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Abstract: Image super-resolution has experienced significant advancements with the emergence
of deep learning technology. However, deploying highly complex super-resolution networks on
resource-constrained devices poses a challenge due to their substantial computational requirements.
This paper presents the Adaptive Dynamic Shuffle Convolutional Parallel Network (ADSCPN), a
novel lightweight super-resolution model designed to achieve an optimal balance between computa-
tional efficiency and image reconstruction quality. The ADSCPN framework employs large-kernel
parallel depthwise separable convolutions, dynamic convolutions, and an enhanced attention mech-
anism to optimize feature extraction and improve detail preservation. Extensive evaluations on
standard benchmark datasets demonstrate that ADSCPN achieves state-of-the-art performance while
significantly reducing computational complexity, making it well-suited for practical applications on
devices with limited computational resources.

Keywords: image super-resolution; lightweight model; large-kernel convolutions; dynamic convolution;
attention mechanisms

1. Introduction

Image super-resolution (SR) [1–3] refers to the process of reconstructing or enhancing
a low-resolution image to obtain a higher-resolution version, with more detailed and finer
visual features. It aims to increase the spatial resolution of an image, which typically
involves predicting or estimating the missing high-frequency details from the available
low-frequency data. SR is crucial for applications where high-quality images are necessary
but only low-resolution versions are available, such as in medical imaging [4,5], satellite
photography [6,7], image recognition [8–10] and video streaming [11–13]. Conventional
SR techniques, such as interpolation or statistical model-based approaches, exhibit lim-
itations in reconstructing high-frequency details of images. In contrast, deep learning
technologies [14–18], particularly through models like convolutional neural networks
(CNNs) [19–22], have significantly enhanced the performance of SR. By employing an end-
to-end training framework, deep learning models are capable of automatically learning
the complex mapping between low-resolution and high-resolution images from large-
scale datasets, thereby circumventing the constraints associated with manually designed
feature extraction.

Most current deep learning-based methods [1,23–25], such as FSRCNN [26], directly
utilize low-resolution images as input, modifying the nonlinear mapping approach of SR-
CNN [27] by initially reducing the dimensionality and subsequently upscaling it, with con-
volutional layers employed for feature extraction in between. Following this, DRCN [28]
introduced a structure comprising three components: an embedding network, an inference
network with recursive layers that increase network depth without significantly increasing
the number of parameters, and a reconstruction network. DRRN [29] builds upon these

Electronics 2024, 13, 4613. https://doi.org/10.3390/electronics13234613 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234613
https://doi.org/10.3390/electronics13234613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0000-1316-8679
https://orcid.org/0000-0002-4569-1429
https://doi.org/10.3390/electronics13234613
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234613?type=check_update&version=1


Electronics 2024, 13, 4613 2 of 28

algorithms by incorporating concepts from DRCN and utilizing local skip connections
inspired by ResNet [19]. It further integrates global skip connections and recursive blocks to
deepen the network while controlling the parameter count. EDSR [30], through an analysis
of the residual blocks in SRResNet [31], observed that batch normalization layers tend to
distort image color and contrast, negatively affecting image quality. Consequently, they re-
moved the batch normalization layers, simplifying the residual blocks and stacking more of
them to increase the model’s capacity. In addition, ESRGCNN [23] introduced an enhanced
group convolutional strategy to improve feature extraction, while DSRNet [32] utilized
dynamic networks to adaptively adjust its internal structure based on input characteristics.
Moreover, HDSRNet [33] proposed a heterogeneous dynamic convolutional network to
balance computational cost and performance in SR tasks.

While these deep models substantially enhance the reconstruction performance of
super-resolution images, they generally achieve this by increasing network depth through
direct block stacking or recursive structures. This approach often results in challenging
training processes, high computational complexity, slow processing speeds, and a large
number of parameters. Furthermore, these networks do not adequately account for the ef-
fects of convolutional structures and components on super-resolution performance, thereby
imposing a considerable computational burden. Notably, very deep networks such as
VDSR [34] incur significant computational costs due to their depth and large parameter
scale, rendering them impractical for mobile devices and real-time applications.

To address the aforementioned challenges, it is crucial to design lightweight SR models
to balance model complexity, inference time, and high-resolution reconstruction quality.
Recent research efforts have focused on various strategies to reduce the model scale and
enhance their efficiency. For instance, Ahn et al. [35] reduced the depth of a new designed
Cascading Residual Network (CARN), resulting in the CARN-M model, though with a
slight performance trade-off. Similarly, IDN [36] is a lightweight information distillation
model constructed by a channel-splitting strategy. Building on this, Information Multi-
Distillation Network (IMDN) [37] was designed, which adopts a residual architecture,
utilizing multi-distillation through channel-splitting, feature concatenation and contrast-
based channel attention, thereby further reducing dimensionality. Liu et al. [38] developed
the Residual Feature Distillation Network (RFDN) by replacing the channel-splitting op-
eration of IMDN with multiple feature distillation connections, thereby learning more
discriminative feature representations. Kong et al. [39] refined RFDN by replacing feature
distillation connections with stacked convolutional layers and activation functions for
feature extraction. They also refined the activation functions within the feature extractor,
combined with contrastive loss and a warm-start learning rate decay strategy, leading to
improved feature extraction capability and enhanced model compactness, while main-
taining a balance between accuracy and inference speed. Recent architectures such as
Transformers and MLPs have also brought new directions for lightweight SR research.
Zhang et al. [40] introduced the concept of superpixel, clustering similar local pixels to form
similar feature regions, and proposed a Superpixel Token Interaction Network with intra-
and cross-attention blocks, significantly enhancing model interpretability, which resulted
in a more compact model with faster inference speeds.

Motivation. Despite the advancements made by existing methods, the trade-off be-
tween super-resolution (SR) performance and model compactness remains a persistent
challenge. To address this issue, a promising emerging approach involves utilizing large-
kernel convolutions for image feature extraction. Notably, AlexNet [41], a pioneering model
employing large-kernel convolutions, demonstrated remarkable performance, inspiring
subsequent research in the image SR domain. Specifically, large-kernel strided convolu-
tions are often employed in attention mechanisms to capture salient local features from
images. While depthwise separable convolutions offer advantages in terms of reduced
parameter count and computational complexity, they convolve input features channel-wise,
limiting the model’s ability to fully capture spatial information across different channels.
ShuffleMixer [42], for instance, leverages large-kernel depthwise separable convolutions
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to construct a lightweight SR model by incorporating channel projection and shuffling to
activate features along the channel dimension, facilitating information exchange between
grouped features. However, this approach fails to enhance spatial feature representation or
improve feature interactions between neighboring regions in the image, thereby affecting
the SR reconstruction quality. Consequently, how to effectively apply large-kernel depth-
wise separable convolutions to lightweight SR tasks is still a challenge for further research.

Our Method. To address the challenges outlined, this paper introduces a novel
Adaptive Dynamic Shuffle Convolutional Parallel Network (ADSCPN). First, the pro-
posed model incorporates a large-kernel parallel depthwise separable convolution technique,
which enhances the network’s ability to capture local features from various orientations,
thereby expanding the receptive field and improving the extraction of fine details. This
approach effectively mitigates the risk of feature loss, leading to more accurate image recon-
struction. Second, the method integrates a dynamic convolution mechanism, which leverages
an attention mechanism to selectively emphasize key deep features, striking a balance be-
tween computational efficiency and robust feature extraction. Moreover, ADSCPN employs
a point-attention convolution group (PACG), which refines deep feature representations by
applying point-wise attention, thereby minimizing the risk of feature distortion during
training. Additionally, the proposed model introduces an Efficient Enhanced Spatial Attention
(EESA) block, which streamlines the traditional spatial attention mechanism to preserve
performance while reducing computational complexity. Collectively, these techniques
enable the SR model to reconstruct high-quality images with lower computational costs,
making it highly suitable for deployment on resource-constrained devices.

