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Abstract: The computing network is a novel architecture that enables resource matching through
the network. In distributed computing networks, computing resource management devices collect
resource information and report it to network nodes. These nodes then broadcast the information
to guide resource matching. One challenge is efficiently aggregating and disseminating computing
resource information, as directly reporting fully multi-dimensional data can cause excessive overhead,
while overly simplified aggregation may reduce matching accuracy. Existing aggregation methods
typically rely on static resource information, overlooking the heterogeneity and dynamics of comput-
ing resources that arise from variations in resource capabilities and fluctuations over time, leading to
suboptimal matching decisions. In response, this study proposes a dynamic resource aggregation
method based on statistical capacity distribution. By modeling the capacity distribution of computing
nodes, this method captures dynamic resource information, enabling more precise resource matching.
Additionally, constructing resource groups and calculating representative distributions effectively
compress the volume of data announcements. Experiments and data analysis demonstrate that,
compared to static resource matching methods, the proposed method improves matching accuracy by
48%. Furthermore, it reduces announcement overhead by approximately 77.1% compared to existing
dynamic resource allocation methods. These findings provide an efficient solution for resource
aggregation in distributed computing networks.

Keywords: computing network; computing resource aggregation; computing resource announcement

1. Introduction

With the rapid advancement and widespread application of technologies such as
deep learning and big data, modern society is increasingly embracing digitization and
intelligence. These intelligent applications rely on robust computing resources to process
vast amounts of data. Existing resource pools and computing-capable terminal devices
are deployed in a dispersed manner. There is a lack of effective collaboration mechanisms
between edge computing nodes and between edge nodes and cloud computing nodes,
resulting in low utilization of computing resources. With the advancement of network
technology, especially the maturation of emerging technologies such as Software-Defined
Networking (SDN), Network Function Virtualization (NFV), and Information-Centric Net-
working (ICN), computing resources can be dynamically connected through the network
to enable efficient collaboration among cloud, edge, and terminal devices. To unify the
perception and management of ubiquitously distributed computing resources, the concept
of the “Computing Network” has been proposed [1–5]. Current designs of computing
network architectures [6–8] are primarily categorized into centralized and distributed types,
with the distributed architecture offering notable advantages in terms of reliability and
scalability. In distributed computing networks, resource management devices deployed
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at the network edge collect and organize computing resource information, which is then
reported to network nodes. These nodes distribute the information and create routing
tables constrained by both computing and network resources to guide resource allocation.

However, computing resource management within this framework presents signif-
icant challenges, particularly regarding the granularity of the resource information col-
lected, which directly affects the efficiency of resource allocation. Reporting detailed,
multi-dimensional resource information to the network would lead to excessive data
announcements and expansion of routing table entries [9,10]. Conversely, transmitting
coarse-grained information, such as simple aggregated information, may reduce the accu-
racy of resource matching. Therefore, the key challenge of resource management lies in
how to effectively aggregate computing resource information to reduce data volume while
maintaining accuracy in resource matching.

By unifying the management of widely distributed and diverse computing resources,
the computing network provides robust support for modern intelligent applications. How-
ever, the heterogeneity and dynamics of these resources present new challenges for resource
aggregation. Current research on resource aggregation primarily focuses on multi-cluster
management systems such as Liqo and Karmada [11,12], which generally perform simple
statistical aggregation based on static, recently observed resource information to guide re-
source matching. While this approach can be effective in certain scenarios, it demonstrates
significant limitations in the context of distributed computing networks.

Firstly, differences in hardware configurations and computing capabilities across
nodes cause the heterogeneity of resources. Simple statistical aggregation methods, such as
summing or averaging resource information, only reflect the overall status of a computing
cluster but overlook the differences between individual nodes. This can lead to mismatches
between computing requirements and the actual capability of individual nodes, resulting
in suboptimal resource allocation decisions. Secondly, research has shown [13–16] that the
resource capacity of computing nodes can fluctuate significantly over short periods due to
factors such as load variations, user behavior, and network stability. This dynamic behavior
makes resource-matching strategies based on static resource information unable to respond
quickly to changes in node capacity, potentially leading to issues of resource overload or
underutilization. Existing dynamic resource allocation methods [17–19] typically lack in-
depth consideration of resource aggregation. Most approaches directly utilize time-varying
workloads to represent dynamic resource information. While this approach can effectively
capture the dynamic nature of resources, it often results in high data announcement
volumes, increasing network communication overhead and impacting the scalability of
the system.

To address these challenges, this paper proposes a dynamic resource aggregation
method based on statistical capacity distribution, specifically designed for distributed
computing networks. Unlike existing dynamic resource allocation methods, this method
fully considers both the heterogeneity and dynamics of computing resources by modeling
the capacity distribution of nodes to extract dynamic resource information. To minimize
information loss during resource aggregation, computing nodes are grouped based on the
similarity of their capacity distributions and representative distributions from each group
are reported to the network. This approach effectively preserves differences in resource
capabilities between nodes. The main advantage of this method lies in its ability to model
the capacity distribution of computing nodes accurately and construct appropriate resource
groups. By capturing dynamic resource information and significantly compressing data,
the method ensures effective resource matching without losing essential details. The main
contributions of this paper are as follows:

• Developing a dynamic resource modeling approach: By formalizing resource require-
ments and using capacity distribution to model computing resources, this method
accurately captures the dynamic resource information of computing nodes while
compressing the data volume. Compared to static resource allocation methods, it
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improves the accuracy of resource matching and reduces the risk of resource overload
and performance degradation.

• Proposing a resource group construction method: We apply an Expectation-Maximization
(EM) clustering algorithm based on a multinomial mixture model to group comput-
ing nodes with similar capacity distributions. This method effectively minimizes
information loss caused by aggregation.

• Designing an efficient resource aggregation mechanism: By calculating representative
capacity distributions for each resource group, this mechanism significantly reduces
resource announcement overhead.

The remainder of this paper is organized as follows: Section 2 reviews relevant
research on the computing network, existing solutions to the problem of excessive resource
information announcements, resource aggregation mechanisms, and clustering algorithms.
Section 3 provides a design overview of the proposed method. Section 4 presents a detailed
explanation of each component of the dynamic resource aggregation method based on
statistical capacity distribution. In Section 5, we carry out simulation experiments and
analyze the performance of the proposed scheme. Finally, Section 6 summarizes the method
and the simulation results.

