumor1,
where the accuracy increased by at least 13.18%. Regarding the average running time,
CSA-EMT was the top performer, followed by GA, VLPSO-LS, CSA, and MF-CSO.
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Table 2. Comparison of CSA-EMT with four feature selection methods.

Dataset Eval. Meas. MF-CSO VLPSO-LS GA CSA CSA-EMT

SRBCT |S| 57 78 950 1152 61
Avg 95.13 ± 6.81 99.83 ± 0.40 84.53 ± 2.90 84.63 ± 2.64 99.14 ± 0.95
|T| 105.88 9.74 23.71 46.88 10.71

Leukemia1 |S| 95 59 1957 2661 53
Avg 89.75 ± 14.45 92.90 ± 1.95 85.95 ± 2.11 85.86 ± 1.72 95.59 ± 1.37
|T| 113.31 42.01 40.70 60.76 20.95

DLBCL |S| 35 60 2151 2743 64
Avg 93.85 ± 9.92 93.17 ± 3.46 84.64 ± 2.31 82.79 ± 1.31 94.77 ± 2.09
|T| 108.85 60.37 46.79 87.92 23.53

Brain Tumor1 |S| 127 98 2190 2957 227
Avg 74.93 ± 17.24 78.38 ± 3.44 87.89 ± 0.92 87.11 ± 1.33 88.11 ± 1.93
|T| 130.99 57.83 60.56 70.64 29.87

Brain Tumor2 |S| 133 65 3746 5187 429
Avg 71.65 ± 21.43 73.54 ± 4.35 65.40 ± 3.23 66.40 ± 2.80 76.80 ± 4.07
|T| 140.68 82.22 40.68 227.82 50.22

Leukemia2 |S| 101 66 3495 5609 150
Avg 91.94 ± 10.98 94.83 ± 1.14 86.77 ± 2.29 88.00 ± 2.21 96.07 ± 2.20
|T| 146.84 128.49 75.53 250.37 46.53

|S| 91 71 2415 3385 164
AVG 86.21 88.78 82.53 82.46 91.75
|T| 124.42 63.44 48.00 124.06 30.30

−/ + / ≈ 6/0/0 5/1/0 6/0/0 6/0/0

4.4. Impact of Different Generation Strategies

In this section, we analyze the effect of three generation strategies on the performance
of CSA-EMT. We implemented three generation strategies: information gain, mRMR, and
Relief-F. Each strategy was tested using the same initial parameters to ensure a fair compari-
son. Table 3 shows the comparison results of CSA-EMT using different generation strategies.
CSA-EMT-IG employs information gain and the knee point method to generate features
in Task 2. CSA-EMT-mRMR utilizes the top 10% of the important features generated by
mRMR to produce Task 2.

The results indicate that CSA-EMT and CSA-EMT-mRMR achieved similar accuracies;
however, CSA-EMT selected fewer features and had a shorter running time. CSA-EMT-IG,
on the other hand, performed worse overall. These findings suggest that while the Relief-F
and knee point methods are effective, other methods, such as mRMR, are also viable for
feature selection. The choice of method can impact both the efficiency and accuracy of the
results. Therefore, it is essential to explore the use of various filter-based feature selection
methods to generate multiple tasks to improve overall performance. Here, we have used
only the Relief-F and knee point methods, but we are not limited to these.

Table 3. Comparison of CSA-EMT performance using different generation strategies.

Dataset Eval. Meas. CSA-EMT-IG CSA-EMT-mRMR CSA-EMT

SRBCT |S| 56 76 61
Avg 98.50 ± 1.07 98.07 ± 1.79 99.14 ± 0.95
|T| 10.63 10.58 10.71

Leukemia1 |S| 55 163 53
Avg 94.68 ± 1.38 96.02 ± 0.78 95.59 ± 1.37
|T| 25.95 23.11 20.95
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Table 3. Cont.

Dataset Eval. Meas. CSA-EMT-IG CSA-EMT-mRMR CSA-EMT

DLBCL |S| 92 179 64
Avg 93.29 ± 3.42 93.77 ± 1.13 94.77 ± 2.09
|T| 28.30 26.89 23.53

Brain Tumor1 |S| 240 203 227
Avg 86.00 ± 1.74 88.89 ± 1.41 88.11 ± 1.93
|T| 37.77 27.45 29.87

Brain Tumor2 |S| 563 333 429
Avg 77.60 ± 3.07 79.00 ± 2.57 76.80 ± 4.07
|T| 70.90 45.05 50.22

Leukemia2 |S| 134 336 150
Avg 95.45 ± 1.38 95.00 ± 1.91 96.07 ± 2.20
|T| 57.70 49.21 46.53

|S| 190 215 164
AVG 90.92 91.79 91.75
|T| 38.54 30.38 30.30

−/ + / ≈ 5/1/0 3/3/0

5. Conclusions

In this study, we proposed an evolutionary multitasking feature selection approach
based on an immune algorithm to address the challenges of high-dimensional microarray
data analysis. Multitask learning is introduced to leverage the clonal selection algorithm
to solve multiple feature selection tasks simultaneously. By sharing information across
tasks, the method enhances convergence and reduces computational costs, resulting in
more robust feature selection. The dual-task generation strategy and the improved clonal
selection algorithm are the key components of our proposed algorithm. The dual-task
generation strategy uses the Relief-F method and the original features to generate two tasks.
Meanwhile, the improved clonal selection algorithm enhances the exploration and exploita-
tion capabilities of the CSA. Through experiments on six high-dimensional microarray
datasets, the CSA-EMT method demonstrated a better trade-off between the number of
selected features, classification accuracy, and computational time when compared to other
feature selection methods across most datasets. However, it presented some limitations.
Notably, it tended to select slightly more features, as observed in the Brain Tumor1 and
Brain Tumor2 datasets. For future research, we plan to enhance the search capabilities of
the clone selection process to address this limitation, potentially by incorporating local
search techniques or developing a more effective knowledge transfer strategy.
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