Contributions. The main contributions of this paper can be summarized as follows:

• We propose a novel lightweight network architecture, named ADSCPN, designed to
enhance feature learning across both channel and spatial dimensions. This innovative
approach markedly improves the performance of image SR reconstruction.

• We introduce an innovative feature processing module, incorporating multi-layer
pointwise perceptrons and shuffling attention, which enhances feature extraction
through grouped convolutions and channel shuffling. Additionally, the framework
integrates large-kernel convolution groups with dynamic convolutions, effectively
reducing model size while maintaining high computational efficiency. These ad-
vancements enable the model to capture deep semantic features with low complexity,
leading to a significant improvement in the quality of reconstructed images.

• We conduct extensive experiments on multiple benchmark datasets to evaluate the
performance of our method. The results demonstrate that our model achieves superior
performance compared to several state-of-the-art approaches, while maintaining low
computational complexity.

Roadmap. The remainder of this paper is organized as follows: Section 2 provides
an overview of related work on lightweight image SR techniques. Section 3 details the
proposed methodology, including problem formulation and technical implementation.
Section 4 presents the experimental results, while Section 5 concludes the paper with a
summary of the key findings and contributions.

2. Related Work

Image super-resolution technology has advanced significantly in recent years, largely
driven by deep learning innovations [42–44]. Numerous methods have been proposed
to enhance image resolution, offering diverse solutions to this challenge. Building upon
these foundations, our study introduces several extensions and innovations. This section
reviews related work, covering traditional super-resolution techniques, deep learning-
based approaches, lightweight SR methods, channel and spatial attention mechanisms,
and the application of large-kernel convolutions.
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2.1. Traditional Super-Resolution Methods

Early image SR techniques predominantly relied on interpolation algorithms, such as
bilinear and bicubic interpolation. These approaches generate high-resolution images by
spatially interpolating pixel values, but they often fail to accurately recover fine details and
edge structures [45,46]. In response, methods based on sparse representation and dictionary
learning were introduced, which reconstruct SR images by learning sparse representations
of low-resolution and high-resolution patches, thereby achieving improved preservation of
image details [47]. Despite their advantages, these methods are computationally demanding
and exhibit limited effectiveness when applied to complex scenes.

2.2. Deep Learning-Based Super-Resolution Methods

With the advent of deep learning, SR methods based on CNNs have garnered signif-
icant attention. SRCNN [27] was among the first CNN-based models, achieving notable
performance improvements by learning a direct mapping from low-resolution to high-
resolution images. Building on this, VDSR [34] introduced a deeper network architecture,
further improving SR performance through residual learning. EDSR [30] enhanced recon-
struction quality by eliminating redundant batch normalization layers. Although these
deep learning-based approaches substantially improve image reconstruction, particularly
in restoring high-frequency details, their high computational demands limit their feasibility
on resource-constrained devices.

2.3. Lightweight Super-Resolution Methods

To balance reconstruction quality with computational complexity, researchers have
developed various lightweight SR models. For instance, MobileNet [48] and ShuffleNet [49]
significantly reduce model parameters and computational overhead by leveraging depth-
wise separable convolutions and group convolutions, making them well-suited for resource-
constrained environments such as mobile devices. Additionally, some approaches have
incorporated channel attention mechanisms, such as SENet [50], to further enhance model
efficiency and performance. While these lightweight models exhibit strong performance
under resource limitations, they still face challenges in accurately reconstructing com-
plex scenes.

2.4. Channel and Spatial Attention Mechanisms

The attention mechanism is instrumental in enhancing the feature extraction capabil-
ities of SR networks. Channel attention mechanisms improve reconstruction quality by
assigning importance to feature maps across channels, allowing the network to focus on
critical features [50]. In contrast, spatial attention mechanisms emphasize distinct spatial
regions of the image, thereby further enhancing the network’s ability to capture localized
features [51]. The integration of these mechanisms into lightweight SR models significantly
enhances both their efficiency and performance.

2.5. Application of Large-Kernel Convolutions

Large-kernel convolutions have gained increasing attention in computer vision tasks
in recent years. By expanding the receptive field, they can more effectively capture global
information of images. For lightweight super-resolution tasks, researchers have proposed
decomposing large-kernel convolutions into multiple small-kernel convolutions, combining
them with dynamic convolutions and group convolutions to achieve efficient feature
extraction [52,53]. These methods significantly improve the recovery of image details while
maintaining low computational complexity, but further optimization of the application of
large-kernel convolutions in super-resolution tasks remains an open question.

2.6. Summary

Although considerable advancements have been made in enhancing image super-
resolution quality and reducing computational complexity, further performance improve-
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ments are needed for more complex scenarios. The ADSCPN model introduced in this
paper establishes a novel balance between image reconstruction quality and computa-
tional efficiency by integrating large-kernel parallel convolutions, dynamic convolutions,
and both channel and spatial attention mechanisms. Compared to existing approaches,
ADSCPN excels across multiple benchmark tests, showcasing its substantial potential for
application, particularly in resource-constrained environments.

3. Methodology

This section provides an in-depth examination of the proposed ADSCPN model. We
commence by defining the relevant notations and problem. Subsequently, we present a
detailed description of each model component. The section concludes with a discussion of
the model optimization algorithm.

3.1. Notations and Problem Definition

Notations. Without loss of generality, the lightweight image SR is aiming to reconstruct
a high-resolution (HR) image IHR from its low-resolution (LR) counterpart ILR. We denote
the input low-resolution image as ILR ∈ RH×W×C, where H, W, and C represent the height,
width, and number of channels of the image, respectively. The high-resolution image is
denoted as IHR ∈ RrH×rW×C, where r is the scaling factor. Let Fenc be the encoded shallow
features extracted from the input LR image ILR using a shallow feature extraction function
fenc(·), and FK represents the deep features processed through K feature processing blocks.
The output SR image ISR is obtained after passing through a series of upsampling and
reconstruction layers. Additionally, Fproj and Fspat represent the features processed by the
channel projection block and the spatial attention block, respectively. The attention weights
computed for the spatial features are denoted by Aspat. For readability, the notations
frequently used in this paper are summarized in Table 1.

Table 1. The summary of frequently used notations.

Notation Definition

ILR Low-resolution input image
IHR High-resolution target image
ISR Super-resolution output image

r Scaling factor
H, W, C Height, width, and channels of the image

Fenc Shallow feature maps extracted from ILR
FK Deep features after processing through K blocks

Fproj Features after channel projection
Fspat Features after spatial attention block
Aspat Attention weights for spatial features

Problem Definition. Given a training dataset D = {(I(i)LR, I(i)HR)}N
i=1, where N is the

total number of training samples, our goal is to learn a mapping fθ(·; θ) that transforms the
low-resolution image ILR into a high-resolution image ISR such that the difference between
ISR and the ground-truth high-resolution image IHR is minimized. The objective function
is the average loss over D:

min
θ

1
N

N

∑
i=1

L(I(i)HR, fθ(I
(i)
LR; θ)). (1)

This optimization process ensures that the learned model fθ(·; θ) is capable of generat-
ing high-quality super-resolution images with low computational complexity, making it
suitable for deployment on resource-constrained devices.
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3.2. Architecture of ADSCPN

The architecture of ADSCPN is illustrated in Figure 1, comprising three primary com-
ponents. Given an input low-resolution image ILR, the model first processes it through a
shallow feature encoder, fenc, which consists of a single 3 × 3 convolutional layer. The re-
sulting feature map, denoted as Xenc = fenc(ILR) is subsequently passed through K Feature
Processing Blocks, denoted as fFE, which incorporate an innovative combination of large-
kernel parallel depthwise separable convolutions, attention mechanisms, and grouped
convolutions. Following this, the features are processed by a single 3 × 3 convolutional
layer, f3×3, integrated with a residual connection. The final stage involves the upsampling
module, fUP, which is consistent with the structure outlined in Section 3. This module
utilizes pixel shuffle operations and 3 × 3 convolutional layers to reconstruct the super-
resolution image ISR with the desired scaling factor. The entire process is mathematically
formalized as follows:

ISR = f3×3

(
fUP

(
Xenc + f3×3

(
f K
FE

(
f K−1
FE

(
. . . f 1

FE(Xenc)
)))))

. (2)

Figure 1. The architecture of ADSCPN.