2. Related Works

Computing network is an emerging network architecture. Different from traditional
network designs, it aims to interconnect ubiquitously distributed computing resources
across cloud, edge, and device layers, enabling on-demand and flexible allocation of
both computing and network resources [20]. Currently, both academia and industry are
actively exploring computing networks, with companies such as China Unicom, China
Mobile, and Huawei proposing various computing network architectures [21–24]. These
architectures are primarily classified into centralized and distributed types.

In centralized architectures [25–27], resource allocation is managed by a single resource
scheduling center. This center maintains a global view of all resources, collects resource
information from all computing nodes, and integrates it with network data to orchestrate
unified scheduling. In contrast, distributed architectures [28–30] eliminate the need for
a central scheduling center. Instead, resource information is exchanged directly between
network nodes, and each node generates routing tables constrained by both computing
and network resources, enabling integrated scheduling. Compared with centralized archi-
tectures, distributed architectures offer greater reliability and scalability [5,31]. However,
they also face challenges such as excessive data broadcasts and inflated routing tables due
to the large-scale announcement of computing resource information.

To address the issue of excessive computing resource announcements, existing meth-
ods can be categorized into two approaches: announcement structure optimization and
resource aggregation techniques. In terms of announcement structure optimization, the
authors in [32] propose constructing a computing network announcement topology and
dynamically adjusting the network structure based on the number of nodes, thus reduc-
ing unnecessary network load. However, constructing this topology requires significant
computational effort, which increases the burden on network nodes and may backfire due
to the additional overhead of topology announcements. Another approach [33] creates
a distributed network of scheduling nodes based on the Chord protocol, where a small
number of nodes on the Chord ring store computing resource information, effectively
reducing the volume of announcements. Nevertheless, maintaining such a scheduling
network is complex and presents significant implementation challenges. In contrast to an-
nouncement structure optimization, resource aggregation techniques focus on information
compression. These methods explore how to achieve precise aggregation of computing
resource information through efficient clustering or statistical methods, which are easier to
implement for real computing networks. Therefore, this paper conducts an in-depth study
of resource aggregation techniques.



Electronics 2024, 13, 4617 4 of 24

In terms of resource aggregation techniques, existing research primarily focuses on
multi-cluster management systems. Projects such as ClusterAPI and Liqo [34–38] use simple
statistical methods, such as sum, maximum, and average to aggregate resource information
across computing nodes. For instance, ClusterAPI [34] aggregates the remaining resources
for each dimension (e.g., CPU and memory) by summing them across all nodes within
the cluster, providing a total for each resource dimension. However, this approach simply
aggregates resources without accounting for fragmentation between nodes, which can lead
to resource mismatches. For example, in a cluster of 2000 nodes, if each node has less than
one CPU core available, the aggregation method would report 2000 cores as remaining;
but in reality, the cluster cannot accommodate any Pod instance requiring more than one
CPU core. While these simple statistical aggregation methods offer an overview of the
cluster’s resource status, they overlook resource differences and fragmentation between
nodes, thereby reducing the accuracy of resource matching. Considering fragmented
resources, Karmada [39] introduces a “custom resource model” for each cluster. This
model categorizes the resources of computing nodes into different levels and counts the
number of nodes within each level, offering a more refined aggregation method than
simple statistical approaches. However, all these resource aggregation methods rely on
static resource information, and there is a notable lack of research on the aggregation of
dynamic resource information.

In terms of resource allocation, existing computing resource matching mechanisms
can be divided into two categories: static resource matching and dynamic resource match-
ing. Most studies in the current literature base scheduling decisions on static resource
information [40–43]. For instance, the authors in [40] propose a placement method for
Virtual Network Functions (VNFs) that achieves resource scheduling using the TOPSIS
approach. The authors in [41] improve the Kubernetes resource scheduling algorithm by
considering CPU, memory, network, and I/O metrics, thus enhancing scheduling efficiency.
The authors in [42] introduce a resource allocation method similar to the PageRank algo-
rithm, ranking computing nodes and virtual nodes based on available resources. Some
studies [17–19,44,45] focus on dynamic resource allocation. For example, the authors in [17]
present a virtual machine load-balancing method based on a genetic algorithm that uses
historical data on virtual machine resource usage to achieve load balancing. The authors
in [18] develop a heuristic algorithm to maximize resource utilization by considering time-
varying resource demands in virtual networks. The authors in [44] investigate a dynamic
workload-based VNF placement method to improve network resource utilization. The au-
thors in [45] introduce a scheduling framework called PowerNets, which uses time-varying
workloads to reduce energy consumption in data centers. Although these studies consider
time-varying workloads, most approaches directly use raw workload historical data for
matching, resulting in significant data announcement volumes that are not suitable for more
complex distributed computing networks. Compared to these existing dynamic resource
allocation methods, our research offers distinct advantages. Firstly, we model the dynamic
resource information of computing nodes using capacity distribution, compressing the data
volume in the time dimension. Secondly, we employ a clustering algorithm to construct
resource groups for computing nodes and select representative capacity distributions for
resource matching, thereby reducing the number of computing nodes that need to be
announced and further lowering the data volume. This approach not only reduces data
announcement overhead but also maximizes the accuracy of resource matching.

To more effectively compress dynamic information of computing nodes, this paper
employs a clustering algorithm to group similar nodes into resource groups, leading to
a detailed investigation of clustering algorithms. Clustering algorithms can be broadly
categorized into partition-based, hierarchical, density-based, and model-based approaches.
Partition-based clustering algorithms [46] operate under the assumption that “points
within a cluster are close to each other, while points in different clusters are far apart”.
However, these algorithms are typically limited to simple, low-dimensional data and
cannot accurately capture complex relationships between multi-dimensional data, such
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as those found in resource capacity distributions. Hierarchical clustering algorithms [47]
build a cluster hierarchy by gradually merging or splitting clusters, but when faced with
dynamic data characterized by complex, multi-dimensional features, these methods often
lead to confusion in cluster hierarchy and a decline in accuracy. Density-based clustering
algorithms [48] identify clusters and outliers by partitioning high-density regions, but they
are primarily suited for low-dimensional spaces and struggle to effectively recognize
complex patterns in multi-dimensional dynamic information of computing nodes.

