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Abstract: Video object tracking has taken advantage of pre-trained weights on large-scale datasets.
However, most trackers fully fine-tune all the backbone’s parameters for adjusting to tracking-specific
representations, where the utilization rate of parameter adjustment is inefficient. In this paper, we
aim to explore whether a better balance can be achieved between parameter efficiency and tracking
performance, and fully utilize the weight advantage of training on large-scale datasets. There are
two main differences from a normal tracking paradigm: (i) We freeze the pre-trained weights of
the backbone and add a dynamic adapter structure for every transformer block for tuning. (ii) We
migrate the pre-trained decoder blocks to the tracking head for better generalization and localization.
Extensive experiments are conducted on both mainstream challenging datasets and datasets for
special scenarios or targets such as night-time and transparent objects. With the full utilization of
pre-training knowledge, we found through experiments that a few tuned parameters can compensate
for the gap between the pre-trained representation and the tracking-specific representation, especially
for large backbones. Even better performance and generalization can be achieved. For instance, our
AdaDe-B256 tracker achieves 49.5 AUC on the LaSOText which contains 150 sequences.

Keywords: visual object tracking; transformer; parameter-efficient tuning

1. Introduction

Visual object tracking is a fundamental visual task that tracks the target specified in the
initial frame in subsequent frames. In recent years, great improvement has been achieved in
the field of tracking, specifically with the further development of pre-trained models [1–3]
and the application of transformer structures [4] in visual tasks.

Early backbones for tracking, such as AlexNet [5] and ResNet [6], are usually pre-
trained with the ImageNet dataset with a supervised training method. The tracking pipeline
can be modeled as a two-stream matching process, between search and template regions.
With the introduction of Vision Transformer (ViT), many works benefit from the transformer
model in vision tasks [7,8]. Tracking can enjoy one-stream modeling which promotes
the extracting representations and relation interactions benefiting from the transformer
model. Moreover, various self-supervised training methods have been explored for ViT,
prompting generalizing representation learning with richer training data. For instance,
the contrastive learning model CLIP [1] and masked image modeling model MAE [2]
have shown their excellent performance as the pre-trained weights [9,10]. DropMAE [11]
improves MAE pre-training with video data rather than static image data, exploiting prior
temporal correspondence information and making pre-trained weights more suitable for
transferring to the downstream tracking task. Tracking specified representation is learned
further in the masked image modeling method with rich tracking video data in MAT [12].
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Although pre-trained weights have a significant impact on tracking performance [10], they
only exert their influence on a tracking model as an initialization method. Full parameter
fine-tuning is still necessary, which results in very low adjusting efficiency of parameters
for the downstream tracking task and consumes more computing resources.

Since pre-trained models may come into contact with richer training data than tracking
data, and even multi-modal data [1], especially large models that may benefit more from
large amounts of pre-training data, does the learned pre-task representation and tracking
specified representation contain only a small fraction of the task differences, such as
priors of temporal relations? As parameter-efficient transfer learning (PETL) has attracted
attention as an alternative to full fine-tuning, we also resort to that method for exploring
that issue. In this paper, we freeze the pre-trained weights of the backbone and add a
dynamic adapter structure for every transformer block for tuning. Inspired by [13], we also
migrate the pre-trained decoder blocks in MAE pre-training ahead of the tracking head for
better generalization. This can be regarded as an extension of the traditional tracking head,
which only encoder features of the search region are fed into.

Our significant contributions are summarized below:

• We leverage adapter adjusting parameters to improve transfer learning in tracking. At-
tached to pre-trained models, with only a few additional parameters trained, tracking
performance comparable to full fine-tuning can be achieved, dramatically increasing
parameter efficiency.

• We migrate pre-trained transformer decoders in MAE pre-training to enhance the
tracking head, increasing the robustness and generalization of tracking.

2. Related Work

Visual Object Tracking. We focus on single-object tracking rather than multiple-
object tracking [14–18]. Recently, there have been significant developments in visual object
tracking technology, especially with the support of the transformer structure. The trans-
former structure can promote the relation modeling between the template and search
region features such as a neck module [19–22], and its attention modeling mechanism
facilitates the one-stream pipeline [9,10] as well. The one-stream tracking pipeline makes
tracking-specific representation learning and information interaction between template–
search pairs optimized simultaneously, achieving strong discriminative power and a better
performance–speed trade-off.