3.3. Feature Processing Block

The Feature Processing Block, depicted in Figure 2, is composed of several novel mod-
ules: the Channel Processing Block (CPB), Feature Extraction Block (FEB), Point-Attention
Convolution Group (PACG), and Efficiently Enhanced Spatial Attention (EESA) module.
These modules collaboratively perform channel projection and feature shuffle attention
learning, effectively enhancing feature extraction, calibration, and spatial augmentation.
A residual structure is integrated before and after the Feature Extraction Block to stabilize
the training process and facilitate the recovery of low-frequency textures.

Figure 2. The structure of the Feature Process Block (FPB).

The input to the i-th Feature Processing Block is denoted as Xi. The channel processing
block (CPB) is designed to project and shuffle spatial features, thereby enhancing deep
feature extraction while maintaining computational efficiency. The input is subsequently
passed through a 3 × 3 convolutional layer and a residual structure, further refining deep
feature representations and supporting shallow feature processing. The output is then
fused with the original input, followed by parallel operations involving a 1 × 1 convolution
and the Efficiently Enhanced Spatial Attention (EESA) module, which calibrates the spatial
features by focusing on the most salient information. The computational flow can be
formalized as follows:

Xi+1 = Xi + fEESA( f1×1( fCPB(Xi) + fR( fFE(Xi + fCP(Xi))))). (3)
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3.3.1. Channel Processing Block

The channel processing block (CPB) is the first component of the feature processing
block. It is composed of a point-wise multi-layer perceptron (PW-MLP), a 3× 3 convolution,
and Shuffle Attention, focusing on extracting information from feature channels and spatial
dimensions, as shown in Figure 3. The multi-layer point-wise perceptron projects and
activates important low-frequency feature information from the input channels through
expansion and contraction operations, thereby enhancing the channel features. The 3 × 3
convolution further activates the channel features and extracts deep local spatial informa-
tion. The learned features are then fed into the Shuffle Attention module, where grouped
channel features are processed. The module calculates attention within and across chan-
nels and spatial dimensions, enhancing the efficiency of the attention computation while
promoting information fusion and interaction among grouped features. Since the Shuffle
Attention block can easily lose part of the feature information, residual connections are
added around the channel processing block to supplement shallow features.

Figure 3. The structure of the channel processing block (CPB).

As the first component of the channel processing block, the PW-MLP facilitates the
encoding of spatial information within channels, activates channel features, and lays the
foundation for subsequent local feature extraction and channel-wise grouped shuffle at-
tention learning. As shown in Figure 4, it is composed of a 1 × 1 convolution, a GeLU
activation function, and another 1 × 1 convolution in sequence. Given an output fea-
ture map of size H × W × C, the channel expansion factor is denoted as ϕ. The channel
dimension undergoes expansion and contraction processing to activate the channel fea-
tures. After processing by the first 1 × 1 convolution, the feature map size is expanded as
H × W × C × ϕ, which is then reduced by the subsequent 1 × 1 convolution to restore the
original size. In our solution, the expansion factor ϕ is set to 2.

Figure 4. The structure of point-wise multi-layer perceptron (PW-MLP).
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3.3.2. Feature Extraction Block

The structure of the newly designed feature extraction block is shown in Figure 5.
The first component is a large-kernel parallel convolution processing unit, consisting of
a 1 × 7 depthwise separable convolution, a 7 × 1 depthwise separable convolution, and a
1 × 1 group convolution. The input to this block, X′, is the low-frequency feature map
generated by the CPB module. The 1 × 7 and 7 × 1 convolutions process the same input to
capture local features in both horizontal and vertical directions, enhancing the extracted
image features while filling in nearby spatial details. This design improves the network’s
ability to capture local features and strengthens relationships between surrounding pixels.
Compared to a single 7 × 7 depthwise separable convolution, this unit delivers a more
robust performance.

Figure 5. The structure of the feature extraction block (FEB).

Following the large-kernel parallel convolution processing, the two branches are fused
into a single output, denoted as FBP. This output is activated by the GeLU function and
passed through a 1 × 1 group convolution to further enhance feature aggregation and
learning efficiency. The processed feature map, FBP, is then fed into a dynamic convolution
with four adjustable convolutional kernels. By modulating the convolutional kernels and
adaptively adjusting parameters, this dynamic convolution balances computational cost
while significantly improving representational capacity. The output, denoted as XFE, is
subsequently refined through a 1 × 1 group convolution, activated by GeLU, and followed
by a channel shuffle for final feature aggregation. This output is then fused with the original
input and processed by fshu f f le to facilitate grouped feature interaction and aggregation.
This process effectively refines the image’s high-frequency features, promoting stable
gradient flow and enhancing overall model performance. The entire process of the feature
extraction block (FEB) can be expressed as follows:

FBP = f1×7,Dwconv(X′) + f1×1,Gconv(X′) + f7×1,Dwconv(X′), (4)

XBP = f1×1,Gconv(GeLU(FBP)), (5)
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XFE = X′ + fshu f f le
(

f1×1,Gconv
(
GeLU

(
fDynamic(XBP)

)))
. (6)

3.3.3. Point-Attention Convolution Group

Similar to EDSR [30], where the model is primarily composed of residual blocks
interconnected by 3 × 3 convolutions and activation functions, we introduce a novel point-
attention convolution group placed at the end of the feature processing block to further
deepen the network. This component performs weighted learning on the deep features
processed by the convolution group, enhancing and refining them after convolutional
processing. To mitigate potential feature loss during deep model training, these refined
features are merged with the output of the convolution group. The convolution group
comprises two 3 × 3 convolutional layers connected in series, as depicted in Figure 6.
The original input XFE passes through the convolution group, producing an intermediate
output XRB. This is followed by a point-attention block, consisting of a 1 × 1 convolution
and a Sigmoid activation function, which learns attention weights for the deep features,
extracting the most significant ones. The attention-weighted deep features, denoted as
Xi, are multiplied with XRB to calibrate the convolutional output and minimize feature
loss, resulting in the enhanced deep semantic features X′

RB. Finally, the enhanced features
are fused with the original XRB to produce the final output, X′′

RB. The entire process is
mathematically expressed as follows:

XRB = f3×3( fReLU( f3×3(XFE))), (7)

Xi = fSigmoid( f1×1(XRB)), (8)

X′
RB = XRB × Xi, (9)

X′′
RB = XRB + X′

RB. (10)

Figure 6. The structure of the point-attention convolution group (PACG).