There are existing methods [36,49] for clustering computing nodes. However, these
methods cluster based on static information where each computing node is represented as
single-dimensional data. In contrast, this paper takes into account the dynamic information
of computing nodes and clusters resource capacity distributions with multi-dimensional
data. Therefore, the traditional clustering algorithms mentioned above are not applicable
to this study. On the other hand, model-based clustering algorithms [50,51] assume that
data points are generated by a mixture of models and use statistical methods to estimate
the model parameters of these models. Given the special requirements of dynamic resource
clustering, this paper adopts a model-based clustering algorithm to group computing nodes
with similar resource usage characteristics. These algorithms are better suited for handling
complex data distributions and are more effective in capturing the dynamic nature of
computing resources.

3. Design Overview
3.1. System Architecture

As shown in Figure 1, the main entities in the distributed computing network architec-
ture include the computing node (CN), gateway node (GN), scheduling node (SN), User,
and user client. SNs are interconnected through the network, with each SN connected
to a GN in a one-to-one connection relationship, while GNs are connected to CNs either
one-to-one or one-to-many. Also, SNs are organized in a hierarchical architecture [28].
CNs periodically report their resource capacity information to their respective GNs, which
then aggregate this information and forward it to SNs. SNs exchange resource capacity
information among themselves. User client collects computing resource requests from
User and sends them to SNs, which then match User’s resource requirements with the
available resource capacities and allocate appropriate CNs accordingly. Based on this archi-
tecture, this paper proposes a dynamic resource aggregation method based on statistical
capacity distribution.

Figure 1. System architecture overview.
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3.2. Resource Aggregation Idea Based on Statistical Capacity Distribution

In existing computing network resource scheduling systems, the resource requirement
of an application is typically defined as the minimum capacity needed for a certain resource.
These systems rely on static resource capacity information for scheduling. However, since
the resource requirements of applications and resource capacities of computing nodes can
fluctuate significantly over time, relying solely on the minimum resource requirement for
scheduling can easily lead to resource overload, resulting in performance degradation or
system failures. To address this challenge, we propose introducing a tolerance factor into
the definition of resource requirements to provide a more flexible scheduling mechanism.

In current resource scheduling scenarios, application tolerance to resource over-
load [44] is often used to guide resource matching, allowing systems to better adapt
to the dynamic nature of computing resources. The authors in [52] conducted a study on
dynamic resource allocation for virtual machines in cloud computing environments. They
demonstrated that incorporating tolerance enables scheduling systems to flexibly respond
to resource fluctuations, thereby avoiding overload issues. The authors in [53] further em-
phasized the significance of dynamic resource allocation through tolerance mechanisms in
data stream processing systems. Building on these insights, this paper formalizes resource
requirements as a triplet {R, Cd, P}, where R represents the resource type (including CPU,
memory, storage, etc.), Cd denotes the minimum required capacity, and P indicates the
application’s tolerance to resource overload. Tolerance P is defined as the proportion of
time within a specific period during which the application can accept a resource capacity
falling below Cd.

To accurately capture the dynamic resource usage of computing nodes, we introduce
the concept of resource capacity distribution. The resource capacity distribution X(Cr)
represents the probability distribution of resource usage at each capacity level within a
given time period for a computing node. By leveraging this distribution, we can directly
map application resource requirements within it, ensuring their reliable execution on
computing nodes. Additionally, resource capacity distribution comprehensively preserves
the dynamic resource information of nodes, facilitating more precise resource scheduling
and allocation. Researches have shown that once applications stabilize on computing
nodes, their resource capacity distributions often exhibit distinct periodic characteristics.
Studies by Chen et al. [54], Mishra et al. [55], and Benson et al. [56] reveal the periodic
characteristics of enterprise workloads and data center resource usage, further emphasizing
the significance of using periodic resource capacity distributions for scheduling decisions.

However, broadcasting the resource capacity distribution of each computing node to
scheduling nodes would generate significant data announcement overhead. To mitigate
this, we propose a resource aggregation method that clusters computing nodes based on the
similarity of their resource capacity distributions. By clustering nodes into resource groups
with similar distributions, we can extract a representative resource capacity distribution
for each group. This approach maximizes the retention of original data characteristics
while minimizing information loss. Given that resource capacity distributions are multi-
dimensional and may follow arbitrary patterns, we employ a model-based clustering
algorithm to ensure accurate aggregation of resource capacity distributions.

Figure 2 illustrates the proposed resource aggregation method. Initially, the resource
capacity distribution of each computing node is extracted and reported to the gateway
nodes (GNs). Next, the GNs group computing nodes (CNs) with similar distributions into
the same resource group and calculate a representative resource capacity distribution for
each group. These aggregated representative resource capacity distributions are subse-
quently reported to the scheduling nodes (SNs), which share and exchange this information
among themselves. Finally, the SNs match resource requirements with the representative
resource capacity distributions to achieve efficient resource allocation.
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Figure 2. Computing resource aggregation diagram.

4. Proposed Method
4.1. Statistical Resource Usage Pattern
4.1.1. User Resource Requirement

In this paper, the resource requirement is defined as a triplet {R, Cd, P}, where R
represents different types of resources (such as CPU, memory, storage, etc.), Cd denotes
the minimum required resource capacity, and P indicates the application’s tolerance to
resource overload. Tolerance P is defined as the proportion of time within a specific period
during which the application can accept resource capacity falling below Cd. It measures the
extent to which an application can tolerate insufficient resource supply without impacting
its normal operation or causing significant performance degradation.

The parameter Cd specifies the minimum resource capacity necessary to maintain ac-
ceptable performance, while the parameter P defines the application’s tolerance for resource
fluctuations. This definition ensures that resource allocation can meet the application’s
operational needs without incurring unnecessary overhead.
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4.1.2. Resource Capacity Distribution

Based on the definitions above, an application can specify different resource require-
ment parameters R, Cd, and P. To match these diverse requirements, we introduce the
concept of resource capacity distribution to describe the resource usage of computing nodes
over a given period of time.