Inspired by development in pre-training methods, some works focus on the opti-
mization of tracking-specified representation learning [11,12]. DropMAE [11] introduces
masked autoencoder (MAE) pre-training in videos as an alternative to MAE pre-training in
static images, ImageNet, and the latter is regarded as a sub-optimal method for a video
object tracking task. MAT [12] can learn to track specified representations through a simple
encoder–decoder pipeline via a masked appearance transfer technique. However, these
works may require newly designed pre-training or additional fine-tuning of all parame-
ters, consuming more computational resources. Currently, new pre-training methods are
constantly emerging [1–3], and pre-trained models can learn more robust and generalized
representations from large-scale datasets. Given this situation, in this work, we draw
support from the recent parameter-efficient transfer learning method to explore whether
it is possible to make slight adjustments on the basis of pre-trained models for obtaining
better tracking-specified representations.

Parameter-Efficient Transfer Learning. Due to the increasing size of pre-trained
networks, fine-tuning all network parameters in downstream tasks has become challenging
in terms of computational resources and storage. Parameter-efficient transfer learning
(PETL) is then presented to tackle with that issue in the NLP field [23], and has become
popular in the field of computer vision as well. Common tuning methods include prompt
tuning, adapter tuning and LoRA tuning. VPT [24] is a typical prompt-tuning work in
vision. A set of learnable parameters is added to a pre-trained model, resulting in better
performance than full fine-tuning on downstream tasks. Adapter tuning [25–27] always
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inserts a lightweight module into the original backbone structure for single or multiple
downstream tasks. LoRA [28] tuning further presents low-rank matrices to approximate
weight updating.

Recently, parameter-efficient transfer learning has received attention in the visual track-
ing field as well. By leveraging the power of RGB tracking foundation models, multi-modal
tracking methods [29–33] can perform efficient training with a small number of parameters,
and achieve comparable or better performance than the fully fine-tuned paradigm. These
works demonstrate that RGB tracking models can adapt to multi-modal tracking with only
a small number of parameters’ adjustments. Since multi-modal tracking representations
and RGB-specific tracking representations can be bridged via a few parameters tuned,
we are curious: is there a similar conclusion about RGB-specific tracking representations and
pre-trained representations? We also investigated the effectiveness of PETL under different
pre-training tasks, including contrastive learning such as CLIP [1] and masked image
modeling such as MAE [2].

3. Proposed Approach
3.1. Preliminary

The one-stream tracking pipeline has shown its strong discriminative power and
become the mainstream pipeline applied in many works [9,10,34–36]. With the attention
mechanism of the transformer, the template and the search region are embedded in the same
space for similarity calculation, and all-layer information interaction can better promote
the template-guided feature extraction of search regions.

The one-stream pipeline first embeds the template region Iz ∈ R3∗Hz∗Wz and search
region Ix ∈ R3∗Hx∗Wx into a series of patch embeddings Fxz ∈ R(Nx+Nz)∗d. Hz is the height
of the template region; Wz is the width of the template region. Hx is the height of the
search region; Wx is the width of the search region. Nx is the patch number of search region
features under the patch size of P; Nz is the patch number of template region features
similarly. d is the channel dimension of embedded features. Then, two learnable positional
embeddings, Px ∈ RNx∗d and Pz ∈ RNz∗d, are concatenated and added to the sequence of
patch embeddings Fxz:

F
′
xz = Fxz + concat(Px, Pz) (1)

Finally, patch embeddings F
′
xz will be fed into the encoder composed of transformer

layers for representation learning and relation modeling. The i-th block of the transformer
layers can be written as follows:

Fi
xz = Attention(LayerNorm(Fi

xz)) + Fi
xz

Fi+1
xz = MLP(LayerNorm(Fi

xz)) + Fi
xz

(2)

Finally, the search region part of the last layer’s output of features will be sent to the
tracking head, which is used for target bounding box estimation. In general, the tracking
head is the only part for random initialization rather than initialization inherited from
pre-trained models.