3.3.4. Efficiently Enhanced Spatial Attention

The lightweight Enhanced Spatial Attention (ESA) module [38], frequently employed
in various lightweight super-resolution models, enhances feature representation capabilities
while maintaining efficiency and ease of integration. As depicted in Figure 7a, the ESA
architecture includes a 1 × 1 convolution for channel dimension reduction, followed by a
3 × 3 convolution and a max pooling layer with a large receptive field, before upsampling
back to the original resolution. Subsequently, a 1 × 1 convolution is applied to restore the
original channel dimensions, and the output is processed through a Sigmoid activation
function to generate the spatial attention map. The ESA has been further optimized into the
Efficiently Enhanced Spatial Attention (EESA) module [54], as shown in Figure 7b. In this
modified version, the 3 × 3 convolution and upsampling operations are replaced with
a single 3 × 3 convolution, effectively reducing and recovering the channel dimensions
without the need for additional convolutions in the residual connection. This adjustment
reduces computational complexity while preserving essential feature details. Additionally,
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a pooling layer with a 7× 7 window size and a stride equivalent to the original max pooling
layer is introduced to further expand the receptive field. Despite its simplified design, this
lightweight version maintains a comparable performance level to the original ESA module
with minimal impact on accuracy.

Figure 7. ESA and EESA module structure comparison. (a) Original ESA block. (b) EESA block.

3.4. Optimization

The optimization procedure of the ADSCPN is outlined in Algorithm 1. Initially,
the training dataset undergoes preprocessing, followed by data augmentation to enhance
the training scale. Key hyperparameters, including training epochs, batch size, number of
iterations, and learning rate, are configured, along with a reduction in the total number
of epochs. Subsequently, the model parameters are initialized. As training progresses,
learning rate decay is applied based on the current epoch number and iteration count.

For each batch, a fixed number of high-resolution and low-resolution image pairs
are input into the model for feature extraction. During this phase, shallow features are
encoded, and deep semantic features are extracted. The features are then fused to generate
comprehensive semantic representations of the images. The upsampling module recon-
structs the corresponding super-resolution images. The L1 loss is computed between the
reconstructed super-resolution images and their corresponding high-resolution ground
truth. Model parameters are iteratively updated using the Adam optimizer through back-
propagation. This process continues until the optimal model is achieved and is validated
through performance metrics.
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Algorithm 1 The pseudo-code of ADSCN Algorithm

Input: Training dataset D; training period T; batch size N; image crop size P; number of
iterations I; learning rate η; model channel C; number of groups G; number of feature
processing blocks N f ; batch size N, with each batch size as [N, channels, height, width];

Output: Super-resolution image ISR; model parameters θ
1: Initialize the training environment, crop high-resolution images from the training

dataset into low-resolution images based on the crop size P, and adjust the channels.
2: Calculate the number of image blocks M required according to the iteration I and batch

size N.
3: Construct a list of corresponding high-resolution and low-resolution image blocks

[[I1
LR, I1

SR], . . . , [Im
LR, Im

SR]].
4: Build the ADSCPN model, set the convolution kernel size, input channels as C, build

the upsampling module based on the scale factor, stack N f feature processing blocks,
and initialize the model parameters θ.

5: for each t = 1 to I do
6: Adjust the learning rate;
7: for each pair of high-resolution and low-resolution image blocks t = 1 to N do
8: Feed the low-resolution image ILR into ADSCPN, perform feature extraction and

multiple feature processing blocks, and obtain the corresponding super-resolution
image ISR;

9: Calculate the loss function L between the generated super-resolution image ISR
and the corresponding high-resolution image IHR;

10: end for
11: Update model parameters θ using the Adam optimizer and backpropagation;
12: if convergence is reached then
13: break;
14: end if
15: end for

4. Experiment

This section outlines a comprehensive experimental evaluation conducted on several
standard benchmark datasets. We begin by detailing the experimental setup, encompassing
the datasets utilized, evaluation metrics, baseline models, and implementation specifics.
Following this, we present a performance analysis derived from multiple experimen-
tal groups.

4.1. Dataset

To comprehensively evaluate the performance of the proposed super-resolution
model, a series of experiments were conducted using several widely-recognized datasets.
The DIV2K dataset [55] was employed for model training, while evaluations were per-
formed on standard benchmark datasets, including Set5 [56], Set14 [57], B100 [58], and Ur-
ban100 [59]. Furthermore, to assess the model’s robustness under diverse real-world condi-
tions, we incorporated blind super-resolution datasets such as DIV2KRK [60], DRealSR [61],
and RealSR [62]. These datasets provide varying levels of real-world complexity, with
DRealSR and RealSR capturing real-world noise and degradation processes, making them
more challenging than the original benchmark datasets like Set5 [56] and B100 [58], which
primarily consist of controlled synthetic degradations. We provide a brief introduction to
these datasets below:

• DIV2K. The DIV2K dataset comprises 1000 high-resolution images, characterized by a
rich variety of features and diverse scene categories, including environments, humans,
and other objects. For experimental purposes, the first 800 images are designated
for training, images 801–900 are allocated to the validation set, and the remaining
100 images are reserved for performance evaluation. Each image in the dataset has a
native 2 K resolution, accompanied by corresponding low-resolution images generated
through the application of various degradation kernels, such as Gaussian white noise.
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This dataset is widely utilized for training and benchmarking super-resolution models
due to its diversity and high-quality annotations.

• Set5 and Set14. The Set5 and Set14 datasets are among the earliest small-scale bench-
marks introduced in the field of image processing. Set5 contains 5 images, while Set14
consists of 14 images, both encompassing a mix of human subjects and natural scenes.
Despite their limited size, these datasets remain widely used for testing and validation
purposes, offering a convenient and efficient means of assessing model performance,
particularly in super-resolution tasks.

• B100. The B100 dataset comprises 100 images depicting a variety of subjects, including
animals, plants, and real-world scenes. While offering a diverse range of content,
the images in this dataset are relatively small in resolution and exhibit less detailed
textures compared to other high-resolution benchmarks, making it a useful resource
for evaluating super-resolution models under more constrained conditions.

• Urban100. The Urban100 dataset contains 100 high-resolution images, specifically
focused on capturing intricate details of urban architecture. These images provide
complex structural patterns and fine-grained textures, making the dataset particularly
challenging and suitable for evaluating the performance of super-resolution models
on architectural and man-made scenes.

• DRealSR and RealSR. The RealSR and DRealSR datasets are created using DSLR
cameras with multiple zoom levels, varying aperture settings, and different lens focal
lengths to simulate signal noise introduced during the degradation process. An image
registration algorithm is employed to precisely align high- and low-resolution image
pairs. These datasets encompass a wide range of scenes, including natural landscapes,
architectural structures, as well as human and animal subjects. Both datasets are
widely used for real-world image super-resolution reconstruction tasks, providing
realistic and challenging conditions for model evaluation.

4.2. Evaluation Metrics

Quantitative evaluation of the model’s performance was carried out using the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics [63], en-
suring a thorough comparison of the model’s accuracy and perceptual quality across
different datasets.

PSNR is a widely used metric for evaluating the quality of reconstructed images at
the pixel level by measuring the pixel-wise differences between two images. A higher
PSNR value indicates that the reconstructed super-resolution image is closer to the original
high-resolution image, suggesting improved reconstruction accuracy. However, PSNR
does not account for structural differences or human visual perception, which can lead to
high PSNR values even when the reconstructed image visually deviates from the original,
particularly in local regions. To compute PSNR, the Mean Squared Error (MSE) between
two images, I1 and I2, must first be calculated, where W and H represent the width and
height of the image, respectively. The mathematical expression for MSE is given by:

MSE =
1

H × W

H

∑
i=1

W

∑
j=1

(I1(i, j)− I2(i, j))2. (11)

The PSNR metric is then calculated as follows:

PSNR = 10 log10

(
(2n − 1)2

MSE

)
, (12)

where 2n − 1 represents the maximum possible pixel value in the image, with n = 8 for
typical grayscale images. For RGB images, the calculation is performed only on the Y
channel after converting the image to the YCbCr color space.