To quantify the resource usage of computing nodes, we divide the resource capacity
into several continuous integer intervals, with each interval representing a capacity level.
The capacity level vector is defined as

Cr =


cr1
cr2
...

crm

 (1)

where cri represents the ith capacity level and m denotes the total number of capacity levels.
Assuming that at any given time t, the resource capacity of a computing node is cr(t),

the sampled resource capacity over the time interval [t0, t1] with a sampling interval of ∆t
can be expressed as

Cr(t0, t1) =


cr(t0)

cr(t0 + ∆t)
...

cr(t1)

 (2)

where Cr(t0, t1) represents the sequence of resource capacity samples of a computing
node over the time interval [t0, t1]. Based on the above definitions, we define the resource
capacity distribution as X(Cr). X(Cr) represents the probability vector of a computing
node’s resource capacity across different capacity levels within a specific time interval.
Specifically, over the time interval [t0, t1], the probability distribution of the resource
capacity samples Cr(t0, t1) across various capacity levels can be expressed as X(Cr(t0, t1)).
Let n(Cr) represent the sequence of the number of sampling points at each capacity level
Cr . Then, the resource capacity distribution X(Cr) is defined as

X(Cr) =
n(Cr)

J
=


n(cr1)

J
n(cr2)

J
...

n(crm)
J

 =


xcr1

xcr2
...

xcrm

 (3)

where n(cri) represents the number of sampling points at which the resource capacity of
the computing node falls within the capacity level cri, and xcri denotes the probability that
the resource capacity falls within the capacity level cri during the time interval. J represents
the total number of sampling points within the time interval, defined as J = ∑m

i=1 n(cri).
The resource capacity distribution X(Cr) is the probability distribution of the node’s

capacity across various levels, and the sum of the components xcri satisfies the follow-
ing equation:

m

∑
i=1

xcri = 1 (4)

This equation indicates that the sum of the probabilities of the resource capacity across
all possible capacity levels for a computing node equals 1.

4.1.3. Mapping of User Resource Requirement

The resource requirements can be directly mapped into the resource capacity distribu-
tion to determine whether a computing node can meet the application’s needs. Algorithm 1
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demonstrates the specific mapping method. We introduce the indicator function δ(Cr ≥ Cd)
to evaluate whether each capacity level cri meets the minimum capacity requirement Cd.
The indicator function is defined as follows:

δ(Cr ≥ Cd) =

{
1, i f Cr ≥ Cd
0, i f Cr < Cd

(5)

Building on this, we define the capacity threshold vector I, where each element
indicates whether the corresponding capacity level of the computing node meets the
minimum capacity requirement Cd:

I =


δ(cr1 ≥ Cd)
δ(cr2 ≥ Cd)

...
δ(crm ≥ Cd)

 (6)

We use a vector representation to express the matching relationship between the
resource requirements and the resource capacity distribution. The matching condition
can be represented by the dot product of the resource capacity distribution X(Cr) and the
capacity threshold vector I:

I · X(Cr) =
m

∑
i=1

δ(cri ≥ Cd) · xcri (7)

I · X(Cr) represents the probability that the resource capacity distribution of the
computing node meets the capacity requirement Cd within the given time interval. If this
probability is greater than or equal to the tolerance level P specified by the user, the
computing node satisfies the user’s resource requirements:

m

∑
i=1

δ(cri ≥ Cd) · xcri ≥ P (8)

Algorithm 1 Mapping of User Resource Requirements

Input: Cd; P; X(Cr);
Output: TRUE/FALSE;

1: total_percentage = 0
2: for cri in X(Cr) do
3: if cri ≥ Cd then
4: total_percentage+ = xcri

5: end if
6: end for
7: if total_percentage ≥ P then
8: //The node can satisfy the demand
9: return TRUE

10: else
11: //The node cannot satisfy the demand
12: return FALSE
13: end if

4.2. Resource Group Construction
4.2.1. Analysis of Resource Capacity Distribution Similarity

The resource capacity distributions of computing nodes often exhibit similarities,
primarily due to the similar operating environments and workload tasks they handle.
In the same data center, multiple nodes may host the same or similar types of applications,
leading to consistent resource usage patterns over time. For example, nodes executing
similar computational tasks may show similar probability distributions of CPU and memory
utilization across specific capacity ranges. Additionally, nodes within the same data center
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typically share uniform hardware configurations and network environments, which further
contribute to the consistency of their resource capacity distributions. Based on these
similarities, aggregating computing nodes with similar resource capacity distributions can
effectively optimize resource management and scheduling efficiency.

In Section 4.1.2, we use resource capacity distribution to capture the dynamic capacity
information of each node. Each computing node’s resource capacity distribution, denoted
as X(Cr), consists of multiple components xcri . However, transmitting all of these resource
capacity distribution data across the network would result in significant data announcement
overhead, compromising the system’s scalability. To address this issue, we propose a
resource aggregation method that groups computing nodes into different resource groups
and identifies a representative resource capacity distribution for each group. This approach
significantly reduces the amount of data that need to be transmitted, thereby lowering
network communication overhead.

We define a resource group as a collection of computing nodes with similar resource
capacity distributions, where nodes within the same resource group share identical resource
usage characteristics. We cluster the nodes based on the similarity of their resource capacity
distributions, where this similarity refers to the degree of proximity in the probability
distributions of resource usage across different capacity levels between two computing
nodes. This clustering method effectively aggregates nodes with similar resource capacity
distributions into the same resource group, enabling the representative resource capacity
distribution to more accurately reflect the overall resource status of the nodes within the
group, thereby providing more precise information for scheduling and allocation processes.

4.2.2. Resource Group Construction Based on Clustering

To accurately identify and aggregate computing nodes with similar resource capac-
ity distributions, this paper employs a clustering algorithm to construct resource groups.
The clustering algorithm must satisfy two key requirements: (1) the data to be clustered can
be multi-element data; (2) the resource capacity distribution of computing nodes can follow
any distribution, without the need to assume a standard distribution. The Expectation-
Maximization (EM) clustering algorithm based on a multinomial mixture model meets
these requirements. This algorithm excels in modeling mixed probability distributions,
enabling it to accurately identify and group computing nodes with similar resource capac-
ity distributions.

The EM algorithm, commonly used for text clustering, categorizes documents into
different groups based on content similarity. Analogously, this algorithm assesses the
similarity between computing nodes by comparing their resource capacity distributions,
which are modeled using multinomial functions. Specifically, the algorithm calculates
the probability that each node belongs to a particular cluster, thereby quantifying the
degree of alignment between the node’s resource capacity distribution and the multinomial
distribution defined within the cluster model.