3.2. Adapter Tuning

In most existing trackers, such as OSTrack [10] and KeepTrack [37], the full fine-tuning
method is utilized for training. All the parameters are tuned, resulting in high costs
during training. The adapter tuning technique can achieve equally effective training to
full fine-tuning by training only a small number of parameters and freezing the remaining
model parameters. There are many forms of adapter applied [25,26,32]. As illustrated in
Figure 1, adapter tuning in our work is a bottleneck module for residual addition after MLP
(Multi-layer Perceptron) operation in every transformer block. That bottleneck module
includes two light MLP layers, one for downward projection and the other for upward
projection. Every light MLP layer contains two linear projections which are connected by
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an activation function, GELU. With F as the input, our inserted adapter module can be
expressed as follows:

Fdown = GELU(FWdown)W1

Fup = GELU(FdownW2)Wup

Fadapter =Fup + F
(3)

W2 ∈ Rk∗k, Wup ∈ Rk∗d, W1 ∈ Rk∗k, Wdown ∈ Rd∗k.

Transformer Layer

Transformer Layer

Adapter  Module

Tracking Head

Adapter  Module

Transformer Layer

SearchTemplate

Transformer Layer

Adapter  Module

Transformer Layer

Adapter  Module

Patch Embed

Position 

Embedding

Encoder

Decoder

Search Features

𝑊𝑑𝑜𝑤𝑛

𝑊1

𝑊2

𝑊𝑢𝑝

GELU GELU

Random initialization

Pre-trained initialization

Freezing Tuning

Figure 1. Details of our tracking framework with parameter-efficient transfer learning. “. . . ” repre-
sents the several omitted transformer layers which are the same as others.

In our work, F represents the output of every transformer block; then, Fadapter is the
output of every transformer block after adjusting with the adapter module. d is the channel
size of the transformer backbone and k is the compressed size, k < d. The details are
also illustrated in Figure 1. Only a very small number of parameters is introduced in that
module. By tuning these parameters, the pre-training representations of the pretext task
can be well transferred to the downstream tracking task.

3.3. Migrating Pre-Trained Decoders

Motivation. Recently, some works have pointed out that discarding part of the pre-
trained network may cause information loss [38] and taking full advantage of pre-trained
models can contribute to improving the generalization of detectors [13] in the MAE pre-
training method. To verify whether the pre-trained decoder contributes to downstream
tracking tasks, we designed a set of comparative experiments. As illustrated in Figure 2, we
insert the decoder module in the pre-training stage for predicting the image pixels between
the encoder and tracking head. Only the features of the search region are imported into
the decoder, so it can be regarded as an enhanced part of the tracking head. We adopt the
corner head [19] without output embedding weighting as the tracking head for all variants.
For variants with a decoder structure, the tracking head is reduced to only two convolution
layers for the top-left and bottom-right score maps’ estimation. We also set a variant of
random decoder for comparing the effectiveness of the pre-trained weights, as in Figure 2c.
Experiments are conducted on LaSOT [39] and LaSOText [40]. Full fine-tuning is employed
for all and the training settings are mostly the same as for OSTrack [10]. Details are in
Section 4.1.

As shown in Table 1, with the pre-trained decoder as the main part of the tracking
head, just two additional convolution layers random initialized can achieve an even better
performance than the baseline tracker. However, the decoder which is random initialized
shows a decline in performance especially for the LaSOText benchmark. We think that the
pre-trained decoder module indeed has benefits for tracking.
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Figure 2. Three variants of trackers for performance effects of pre-trained decoder.

Table 1. Comparison of three variants for exploration of pre-trained decoder. AUC scores are reported.

Tracker LaSOT Improvement LaSOText Improvement

Baseline 68.9 - 48.7 -
Pre-trained Decoder 69.3 +0.4% 48.5 −0.2%

Random Decoder 68.6 −0.3% 47.5 −1.2%

Decoder with Adapter Tuning. To taking full advantage of the pre-trained models,
we apply the adapter tuning in decoder blocks as in Section 3.2 as well. Decoder blocks are
expected to enhance the generalization ability and robustness when transferring to tracking.

4. Experiments
4.1. Implementation Details

Our models are trained with the AdamW optimizer [41] on two NVIDIA A100 GPUs
(NVIDIA, Santa Clara, CA, USA), with each GPU holding a batchsize of 64. Training data
contain training slices of COCO-2017 [42] and LaSOT [39]. Aligned with most trackers,
data augmentations contains brightness jitter and horizontal flip. A total of 300 epochs are
conducted with 6 × 104 template–search pairs each epoch, and each template–search pair
is sampled among all the frames of a sequence. The learning rate decreases by a factor of
0.1 after the first 240 epochs. The learning rate is set as 2 × 10−4 for both the encoder and
decoder and 2 × 10−5 for the remaining parameters. The compressed dimension k of the
adapter structure is 128.