SSIM evaluates the overall structural similarity between the reconstructed super-
resolution image ISR and the original high-resolution image IHR. SSIM is computed by
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considering three key components: luminance similarity, contrast similarity, and structural
similarity. The SSIM value ranges from 0 to 1, with values closer to 1 indicating that the
reconstructed image exhibits greater structural similarity to the original high-resolution
image. Thus, a higher SSIM value reflects a more accurate representation of the original
image’s structural content. Assume that both ISR and IHR images contain N pixels. First,
the average luminance µ and standard deviation σ of each image I are calculated to quantify
the luminance and contrast. Then, the normalized image I′, which quantifies the structural
information, is computed using the following formulas:

µ =
1
N

N

∑
i=1

I(i), (13)

σ =

√√√√ 1
N − 1

N

∑
i=1

(I(i)− µ)2, (14)

I′(i) =
I(i)− µ

σ
, i ∈ [1, .., N]. (15)

Next, the luminance similarity l, contrast similarity c, and structural similarity s are calcu-
lated. These are expressed as follows:

l =
2µHRµSR + c1

µ2
HR + µ2

SR + c1
, (16)

c =
2σHRσSR + c2

σ2
HR + σ2

SR + c2
, (17)

s =
σHR,SR + c3

σHRσSR + c3
, (18)

where µHR and µSR represent the mean luminance of the original high-resolution image
and the super-resolution result, respectively. σHR and σSR represent the standard deviations,
while σHR,SR represents the covariance between the original high-resolution image and the
super-resolution result. c1, c2, and c3 are constants introduced to avoid division by zero.
Finally, the SSIM value is calculated as:

SSIM = lαcβsγ, (19)

where α, β, and γ are parameters that adjust the importance of luminance, contrast,
and structural details in the calculation. These parameters are typically set to 1.

4.3. Baselines and Implementation Details

Baseline. We compared ADSCPN with several baselines, including Bicubic [46], SR-
CNN [27], FSRCNN [26], VDSR [34], DRCN [28], DRRN [29], CARN-M [35], CARN [35], Mem-
Net [64], LapSRN [65], IDN [36], MADNet [66], ECBSR (Edge-oriented Convolution Block
for Real-time Super-Resolution) [67], and FALSR-A (Fast, Accurate, and Lightweight Super-
Resolution) [68]. These methods were chosen as they represent state-of-the-art lightweight and
efficient super-resolution techniques, covering a diverse range of architectures from early
CNN-based methods (e.g., SRCNN [27], VDSR [34]) to more recent lightweight models
(e.g., CARN [35], MADNet [66]), providing a comprehensive benchmark for comparison.

Implementation Details. During the training process, the Adam optimizer was used
to update the network parameters, with hyperparameters configured as follows: β1 = 0.9,
β2 = 0.999, ϵ = 10−8, and the initial learning rate of 5 × 10−4. The batch size was set
to 16, and the L1 loss function was employed as the model training loss criterion. All
experiments were conducted on a workstation equipped with an Intel(R) Core i9-12900K
3.9 GHz CPU, 128 GB of RAM, 1 TB SSD storage, 2 TB HDD storage, and dual NVIDIA
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GeForce RTX 3090 GPUs, operating under Ubuntu 18.04.1. The implementation of all
techniques was carried out using Python 3.6 and PyTorch 1.8.1.

4.4. Performance Evaluation
4.4.1. Model Parameter Analysis

This section examines the influence of hyperparameter configurations, such as learning
rate, number of layers, and batch size, on the performance of the ADSCPN model. We
conducted extensive experiments to understand how these hyperparameters impact the
convergence speed, stability, and final quality of the reconstructed images.

The learning rate plays a critical role in training deep models effectively. In our ap-
proach, we employed a staged-halving learning rate schedule to guide the training process.
During the initial stages, a higher learning rate was used to accelerate the convergence,
enabling the model to quickly capture general patterns in the data. As training proceeded,
the learning rate was halved at specific intervals to gradually slow down the learning
process. This staged reduction helped stabilize the training, allowing the model to refine
its parameters and converge to better local optima. This strategy proved effective, as it
balanced fast convergence at the beginning with careful parameter tuning towards the end,
leading to consistent improvements in PSNR and SSIM values across all test datasets.

We conducted an ablation study to determine the optimal number of Feature Process
Blocks (also referred to as “layers”) in the model. As illustrated in Figure 8a, increasing the
number of Feature Process Blocks initially led to significant improvements in PSNR on the
B100 test set, establishing a positive correlation between model depth and reconstruction
quality. However, when the number of blocks exceeded 6, the performance gains began
to plateau, indicating diminishing returns. Based on these findings, we selected 6 blocks
as the optimal configuration, which strikes a balance between model complexity and
performance enhancement. Increasing the number of blocks beyond 6 resulted in increased
computational costs without notable improvements, thus establishing 6 blocks as the
best trade-off.

Figure 8. The impact of different settings on quantitative PSNR performance. (a) The number of
Feature Process Blocks. (b) The number of model channels.

Figure 8b presents PSNR results for the Set5 test set, which demonstrates that increas-
ing the number of channels improves reconstruction quality. However, as the number
of channels surpasses 64, the performance gains become less pronounced, indicating a
performance plateau. Given the increased complexity and computational burden of using
more channels, we determined that 48 channels provide an optimal balance between recon-
struction quality and model efficiency, as summarized in Table 2. This selection reduces
computational requirements while maintaining high-quality output.
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Table 2. Quantitative comparison of ADSCPN with different group numbers.

Group Number
Parameters MACs Set5 Set14 B100

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM

2 762 651 37.92/0.9603 33.45/0.9165 32.10/0.8987
4 703 597 37.88/0.9602 33.44/0.9170 32.10/0.8989
6 684 579 37.90/0.9602 33.44/0.9169 32.10/0.8988
8 674 570 37.90/0.9602 33.51/0.9174 32.11/0.8990

The batch size used during training affects both the stability and efficiency of the
optimization process. Inspired by hyperparameter settings from well-established super-
resolution models like EDSR and RCAN, we experimented with different batch sizes and
concluded that a batch size of 16 was ideal for ADSCPN. This value provided a good trade-
off between convergence stability and GPU memory utilization, allowing efficient training
without compromising on model quality. While larger batch sizes provided more stable
gradient estimates, the performance gains diminished, and smaller batch sizes resulted in
higher variance in gradients, which led to less stable training dynamics.

Furthermore, we analyzed the effect of the number of groups within the architecture
through experiments involving the division of convolutional groups within the ADSCPN
network. As reported, the model achieves optimal performance on the Set5 test set when
configured with 8 groups. Increasing the number of groups further leads to reduced model
parameters and a smaller memory footprint but with diminishing performance gains. Thus,
we established 8 groups as the optimal configuration to balance between model complexity
and overall performance.

These findings provide clear guidance for the optimal hyperparameter configuration
of the ADSCPN model. Specifically, the staged-halving learning rate schedule allows for
both rapid initial convergence and stable parameter refinement, while the chosen number
of Feature Process Blocks, channels, and groups ensures that the model remains computa-
tionally efficient without sacrificing performance. A batch size of 16 further guarantees a
smooth training process, optimizing GPU utilization and stability. These hyperparameter
choices effectively balance learning efficiency, generalization, and practical deployment
feasibility, making ADSCPN suitable for high-quality image reconstruction tasks.