For each resource capacity distribution, the system treats it as multi-element data
and models each node’s resource usage using multinomial distributions. Based on this
modeling, our method clusters nodes by comparing the similarity of their resource capacity
distributions. The algorithm processes a series of multidimensional vectors as input
and classifies them into groups based on the similarity between these vector elements.
The system then computes the degree of match between each node and a cluster distribution,
expressed as the posterior probability that the node belongs to that cluster. These posterior
probabilities measure the similarity between a node’s resource capacity distribution and the
distributions of other nodes within the cluster. The closer a node’s resource distribution is to
the central distribution of the cluster, the higher its probability of belonging to that cluster.

The EM algorithm based on a multinomial mixture model is an iterative optimization
process. It gradually optimizes the clustering results by continuously adjusting the associ-
ation between vectors and their respective clusters, ultimately maximizing the expected
clustering outcome. This algorithm is capable of handling resource capacity distributions



Electronics 2024, 13, 4617 11 of 24

composed of multiple elements and can process vectors of any type without assuming a
specific distribution, making it highly effective for clustering various resource capacity
distributions of different computing nodes.

Building on this foundation, we constructed a multinomial mixture model for the
resource capacity distribution. This process involves probabilistic modeling of the resource
capacity distributions of computing nodes and solving for the model parameters using the
Expectation-Maximization (EM) algorithm. The following outlines the construction process
of the multinomial mixture model for resource capacity distribution:

The set of model parameters for the multinomial distribution is denoted as
Θ = {πk, θk}K

k=1. The resource capacity distribution X(Cr) can be represented as a mixture
of K multinomial distributions, as follows:

P(X(Cr) | Θ) =
K

∑
k=1

πkP(X(Cr) | θk) (9)

where K is the number of clusters, πk is the mixing coefficient for the kth cluster, satisfying
∑K

k=1 πk = 1, and P(X(Cr) | θk) is the multinomial probability density function for the kth
cluster, with parameters θk. The multinomial probability density function for each cluster k
is given by

P(X(Cr) | θk) =
m

∏
i=1

 xcri !

∏J
j=1 nj!

 J

∏
j=1

(
θ

nj
kj

)
(10)

where m is the total number of capacity levels, xcri is the probability component of the
resource capacity distribution X(Cr), and nj is the number of the jth sampling points
at the ith capacity level. To maximize the parameter estimation of the mixture model,
the log-likelihood function is defined as

L(Θ) =
N

∑
n=1

log

(
K

∑
k=1

πkP(Xn(Cr) | θk)

)
(11)

where Xn(Cr) represents the resource capacity distribution of the nth computing node.
The model parameters can be estimated using the Expectation-Maximization (EM)

algorithm. The EM algorithm consists of the following two steps:
E-Step: Calculate the posterior probability function γnk,

γnk =
πkP(Xn(Cr) | θk)

∑K
s=1 πsP(Xn(Cr) | θs)

(12)

M-Step: In each iteration of the EM algorithm, the estimated values of the model
parameters are

π̂k =
1
N

N

∑
n=1

γnk (13)

θ̂k =
∑N

n=1 γnkXn(Cr)

∑N
n=1 γnk

(14)

In the clustering process described in this paper, we employed the Bayesian Informa-
tion Criterion (BIC) to automatically determine the optimal number of resource groups.
BIC is a model selection criterion based on the likelihood function, designed to evaluate
the model’s fit by quantifying its effectiveness. During clustering, the model parameters
are iteratively optimized using the EM algorithm. After each iteration, the corresponding
BIC value is calculated to assess different cluster numbers. The BIC formula is as follows:

BIC = −2 · ln
(

L̂
)
+ mp · ln(N) (15)
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where L̂ is the maximum likelihood estimate of the model, mp is the number of model
parameters, and N is the total number of computing nodes. The number of model parame-
ters is directly related to the number of resource groups. A model with a lower BIC value
is considered to have achieved the best balance between complexity and fit. The cluster-
ing number corresponding to the minimum BIC value is the optimal number of resource
groups determined by this method. Algorithm 2 presents the specific algorithmic process
for resource group construction.

Algorithm 2 The Cluster-Based Resource Group Construction Algorithm

Input: X(Cr) = {X1(Cr), X2(Cr), . . . , Xn(Cr)}; K(initial number of clusters);
Output: Θ = {πk, θk}K

k=1 for each cluster k; Z = {z1, z2, . . . , zn}(cluster allocation for each point);
K∗(the optimal number of clusters);

1: Initialize Θ = {πk, θk}K
k=1 for k = 1 to K, Lnew = −∞, Lold = 0, BICbest = ∞

2: for k in K do
3: repeat
4: for n in N do
5: for k in K do
6: //E-step
7: calculation γnk
8: end for
9: end for

10: for n in N do
11: //M-step
12: calculation π̂k
13: calculation θ̂k
14: end for
15: Lold = Lnew

16: Lnew =
N
∑

n=1
log
(

K
∑

k=1
πkP(Xn(Cr) | θk)

)
17: until |Lnew − Lold| < ε

18: calculation BIC
19: if BIC < BICbest then
20: BICbest = BIC
21: K∗ = K
22: end if
23: end for
24: for n in N do

25: Zn =
arg max

k
γnk

26: end for
27: return Θ, Z, K∗

4.3. Calculation of Representative Resource Distribution

When aggregating the resource capacity distributions of computing nodes using
the Expectation-Maximization (EM) clustering algorithm based on a multinomial model,
each resource group generates a multinomial distribution model that accurately captures
the resource usage characteristics of the nodes. This model serves as the representative
resource capacity distribution for the resource group, preserving the statistical properties
of all nodes within the group. To achieve this, the representative distribution is derived by
calculating an average of the resource capacity distributions of the nodes within the group.
The calculation formula is as follows:

Assume that N is the number of computing nodes in a certain resource group, and each
resource capacity distribution is represented as X j(Cr) =

(
xjcr1 , xjcr2 , . . . , xjcrm

)
, where j

denotes the jth computing node in the resource group and each node’s distribution has
m data points. The formula for the representative resource capacity distribution X j(Cr) is
as follows:
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X̄(Cr) =

(
1
N

N

∑
j=1

xjcr1 ,
1
N

N

∑
j=1

xjcr2 , . . . ,
1
N

N

∑
j=1

xjcrm

)
(16)

This approach ensures that the representative distribution reflects both the individual
resource usage characteristics of the nodes and provides a concise summary of the entire
resource group, thereby facilitating more efficient decision-making in resource scheduling
and management.