We present two variants for our model: B256 and L256. For B256, we adopt the ViT-
Base model pre-trained with MAE [2]; for L256, we adopt the ViT-Large model pre-trained
with MAE [2]. The ViT-Base model contains 12 layers in the encoder part and 8 layers in the
decoder part, with an embedding dimension of 768. The ViT-Large model contains 24 layers
in the encoder part and 8 layers in the decoder part, with an embedding dimension of 1024.
For the B256 and L256 variants, the search region is resized to 256 × 256 pixels and cropped
with 42 times the region of the target size; the template region is resized to 128 × 128 pixels
and cropped with 22 times the region of the target size. The channel dimension k of the
adapter module is 128 for all variants of model.

4.2. Mainstream Benchmarks

LaSOT [39]. A total of 280 videos constitute the LaSOT testing dataset. That bench-
mark is popular with its large scale and relatively long average duration. As reported in
Table 2, our AdaDe-B256 achieves a 68.7 AUC score, which does not reflect a performance
improvement or advantage, while AdaDe-L256 achieves a 71.2 AUC score, which exceeds
the corresponding baseline tracker with a 3.1% performance increase. For larger pre-trained
models, adapter tuning shows better performance advantages compared with full fine-
tuning. That phenomenon may indicate that larger models are more prone to weaken in
terms of feature representation ability during downstream fine-tuning training compared
to adapter tuning.
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LaSOText [40]. The LaSOText benchmark is an expansion of LaSOT, and consists of
150 videos among 15 categories. It adopts the one-shot evaluation protocol, which ensures
that there is no intersection between categories in the testing dataset with the categories
in the LaSOT’s training dataset. Rather than the MATLAB evaluation toolkit, we take
the Python toolkit available from OSTrack [10] for a fair comparison with other trackers’
reported results. Our AdaDe-B256 achieves a 49.5 AUC score and AdaDe-L256 achieves a
50.3 AUC score. Compared with the baseline tracker, our trackers also outperform by 0.8%
and 1.3% performance increases, respectively.

TrackingNet [43]. The TrackingNet benchmark is a massive short-term tracking
benchmark that includes 511 videos for evaluation. From Table 2, we can also see that our
tracker works well compared with other methods. On the basis of the adapter tuning of
the pre-trained backbones, we also migrate pre-trained transformer decoders into MAE
pre-training to enhance the tracking head. This technique can enhance the expressive power
of the model to a certain extent, resulting in improved tracking accuracy. The proposed
method can work well in both the long-term and short-term tracking datasets.

UAV123 [44], NFS [45] and TNL2K [46]. UAV123 and NFS are two small benchmarks
with 123 videos captured by drones and 100 videos, respectively. TNL2K is a recently
launched massive tracking benchmark containing 700 linguistically labeled sequences.
For TNL2K, we provide the evaluation results of the Python toolkit. The experimen-
tal results on these challenging benchmarks show that the proposed method achieves a
competitive performance compared to many state-of-the-art algorithms (shown in Table 3).

Table 2. Comparison with the state of the art on the LaSOT [39], LaSOText [40] and TrackingNet [43]
benchmarks. The best performance is in bold.

Tracker LaSOT LaSOT_ext TrackingNet
AUC P_norm P AUC P_norm P AUC P_norm P

AdaDe-L256 71.2 (+3.1) 80.9 78.6 50.3 (+1.3) 60.6 57.3 84.3 88.8 83.8
Baseline-L256 68.1 76.5 73.8 49.0 58.6 56.1 83.8 88.2 83.3

AdaDe-B256 68.7 (−0.2) 78.5 74.6 49.5 (+0.8) 59.9 56.0 82.0 86.6 80.1
Baseline-B256 68.9 78.1 74.5 48.7 58.7 55.3 82.8 87.2 81.2

LoRAT-B-224 [47] 72.4 81.6 77.9 48.5 61.7 55.3 83.7 88.2 82.2
GRM-L320 [34] 71.4 81.2 77.9 - - - 84.4 88.9 84.0
GRM-B256 [34] 69.9 79.3 75.8 - - - 84.0 88.7 83.3