4.4.2. Quantitative Experimental Results Comparison

In this section, we compare the performance of the proposed model with several
popular and effective methods on standard single-image super-resolution benchmark
datasets across various scaling factors. The specific results are summarized in Tables 3–5,
where the best and second-best average PSNR and SSIM values are highlighted in bold
and underlined , respectively. The comparative methods include Bicubic [46], SRCNN [27],
FSRCNN [26], VDSR [34], LapSRN [65], DRCN [28], DRRN [29], CARN-M [35], CARN [35],
MemNet [64], IDN [36], MADNet [66], ECB-SR [67], LINF [69], FPL [70] and FALSR-A [68].
The results are averaged from the data reported in the respective studies.

When the scaling factor is set to 2, the ADSCPN-plus model consistently achieves either
the best or second-best performance across all datasets. In particular, for scaling factors of
3× and 4×, the ADSCPN model surpasses the ECB-SR and FALSR-A methods, especially
on the Urban100 dataset, which features more complex scenes, where it attains the highest
performance. Notably, the PSNR and SSIM values for ADSCPN-plus are significantly
higher than those of competing methods at scaling factors of 3× and 4×, with an average
PSNR increase exceeding 0.02 dB for ADSCPN-plus at a scaling factor of 3. Furthermore,
both ADSCPN and ADSCPN-plus outperform other methods on the Urban100 and Set14
datasets in terms of PSNR at a scaling factor of 3×. It is important to highlight that the
model is updated with only 1600 batches per epoch, resulting in a remarkably short training
time while achieving these performance metrics. This demonstrates the effectiveness,



Electronics 2024, 13, 4613 16 of 28

as well as the theoretical and practical value of the model as a lightweight solution for
super-resolution tasks.

Table 3. Quantitative comparison of methods with scale factor 2.

Method Scale Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403
SRCNN ×2 36.66/0.9542 32.42/0.9063 31.36/0.8964 29.50/0.8946
FSRCNN ×2 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9009
VDSR ×2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140
LapSRN ×2 37.52/0.9591 32.99/0.9134 31.80/0.8952 30.41/0.9100
DRCN ×2 37.63/0.9588 32.98/0.9130 31.85/0.8942 30.75/0.9133
DRRN ×2 37.74/0.9591 33.23/0.9145 32.05/0.8973 31.23/0.9188
CARN ×2 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
MemNet ×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
IDN ×2 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
FALSR-A ×2 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256
LINF ×2 37.49/— 33.38/— 32.16/— 31.22/—
FPL ×2 35.73/ 0.9509 31.59/0.9059 30.75/0.9022 30.46/0.9257
ADSCPN ×2 37.84/0.9600 33.42/0.9165 32.06/0.8983 31.67/0.9238
ADSCPN-plus ×2 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262

Table 4. Quantitative comparison of methods with scale factor 3.

Method Scale Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
SRCNN ×3 32.75/0.9090 29.30/0.8203 28.41/0.7863 26.24/0.8090
FSRCNN ×3 33.06/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080
VDSR ×3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN ×3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
DRRN ×3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
IDN ×3 34.11/0.9253 30.13/0.8360 29.01/0.8013 27.40/0.8359
CARN-M ×3 33.99/0.9245 30.08/0.8352 28.91/0.8000 27.47/0.8371
MemNet ×3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
MADNet ×3 34.16/0.9253 30.21/0.8398 29.08/0.8023 27.82/0.8423
LINF ×3 33.94/— 29.84/— 28.55/— 28.39/—
ADSCPN ×3 34.21/0.9252 30.22/0.8398 28.99/0.8024 27.81/0.8444
ADSCPN-plus ×3 34.23/0.9258 30.24/0.8399 29.10/0.8033 28.78/0.8463

Table 6 presents the quantitative evaluation results for scaling factors of 2× and 4×
on the DIV2KRK dataset [60]. The best performances are highlighted for clarity. Notably,
despite the lightweight complexity of the proposed model, it achieves super-resolution
performance comparable to that of more complex architectures, particularly at a scaling
factor of 4×. The PSNR and SSIM values for ADSCPN-plus with a patch size of 192 are
25.65 dB and 0.6940, respectively, which are slightly superior to the results of ADRBN under
the same training conditions, showing a difference of 0.01 dB and 0.0004. Additionally,
Table 7 provides the quantitative results for the model trained on the DIV2K dataset [71]
and tested across various scaling factors on the DRealSR [61] real-world scenario test set.
Furthermore, Table 8 displays the quantitative evaluation results across different scaling
factors following retraining and testing on the RealSR dataset [62].
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Table 5. Quantitative comparison of methods with scale factor 4.

Method Scale Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
SRCNN ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221
FSRCNN ×4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280
VDSR ×4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
LapSRN ×4 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562
DRCN ×4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
DRRN ×4 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
IDN ×4 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
CARN-M ×4 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
MemNet ×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
MADNet ×4 31.93/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746
ECBSR ×4 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.53/0.7773
LINF ×4 31.70/— 27.54/— 26.62/— 25.15/—
FPL ×4 30.39/0.8805 26.91/0.7688 26.29/0.7393 24.78/0.7880
ADSCPN ×4 32.04/0.8929 28.50/0.7793 27.52/0.7339 25.95/0.7812
ADSCPN-plus ×4 32.12/0.8940 28.49/0.7794 27.53/0.7345 25.98/0.7823

Table 6. Quantitative comparison of methods on the DIV2KRK test set.

Method
×2 ×4

PSNR/SSIM PSNR/SSIM

Bicubic 28.69/0.8058 25.38/0.6822
ADSCPN-plus 29.19/0.8227 25.65/0.6940
EDSR(192) 29.21/0.8234 25.66/0.6945
ADRBN-plus 29.21/0.8233 25.66/0.6944

Table 7. Quantitative results on the DRealSR test set.

Method
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 32.67/0.9060 31.51/0.8700 30.56/0.8595
ADSCPN-plus 32.82/0.9089 31.60/0.8727 30.62/0.8611

Table 8. Quantitative comparison of methods on the RealSR test set.

Method
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 31.67/0.8865 28.63/0.8085 27.23/0.7637
ADSCPN-plus 34.01/0.9225 30.88/0.8465 29.27/0.8255

4.4.3. Qualitative Results Comparison

To evaluate the visual quality of reconstructed images generated by different models,
localized regions from the test set results were enlarged to facilitate direct visual inspection
of the image detail reconstruction. The comparison methods include Bicubic [46], Lap-
SRN [65], CARN-M [35], IDN [36], and the proposed ADSCPN-plus model, with visual
results sourced from official publications for each method.

As illustrated in Figure 9, for the 2× scaling factor, the region highlighted within
the red box of the high-resolution image from the Urban100 test set (“image092”) reveals
processed horizontal lines. In contrast, the areas reconstructed by the three interpolation
methods exhibit significant blurring, with LapSRN [65] displaying the most distorted
slanted lines. In comparison, the proposed model achieves superior visual and quantitative
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results. For the 3× scaling factor, an enlarged region from the high-resolution image in
the B100 test set (“img063”) demonstrates that the model effectively retains the brightness
in the eye region, exhibiting sharper edges compared to the high-resolution images. At a
4× scaling factor, the enlarged image region in the Urban100 test set (“image044”) reveals
that the building edges are processed more accurately, resembling high-resolution images,
while other methods produce blurred edges. The proposed model successfully captures
texture patterns closer to those of the high-resolution images, underscoring its effectiveness
in handling complex scenes. Figure 10 presents the results from the DIV2KRK, DRealSR,
and RealSR datasets, further demonstrating the model’s ability to generalize across different
datasets and maintain high-quality reconstructions.

Figure 9. Visual comparison of the results for different methods.
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Figure 10. Visual comparison of different super-resolution methods on the DRealSR, DIV2KRK,
and RealSR datasets.