Once the representative resource distribution is determined, each resource group
needs to only transmit these simplified data to the network, significantly reducing the
number of nodes required for resource announcements. This reduction in data transmission
not only lowers network communication overhead but also enhances the efficiency of
resource management in the distributed computing network. The representative resource
distribution provides a concise and effective summary of the overall performance of the
resource group, thereby improving the accuracy of resource matching.

5. Simulation Experiment
5.1. Simulation Setup

This paper conducts simulation experiments based on the network topology created
using NetworkX, a Python library for network analysis that is easy to learn and use. In this
experiment, we used NetworkX to create the network topology shown in Figure 3 to
simulate a distributed computing network. The topology includes 10 scheduling nodes,
10 gateway nodes, and 4000 computing nodes. Each computing node is connected to a
gateway node, each gateway node is connected to a scheduling node, and the scheduling
nodes are interconnected. In Figure 3, the black nodes represent scheduling nodes, the green
nodes represent gateway nodes, and the blue nodes represent computing nodes. Due to
the large number of computing nodes, only 40 are shown in the figure.

Figure 3. Topology in simulation experiment.

This study conducted simulation experiments based on the resource requirement
and computing node resource information provided by the Alibaba Open Cluster Trace
Program [57], an open-source dataset from the Alibaba Cloud production environment.
The project collects resource data from each computing node every 15 min and records
the time-shared resource demands of applications. This data format aligns with the exper-
imental demands for resource requirements and computing node resource information,
making this dataset suitable for evaluation in this study. The dataset includes information
on CPU, memory, and disk resources. However, as historical data for disk usage are not
included, this experiment focuses solely on CPU and memory resource information for
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performance analysis. Additionally, the experiment utilized data spanning ten consecutive
calendar days and calculated the average resource capacity distribution for each computing
node over a 24-h period. To facilitate more effective resource clustering, our experiment
set intervals of 10 cores and 20 GB as the capacity range divisions for CPU and memory,
respectively. It is assumed that the clustering model is updated at 00:00 each day.

Under these assumptions, resource requirements of 50, 100, 150, 200, 250, 300, 350, 400,
450, and 500 were generated based on the request information provided by the dataset.
These demands were randomly distributed to the scheduling nodes in the topology. Com-
puting nodes from the dataset were randomly assigned to the gateway nodes, which
reported resource information to the gateway nodes. The gateway nodes then calculated
the representative resource capacity distributions and reported them to the scheduling
nodes. Resource status information was propagated among scheduling nodes to form a
resource status information table. Each scheduling node used this table to match computing
nodes to computing demands, completing the resource scheduling process. The specific
parameters involved in the experiment are detailed in Table 1.

Table 1. Simulation configuration.

Parameter Description

Dataset https://github.com/alibaba/clusterdata
(accessed on 1 January 2018)

Topology NetworkX
Number of SNs 10
Number of GNs 10
Number of CNs 4000
Number of Resource Requirements 50, 100, 150, 200, 250, 300, 350, 400, 450, 500
Resource CPU & Memory
Cycle Time 24 h
CPU Partitioning Interval 10 c
Memory Partitioning Interval 20 G

Using the experimental parameters outlined above, we employed Python 3.7.4 as the
primary simulation tool, along with relevant Python libraries, to implement the resource
aggregation algorithm proposed in this paper. The experimental results show that the
average execution time of the proposed method is 0.58 s, demonstrating the algorithm’s
very low computational overhead.

5.2. Accuracy in Resource Matching
5.2.1. Experimental Comparison

In this study, to evaluate the effectiveness of the proposed method, we selected three
resource matching methods for experimental comparison. These methods determine which
computing nodes can meet application demands by comparing the application’s resource
requirements with either static or dynamic resource information:

• Static Information Resource Matching Method (SIRM): This method performs resource
matching based solely on the resource capacity data at the current moment. Specifically,
it determines whether a computing node meets the application’s resource requirement
based on its most recent resource capacity information;

• Resource Capacity Distribution Matching Method (RCDM): This method maintains
a complete resource capacity distribution for each computing node and uses these
data for resource matching. The specific matching method is detailed in Section 4.1.3.
Additionally, this method serves as a benchmark to assess the impact of information
loss due to resource aggregation on matching accuracy;

• Representative Resource Capacity Distribution Matching Method (RRCDM): Based
on the resource aggregation method proposed in this paper, this method clusters
computing nodes into resource groups according to the similarity of their resource

https://github.com/alibaba/clusterdata
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capacity distributions. It then calculates a representative resource capacity distribution
for each group and determines whether the computing nodes within the group meet
the application’s resource requirements based on the representative distribution.

5.2.2. Evaluation Metrics

To evaluate the effectiveness of the resource matching methods, we used the following
two evaluation metrics:

• Accuracy: In this paper, matching accuracy is defined as the ratio of the number of
computing nodes that meet the actual resource requirements of an application to the
total number of matched nodes [49]. Specifically, the “actual resource requirements”
refer to the time-varying resource demands of an application over a 24-h period. This
metric is used to evaluate the accuracy of the resource matching achieved by the
proposed method, and it is calculated using the following formula:

Accuracy =
nacc

ntot
(17)

where nacc represents the number of nodes that satisfy the actual resource requirements
of the application and ntot represents the total number of nodes matched. To determine
whether a computing node meets the actual resource requirements of an application,
the time-varying resource demand D(t) over 24 h is compared with the time-varying
resource status C(t) of the computing node at each time point. If C(t) ≥ D(t),
∀t ∈ [0, 24 h], the computing node is counted in nacc. This means that a computing
node is only included in nacc if it can meet the application’s time-varying resource
demands at every sampling time t throughout the entire 24-h period.
Accuracy reflects how many of the matched nodes actually meet the application’s time-
varying resource requirements, providing an effective measure of the performance of
the matching method.