OSTrack-B384 [10] 71.1 81.1 77.6 50.5 61.3 57.6 83.9 88.5 83.2
OSTrack-B256 [10] 69.1 78.7 75.2 47.4 57.3 53.3 83.1 87.8 82.0

SimTrack-L [9] 70.5 79.7 - - - - 83.4 87.4 -
SimTrack-B [9] 69.3 78.5 - - - - 82.3 86.5 -

SwinTrack-B [22] 69.6 78.6 74.1 47.6 58.2 54.1 82.5 87.0 80.4
Mixformer-L [48] 70.1 79.9 76.3 - - - 83.9 88.9

MixFormer-22k [48] 69.2 78.7 74.7 - - - 83.1 88.1 81.6
AiATrack [49] 69.0 79.4 73.8 47.7 55.6 55.4 82.7 87.8 80.4
ToMP-101 [50] 68.5 - - 45.9 - - 81.5 86.4 78.9

GTELT [51] 67.7 - 73.2 45.0 54.2 52.4 82.5 86.7 81.6
KeepTrack [37] 67.1 77.2 70.2 48.2 58.1 56.4 - - -
STARK-101 [19] 67.1 77.0 - - - - 82.0 86.9 -

TransT [20] 64.9 73.8 69.0 - - - 81.4 86.7 80.3
SiamR-CNN [52] 64.8 72.2 - - - - 81.2 85.4 80.0

TrDiMP [21] 63.9 - 61.4 - - - 78.4 83.3 73.1
LTMU [53] 57.2 - 57.2 41.4 49.9 47.3 - - -
DiMP [54] 56.9 65.0 56.7 39.2 47.6 45.1 74.0 80.1 68.7

SiamPRN++ [55] 49.6 56.9 49.1 34.0 41.6 39.6 73.3 80.0 69.4
SiamFC [56] 33.6 42.0 33.9 23.0 31.1 26.9 57.1 66.3 53.3
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Table 3. Comparison with the state-of-the-art trackers on the UAV123, NFS and TNL2K benchmarks
in AUC scores.

Tracker UAV123 NFS TNL2K

AdaDe-L256 69.9 67.5 59.1
AdaDe-B256 68.5 67.3 56.2

GRM-L320 [34] 72.2 66.0 -
GRM-B256 [34] 70.2 65.6 -

OSTrack-384 [10] 70.7 66.5 55.9
OSTrack-256 [10] 68.3 64.7 54.3

MixFormer-22k [48] 70.4 - -
KeepTrack [37] 69.7 66.4 -
STARK-101 [19] 68.2 66.2 -

TransT [20] 68.1 65.3 50.7
TrDiMP [21] 66.4 66.2 -

SiamR-CNN [52] 64.9 63.9 -
SiamPRN++ [55] 59.3 57.1 -

4.3. Other Benchmarks

To further evaluate the robustness and generalization of the proposed tracker, we
select four challenging benchmarks focusing on special and challenging scenarios or targets:
AVisT [57] with adverse visibility scenarios, UAVDark135 [58] and DarkTrack2021 [59] with
night-time scenarios, and TOTB [60] with transparent objects. These scenarios or targets
rarely emerge in most tracking datasets, leading to domain gaps and difficulty in tracking.

AVisT [57] is a recently released tracking benchmark with diverse scenarios and
adverse visibility, covering severe weather conditions, obstruction effects such as water
splashing and unfavorable imaging effects such as low light, distractor objects or camou-
flage. That benchmark consist of 120 sequences and presents great tracking challenges
under complicated conditions.

UAVDark135 [58] and DarkTrack2021 [59] are two night-time tracking benchmarks,
containing 135 and 115 videos, respectively. The results of all comparisons are reported in
Tables 4 and 5.

For the adverse visibility tracking dataset AVisT, our AdaDe-B256’s performance only
outperforms GRM-B256 [34] with a 0.1% increase, while AdaDe-L256 outperforms AdaDe-
B256 with a 5.3% performance increase. Compared to other state-of-the-art trackers, AdaDe-
L256 achieves a 2.3% gain over OSTrack-B384 [10] and 4.8% gain over GRM-L320 [34]. This
shows the excellent performance of our trackers.