4.4.4. Model Complexity

In this section, we analyze the model complexity of ADSCPN in terms of FLOPs (Float-
ing Point Operations) and MACs (Multiply-Accumulate Operations). FLOPs represent the
total number of floating-point calculations needed by the model, which directly reflects the



Electronics 2024, 13, 4613 20 of 28

computational power required. MACs are a measure of the model’s efficiency, representing
the number of times two numbers are multiplied and added, a critical metric for evaluating
computational load in deep learning models. These metrics are particularly important for
understanding the model’s suitability for resource-constrained environments.

When the scaling factor is set to 2 and the input image size is 3× 1280× 720, the model’s
complexity was calculated using the ‘thop’ library and compared against several estab-
lished models, including SRCNN [27], VDSR [34], LapSRN [65], DRCN [28], DRRN [29],
MemNet [64], CARN [35], MADNet [66], and FALSR-A [68]. The comparison focuses on
model parameters (Flops) and multiply-accumulate operations (MACs), which estimate
the memory requirements and computational costs of the models. As demonstrated in
Table 9, the proposed model exhibits significantly fewer parameters compared to MADNet,
FALSR-A, and CARN, while maintaining a comparable level of performance. Although the
model prioritizes convolution operations and consequently incurs a higher number of
multiply-accumulate operations, the overall computational load remains relatively manage-
able for hardware devices. This characteristic renders the model well-suited for real-time
applications on embedded mobile devices.

Table 9. Comparison of model parameters and MACs.

Method Parameters (K) MACs (G)
SRCNN 57 53
VDSR 665 613
LapSRN 813 30
DRCN 1774 17,974
DRRN 297 6797
MemNet 677 2662
CARN 1592 223
MADNet 878 187
FALSR-A 1021 235
Ours 674 570

4.5. Ablation Analysis

To substantiate the rationale behind the design of each component within the fea-
ture processing block and to assess the effectiveness of these components in achieving
high-quality reconstruction, we will conduct ablation experiments. These experiments
will validate each component individually and investigate the impact of their combined
presence on quantitative performance.

4.5.1. Effectiveness of Large-Kernel Parallel Convolution Groups

The large-kernel parallel depthwise separable convolution group plays a crucial role in
enhancing the receptive field without significantly increasing the computational complexity.
It is composed of a 1 × 7 depthwise separable convolution, a 1 × 1 group convolution,
and a 7× 1 depthwise separable convolution, which together enable efficient spatial feature
learning. Specifically, the 1 × 7 and 7 × 1 convolutions separately learn features along the
horizontal and vertical axes, which enhances the 1 × 1 convolution’s ability to integrate
these directional features effectively.

Compared to traditional 3 × 3 convolutions often employed in lightweight models,
the large-kernel parallel structure significantly expands the receptive field, enabling the
model to capture more global contextual information while maintaining a lightweight ar-
chitecture. This structure provides a richer and more detailed spatial feature representation,
leading to improved feature extraction capability.

Unlike a single 7 × 7 depthwise separable convolution, which may introduce more
computational burden and inefficiencies, the large-kernel parallel group processes the
input using separate directional convolutions. This parallel approach not only maintains
computational efficiency but also improves the model’s ability to capture intricate details,
which is reflected in the enhanced PSNR and SSIM values seen across multiple test datasets.
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The experimental results, summarized in Table 10, demonstrate that the large-kernel
parallel convolution group offers superior performance in comparison to using a single
7 × 7 convolution, especially for the Set5 dataset. This effectiveness can be attributed to
the improved ability to capture directional features and integrate them efficiently. Table 11
further highlights that this convolution strategy achieves a better trade-off between model
complexity and computational cost, which is crucial for achieving high-quality super-
resolution while ensuring the model remains practical for deployment.

Table 10. Comparison of replacing large kernel parallel depthwise convolution with 7 × 7 depthwise
separable convolution.

Convolution
Scale Factor

Set5 Set14 B100 Urban100

Structure PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Large Kernel
Parallel

Depthwise
Separable Conv

Group

×2 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262

7 × 7 Depthwise
Separable Conv ×2 37.92/0.9603 33.43/0.9167 31.10/0.8988 31.86/0.9257

Table 11. Comparison of model complexity between large-kernel parallel depthwise separable
convolution groups and a single 7 × 7 depthwise separable convolution.

Convolution Structure Parameters (K) MACs (G)

Large-Kernel Parallel Depthwise Separable Conv. Group 674 570.07
7 × 7 Depthwise Separable Convolution 732 624.22

4.5.2. Effectiveness of Dynamic Convolution

After applying the large-kernel parallel depthwise separable convolution group, dy-
namic convolution is used to further enhance the model’s ability to extract meaningful
features. Dynamic convolution introduces an adaptive mechanism where the convolutional
filters are adjusted based on the importance of the features, as determined by an embedded
attention mechanism. This attention-driven adaptation ensures that critical regions of the
input receive more focus during processing, thereby significantly enhancing the model’s
capacity to represent and learn from complex image features.

In contrast to standard convolution, which applies static filters across all regions of the
input, dynamic convolution provides a context-dependent filter adaptation that aligns with
the content’s specific characteristics. This capability not only enhances feature extraction
but also allows the model to better capture the nuances in more challenging datasets, such
as Urban100, which contain complex structures and textures.

For this study, the dynamic convolution used a kernel size of 3 × 3. We conducted an
ablation experiment by replacing dynamic convolution with standard 3 × 3 convolution to
evaluate its impact. As shown in Table 12, dynamic convolution consistently outperformed
the standard convolution, particularly for a scale factor of 2, across all test datasets. Notably,
the improvement was most significant on the Urban100 dataset, indicating the model’s
enhanced ability to generalize to complex, real-world scenes.

Table 12. Quantitative comparison of replacing dynamic convolution with 3× 3 standard convolution.

Convolution Structure Scale Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Dynamic Convolution ×2 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262
3 × 3 Conv ×2 37.88/0.9601 33.46/0.9167 32.10/0.8988 31.82/0.9253
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The embedded attention mechanism within dynamic convolution plays a key role in
this performance gain by dynamically highlighting the most informative features while
suppressing less important ones. This selective focus directly contributes to improved
PSNR and SSIM values, thereby enhancing overall reconstruction quality. The adaptive
nature of dynamic convolution, driven by attention, makes it particularly effective for
scenarios where image content varies widely in terms of texture and detail complexity. This
explains its superior performance compared to standard convolution, as evidenced by the
experimental results.

4.5.3. Effectiveness of the Point Attention Convolution Group

The point attention convolution group introduces an attention mechanism aimed at
enhancing the model’s ability to focus on the most critical features of an image, which
significantly impacts overall performance. It improves upon the traditional convolution
group—typically consisting of two 3 × 3 convolution layers with ReLU activation—by
adding an additional branch consisting of a 1 × 1 convolution followed by a Sigmoid
activation. This branch computes attention coefficients for each feature channel, which are
then used to recalibrate the input features dynamically.

The recalibration process ensures that more informative features are amplified while
less significant features are suppressed, allowing the model to allocate its resources more
effectively toward reconstructing key image details. This type of attention mechanism
enables better feature calibration, particularly in deeper layers where important image
features might otherwise become diluted or distorted.

In our experiments, replacing the point attention convolution group with a traditional
convolution group resulted in a noticeable decrease in both PSNR and SSIM values across
all test sets, as shown in Table 13. The most significant performance gains were observed
in datasets with high structural complexity, such as Urban100, demonstrating the point
attention group’s effectiveness in capturing intricate textures and structures.

Table 13. Comparison between point attention convolution group and standard convolution group.