• Coverage Rate: This metric evaluates the ability of the resource matching method to
identify eligible nodes and is defined as

Coverage Rate =
nacc

Nacc
(18)

where Nacc is the number of nodes among all those available that can meet the actual
application requirements throughout the 24-h period. Coverage rate indicates the pro-
portion of all eligible nodes that the resource matching method successfully identifies,
thus assessing the method’s ability to recognize nodes that meet the criteria.

5.2.3. Matching Accuracy

Figure 4 presents a comparison of the Accuracy among the SIRM, the RCDM, and the
RRCDM under different levels of resource requests. This comparison covers the matching
accuracy of the three methods when matching CPU resources alone, memory resources
alone, and both CPU and memory resources simultaneously.

As shown in Figure 4, the matching accuracy of RRCDM and RCDM ranges between
81% and 98%, while the accuracy of SIRM is only between 33% and 78%. RRCDM and
RCDM show a clear advantage, indicating that considering the dynamic nature of com-
puting resources can significantly improve matching accuracy. Additionally, Figure 4
shows a slight decrease in the matching accuracy of the proposed RRCDM method when
both CPU and memory resources are matched simultaneously. This slight reduction is
attributed to the influence of multi-dimensional information on the clustering process.
Furthermore, the accuracy of the RRCDM method ranges from 81% to 95%, which is close
to the 83% to 98% accuracy range of RCDM, suggesting that resource matching using the
aggregated information obtained by the proposed RRCDM method has a minimal impact
on matching accuracy.
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Figure 4. Matching accuracy.

5.2.4. Coverage Rate

Figure 5 presents a comparison of the CoverageRate among the SIRM, the RCDM,
and the RRCDM under different levels of resource requests. This comparison covers the
coverage rate of the three methods when matching CPU resources alone.
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In addition, this experiment selects three applications with CPU requirements of
5 cores, 10 cores, and 15 cores, respectively, to evaluate the three resource matching methods.
For each method, we statistically analyze the number of nodes that can meet the application
requirements for 5 cores, 10 cores, and 15 cores (nacc); the number of nodes that fail to meet
these requirements (nunacc); and the total number of nodes that can meet these requirements
across all nodes (Nacc). As shown in Figure 5, a further comparative analysis is conducted.

Figure 5. Comparison of matched computing node counts.

As shown in Figure 5, under different numbers of resource requests, SIRM has the
highest coverage rate, followed by RCDM, with RRCDM having the lowest coverage rate.
SIRM relies on static resource information for matching, which imposes fewer require-
ments on the nodes. As a result, it can match nearly all computing nodes that meet the
requirements. However, it also matches many nodes that do not meet the requirements,
leading to high values of both nacc and nunacc. This results in SIRM having low matching
accuracy but a high coverage rate. RRCDM, on the other hand, uses dynamic resource
information for matching, with stricter criteria for selecting computing nodes. Due to the
information loss caused by aggregation, it misses some nodes that could actually meet the
resource requirements. As shown in Figure 6, the number of nodes missed by RRCDM
that meet the demand typically ranges between 5 and 15, while the number of unmatched
nodes incorrectly identified by SIRM can reach up to 115. The impact of missing nodes
in RRCDM is far less significant than the negative impact of SIRM matching nodes that
do not meet the requirements, suggesting that the effect of RRCDM’s omissions is smaller.
From the application’s perspective, the quality of node selection is primarily influenced
by accuracy. Once an allocation decision is made, higher accuracy ensures the stability of
application performance.

Based on the analysis of matching accuracy and coverage rate, it is clear that the
RRCDM method proposed in this paper can effectively guide resource matching, lead-
ing to the selection of computing nodes that meet resource requirements with higher
matching accuracy.



Electronics 2024, 13, 4617 18 of 24

Figure 6. Comparison of matched computing node counts.

5.3. Analysis of Data Announcement Volume

In the proposed method, resource capacity distributions of computing nodes are used
for resource matching. However, if the resource capacity distribution of every computing
node is fully announced to the scheduling nodes in the network, it would result in a
massive data announcement volume. To reduce this overhead, we propose a resource
aggregation method, which compresses the amount of data transmitted by calculating the
representative resource capacity distribution for each resource group.

5.3.1. Experimental Comparison

We conducted experimental comparisons using the SIRM-based information announce-
ment method, the information announcement method based on full historical time-varying
workload data, the RCDM-based information announcement method, and the RRCDM-
based information announcement method.

• The SIRM-based information announcement method (SIRM): the announcement data
only include the current CPU and memory capacity information;

• The information announcement method based on full historical time-varying workload
data (AHDM): based on the dynamic resource allocation method in [17], the announce-
ment data include full historical workload data announcements for each computing node;

• The RCDM-based information announcement method (RCDM): the announcement
data include the resource capacity distribution information for each computing node;

• The RRCDM-based information announcement method (RRCDM): the announcement
data include the representative resource capacity distribution information, aggregated
using the method proposed in this paper.

5.3.2. Evaluation Metrics

• Announcement Volume: This metric compares the total data announcement volume
(in bytes) under different numbers of computing nodes for the four methods;

• This metric calculates the saving rate of the SIRM, the RCDM, and the RRCDM
compared to the AHDM. The formula is as follows:

Saving rate =
Vbaseline − Vmethod

Vbaseline
× 100% (19)

where Vbaseline represents the announcement volume using the AHDM and Vmethod
represents the announcement volume when using other announcement methods.
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The saving rate reflects the percentage of announcement volume saved relative to the
baseline volume.

5.3.3. Volume of Data Announcement

Figure 6 shows a comparison of the total data Announcement volume for the four
methods under varying numbers of computing nodes.

As shown in Figure 7, the information announcement method based on full historical
time-varying workload data transmits the complete resource usage information of nodes
over the past 24 h at each sampling time, resulting in a significantly higher announcement
volume compared to the other three methods. The advantage of this method lies in its pro-
vision of detailed historical data, which effectively supports dynamic resource scheduling.
However, the trade-off is its high network communication overhead, making it unsuitable
for large-scale node scenarios. The RCDM-based resource information announcement
method, which models dynamic resource information using capacity distribution, has
a slightly lower announcement volume than the full historical time-varying workload
data method. Nevertheless, since it does not compress the number of computing nodes,
the announcement volume remains relatively high. The RRCDM-based aggregated re-
source information announcement method proposed in this paper demonstrates effective
data compression, with an announcement volume significantly lower than the full his-
torical time-varying workload data method. Across different scales of computing nodes,
this method reduces data announcement volume by an average of approximately 77.1%
compared to the AHDM method. In this experiment, the proposed aggregation method
exhibited the lowest total data announcement volume in all node number scenarios, even
lower than the SIRM-based information announcement method, indicating its remarkable
effectiveness in reducing communication overhead.