Convolution Structure Scale Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Point Attention Convolution Group ×2 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262
Standard Convolution Group ×2 37.90/0.9601 33.46/0.9169 32.09/0.8986 31.86/0.9256

By dynamically computing and applying attention coefficients, the point attention
convolution group helps the model selectively focus on salient regions of the image, thereby
improving the quality of feature representation. This selective focus, facilitated by the
embedded attention mechanism, directly leads to better feature extraction, less feature
distortion, and improved reconstruction quality. The attention-driven recalibration of
features also ensures that the network learns to prioritize the most critical information,
which is crucial for achieving higher PSNR and SSIM metrics.

4.5.4. Effectiveness of the Efficient Enhanced Spatial Attention Block

The Efficient Enhanced Spatial Attention (EESA) block is a crucial component designed
to improve the model’s ability to focus on spatially important regions while maintaining
computational efficiency. The EESA block is an optimized version of the Enhanced Spatial
Attention (ESA) block, achieved by removing the external 1× 1 convolution and simplifying
the convolution group to a single 3 × 3 convolution. This optimization reduces both model
complexity and computational burden, making it more suitable for lightweight deployment
without sacrificing performance.

The core mechanism of the EESA block is its ability to dynamically highlight spatial
regions that are most important for the reconstruction task. By learning spatial attention
maps that emphasize high-frequency details such as edges and textures, the EESA block
directs the model’s focus to areas with significant structural information. This selective
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focus is essential for achieving high-quality reconstruction, particularly in regions with
complex textures or fine details.

In our ablation studies, we compared the EESA block to the original ESA block to
evaluate its effectiveness. As shown in Table 14, the EESA block not only reduces the
number of parameters and multiply-accumulate (MAC) operations but also maintains
comparable or better performance in terms of PSNR and SSIM across multiple test datasets.
This improvement is largely due to the effective attention mechanism that allows the model
to prioritize spatial regions that contribute the most to image quality.

Table 14. Comparison of model complexity between enhanced spatial attention block and efficient
enhanced spatial attention block.

Spatial Attention Block Parameters (K) MACs (G)
Enhanced Spatial Attention Block 740 574.80

Efficient Enhanced Spatial Attention Block 674 570.07

The simplified architecture of the EESA block enhances computational efficiency while
ensuring that the model retains the ability to focus on crucial spatial features. This efficiency
is particularly beneficial for real-world applications where computational resources are
limited. The attention mechanism within the EESA block plays a key role in guiding the
model to learn meaningful spatial relationships, thereby enhancing the quality of feature
extraction and overall image reconstruction.

4.5.5. Effectiveness of Combined Components

To assess the impact of the combined components within the feature processing block
on the model’s quantitative performance and to validate the rationale and superiority of the
overall structure presented in this section, we conducted an ablation study focusing on the
feature extraction block and the point attention convolution group. Following the previous
ablation experiments that modified individual components, we replaced the large-kernel
parallel depthwise separable convolution group in the feature extraction block with a single
7 × 7 large-kernel depthwise separable convolution, substituted dynamic convolution with
a standard 3 × 3 convolution, and replaced the point attention convolution group with a
standard convolution group.

The specific combinations of components are detailed in Table 15, where “✓” indicates
the inclusion of the component, and “×” signifies replacement with a standard compo-
nent. Optimal performance is highlighted in bold. As shown, except for the Set5 test set,
the model proposed in this section achieves the best quantitative performance overall,
with PSNR and SSIM values on Set14 and Urban100 improving by 0.05 dB and 0.0005,
respectively, compared to the second-best performance, and by 0.01 dB and 0.0001 on B100.
Notably, when all components were replaced with standard components, the performance
on the Urban100 dataset was superior to configurations where only one or two components
were replaced with standard components. This finding demonstrates that the feature pro-
cessing block can effectively learn image features at multiple levels and that the designed
combination of the three components is both indispensable and complementary, resulting
in robust reconstruction performance with reduced model complexity.

Table 15. Quantitative ablation study of different model component combinations.

Large Kernel Parallel Dynamic Point Attention Set5 Set14 B100 Urban100

Depthwise Separable Conv Group Convolution Convolution Group PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

× × × 37.93/0.9602 33.44/0.9166 32.11/0.8989 31.88/0.9257
× × ✓ 37.88/0.9601 33.43/0.9159 32.10/0.8988 31.84/0.9257
× ✓ × 37.88/0.9602 33.46/0.9168 32.10/0.8986 31.82/0.9254
✓ × × 37.88/0.9601 33.46/0.9167 32.09/0.8988 31.80/0.9253
× ✓ ✓ 37.92/0.9603 33.43/0.9167 31.86/0.9257 31.88/0.9258
✓ × ✓ 37.87/0.9601 33.39/0.9161 32.10/0.8986 31.82/0.9252
✓ ✓ × 37.90/0.9601 33.46/0.9169 32.11/0.8986 31.83/0.9256
✓ ✓ ✓ 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262
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4.5.6. Effectiveness of Activation Functions

Incorporating appropriate activation functions can significantly enhance the nonlinear
feature learning capabilities of the model, thereby improving the fidelity of image recon-
struction. This section evaluates the performance of three activation functions: SiLU, GELU,
and ReLU. With the exception of the Point Attention Convolution Group and the Efficient
Enhanced Spatial Attention Block, all other components of the ADSCPN were subjected to
an ablation study to compare the effects of these different activation functions. The quanti-
tative results are summarized in Table 16, which identifies the optimal activation function.
Notably, when the scaling factor is set to 2, the GELU activation function substantially out-
performs the other options on the Set14 dataset, while exhibiting comparable performance
across the remaining datasets. Consequently, GELU is selected as the activation function
for the entire model in this study.

Table 16. Ablation study on activation functions.

Activation Function Scaling Factor
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SiLU ×2 37.91/0.9602 33.45/0.9168 32.10/0.8989 31.88/0.9259
GELU ×2 37.90/0.9602 33.51/0.9174 32.11/0.8990 31.93/0.9262
ReLU ×2 37.91/0.9602 33.42/0.9167 32.12/0.8991 31.94/0.9263

5. Conclusions

Through comprehensive research and analysis in the realm of lightweight image
super-resolution, we propose a novel lightweight super-resolution network founded on a
large-kernel parallel convolution group. The network architecture employs a multi-layer
point-wise perceptron for channel projection and utilizes shuffle attention for effective
channel grouping, thereby enhancing the extraction of deep channel and spatial information
while improving feature learning efficiency. To facilitate deeper feature learning, we
introduce a large-kernel parallel depthwise separable convolution group alongside grouped
convolution. Additionally, the point attention convolution group and efficient enhanced
spatial attention block are integrated to optimize spatial feature learning, supplement
low-frequency information, and enhance deep feature extraction. This design approach
mitigates the distortion of deep features often encountered in deeper networks, significantly
improving the quality of super-resolution images while maintaining low model complexity.
Both quantitative and qualitative experiments, in comparison with existing methods,
demonstrate the superior performance of our proposed approach, while extensive ablation
studies further validate the rationale behind the component configurations.

Despite its promising performance, the ADSCPN model has some limitations, includ-
ing sensitivity to noisy and low-quality inputs, high computational complexity, and lim-
ited generalization in diverse scenarios. These limitations may hinder its deployment in
resource-constrained environments and challenging real-world applications. Future work
will focus on enhancing robustness to noise, optimizing computational efficiency for edge
devices, and expanding training with more diverse datasets to improve generalization.
Such improvements will make ADSCPN more viable for practical applications like mobile
photography, medical imaging, surveillance, and specialized domains.
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CPB Channel processing block
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