Figure 7. Total data usage comparison at different node counts.

5.3.4. Saving Rate

Figure 8 shows a comparison of the saving rates of the SIRM-based information
announcement method, the RCDM-based resource information announcement method,
and the RRCDM-based aggregated resource information announcement method under
different numbers of computing nodes.

The results for the saving rates further demonstrate the advantages of the SIRM,
RCDM, and RRCDM methods over the AHDM method in terms of announcement volume.
Experimental results indicate that, compared to the data announcement volume of the
AHDM method, the SIRM, RCDM, and RRCDM methods all save announcement data to
varying degrees. Among them, the RRCDM-based information announcement method
proposed in this paper achieves the highest saving rate, with an average saving of approxi-
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mately 77.1%, and this rate remains stable as the number of nodes increases, suggesting
that it can effectively compress information announcement volume even in large-scale
networks. The experimental results show that the RRCDM method proposed in this pa-
per significantly reduces network communication overhead by aggregating the resource
capacity distributions of nodes while maintaining the accuracy of resource scheduling.
In comparison, the RCDM method can also reduce the announcement volume to some
extent, but its lack of compression of the number of computing nodes limits its applicability
in large-scale networks; as the number of computing nodes increases, its saving rate grad-
ually decreases. The SIRM method has certain advantages in small-scale node scenarios,
but its scalability is affected as the number of nodes increases.

Figure 8. Data saving rate comparison at different node counts.

5.4. Robustness Analysis of the Model

We selected five calendar days to evaluate the stability and adaptability of the clustering
model in response to variations in resource characteristics. We randomly sampled 1000 com-
puting nodes for experimentation on each day. By analyzing the trends in the resource capacity
distribution of the computing nodes, we determined the number of clusters that could be
formed for each day. Subsequently, the clustering algorithm proposed in this paper was ap-
plied to cluster the computing nodes for each day, and the clustering results for different days
were compared. To assess the clustering performance, we used Clustering Purity [58] as an
evaluation metric to observe the model’s performance under varying resource characteristics
and load conditions. The experimental results are shown in Table 2.

Table 2. Clustering purity.

Day The Number of Clusters Purity

1 5 97.2%
2 5 97.3%
3 6 96.4%
4 8 95.8%
5 9 94.5%

The results show that the clustering model maintained a high level of clustering purity
across the five calendar days. Although there were slight fluctuations in purity under
different resource characteristics of computing nodes, it remained almost stable. This
indicates that the clustering model proposed in this paper demonstrates good adaptability
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and stability under various resource characteristics and load conditions. This further
validates the robustness of the model when dealing with diverse resource characteristics.

5.5. Information Loss Caused by Aggregation

In this paper, we aggregate computing nodes by constructing resource groups to
reduce the amount of information that needs to be announced. However, this aggregation
can introduce information loss, impacting the matching accuracy. In this section, we discuss
the information loss resulting from the proposed aggregation method.

We use the Kolmogorov-Smirnov (K-S) method to measure the information loss. The
Kolmogorov-Smirnov test is a useful nonparametric hypothesis test primarily used to com-
pare whether two sample distributions are the same. We use the K-S statistic to measure
the difference between the resource capacity distribution of computing nodes and the rep-
resentative resource capacity distribution. The K-S statistic is calculated using the formula
Dn = supCr

|X(Cr)− X̄(Cr)|, where X(Cr) represents the resource capacity distribution of
any computing node and X̄(Cr) represents the representative resource capacity distribution
of the resource group. The value of the statistic Dn ranges between 0 and 1, where a smaller
value indicates higher similarity between the distributions and less information loss.

To assess our method, we evaluate it under different numbers of clustering categories
for the following schemes: the proposed method (resource group aggregation) and a random
method (random). The random method refers to randomly grouping computing nodes and
calculating the representative resource capacity distribution for each group in the same way.

Figure 9 illustrates the average K-S statistic values for the evaluated methods. For the
proposed method in this paper, the highest K-S statistic value observed was 0.28, which
gradually decreased as the number of clusters increased, reaching 0.13 at 19 clusters.
In contrast, the K-S statistic value for the random method remained around 0.7. As analyzed
in previous sections, the information loss introduced by the proposed method has been
shown to have a minimal impact on resource accuracy. The experimental results in this
section further confirm that the information loss caused by the proposed aggregation
method is relatively minor.

Figure 9. Information Loss Caused by Aggregation.

6. Conclusions

This paper addresses the challenge of dynamic resource aggregation in distributed
computing networks. Given the highly dynamic characteristic of computing resources,
relying solely on static resource information for scheduling presents significant drawbacks.
To overcome this, we propose a novel resource aggregation method based on statistical
capacity distributions. By formalizing resource requirements and accurately capturing
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the dynamic statistical capacity distributions of nodes, this method enables more precise
matching of diverse computational demands. Additionally, by aggregating nodes with
similar capacity distributions and computing a representative capacity distribution for
each group, the method significantly reduces the data volume required for resource an-
nouncements. Experimental results and data analysis show that, compared to traditional
resource matching methods based on static information, our approach enhances matching
accuracy by 48% while substantially reducing announcement overhead. This demonstrates
the potential of the proposed method as an effective solution for resource aggregation in
distributed computing networks.

There are still challenges to address in dynamic resource aggregation. For example,
while this paper proposes a clustering-model-based method for constructing resource
groups, the frequency and scale of model updates can also impact both matching accuracy
and announcement overhead. Frequent updates may lead to a large volume of data an-
nouncements, increasing network load, while infrequent updates could result in suboptimal
scheduling decisions and reduced matching accuracy. Therefore, optimizing the efficiency
of resource information updates remains a key research direction. Additionally, exploring
multidimensional resource aggregation is another area worth investigating. In this paper,
each dimension of computing resources was aggregated separately. Future work could
explore combining multidimensional resources into a single aggregation approach and
testing with more diverse datasets for further validation.
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