For two night-time datasets, our AdaDe-B256’s performance is basically on par with
OSTrack-B256 [10]. Similar to previous conclusions on the AVisT benchmark, performance
on these night-time datasets benefits a lot from larger pre-trained weights, indicating
that a larger model can indeed bring stronger generalization ability. The AdaDe-L256
tracker exceeds the AdaDe-B256 tracker with a 4.8% increase on the UAVDark135 dataset
and a 4.1% increase on the DarkTrack2021 dataset. Although no specific night-time data
are utilized for training additionally in our method, we also compare our tracker with
DCPT [61] and DiMP-SCT [59] which employ night-time datasets for training. DCPT [61]
is a recent night tracker which is designed with prompt tuning with night-time data of
BDD100K [62] and SHIFT [63]. DiMP-SCT [59] learns a lowlight enhancer module with
paired low/normal light images from the LOL [64] dataset. The performance of the AdaDe-
L256 tracker also exceeds DCPT [61] by 2.0% on the UAVDark135 dataset and is only
0.7% behind on the DarkTrack2021 dataset. These comparative results show our better
generalization ability in tracking. More detailed analysis on the generalization ability will
be unfolded in ablation studies.
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Table 4. Comparison with the state-of-the-art trackers on AVisT.

Tracker AVisT
AUC OP50 OP75

AdaDe-L256 59.9 69.6 52.1
AdaDe-B256 54.6 63.3 44.5

OSTrack-B384 [10] 58.1 67.9 48.6
OSTrack-B256 [10] 56.2 65.3 46.5

MixFormerL-22k [48] 56.0 65.9 46.3
MixFormer-22k [48] 53.7 63.0 43.0

GRM-L320 [34] 55.1 63.8 46.9
GRM-B256 [34] 54.5 63.1 45.2
STARK-101 [19] 50.5 58.23 39.0
KeepTrack [37] 49.4 56.3 37.2

TransT [20] 49.0 56.4 37.2
TrDiMP [21] 48.1 55.3 33.8

SiamPRN++ [55] 39.0 43.5 21.2
DiMP [54] 38.6 41.5 22.2

Table 5. Comparison with the state-of-the-art trackers on the UAVDark135 and DarkTrack2021
benchmarks. The symbol * means that training of the tracker involves additional night-time data. We
re-evaluate the performance of DCPT [61] with a Python toolkit.

Tracker UAVDark135 DarkTrack2021
AUC P_norm AUC P_norm

AdaDe-L256 59.7 72.0 53.3 63.9
AdaDe-B256 54.9 67.3 49.2 58.5

DCPT * [61] 57.7 70.1 54.0 64.6
DiMP-SCT * [59] 56.2 71.7 52.1 67.7

OSTrack-B256 [10] 55.1 66.2 49.1 60.1
PrDiMP [65] 50.7 63.8 46.4 58.0
DiMP18 [54] 49.4 63.9 47.1 62.0

4.4. Visualizations

We visualize some cases of our tracker and the state-of-art trackers for comparison,
as shown in Figure 3. Our tracker performs better than OSTrack-B256 [10] in some cases.

Ground Truth AdaDe-B256 OSTrack-B256

Figure 3. Visualization cases of our AdaDe-B256 tracker and other trackers.

4.5. Effect of Decoder

We evaluate the effects of the decoder part in Table 6. For the B256 variant, adding the
decoder brings a performance improvement on almost all tracking benchmarks. The per-
formance improves by 0.4% on LaSOT and 0.8% on LaSOText. For the night-time tracking
benchmarks, a 1.7% performance increase is achieved on UAVDark135 and a 1.9% perfor-
mance increase is achieved on DarkTrack2021. For the L256 variant, there is no significant
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fluctuation in performance on LaSOT and LaSOText with the addition of the decoder, while
a 1.5% performance increase is achieved on AVisT and a 1.6% performance increase is
achieved on UAVDark135. These results are consistent with the B256 variant. The signif-
icant performance increase on these challenging benchmarks indicates that the decoder
promotes the robustness and generalization of tracking.

Table 6. Ablation studies of generalization analysis. AUC scores are reported. The uparrow represents
the improvement and the downarrow represents the decrease.

Variant Method LaSOT LaSOText AVisT UAVDark135 DarkTrack2021

L256 + Adapter Module 71.2 50.6 58.4 58.1 53.8
+ Adapter Module + Decoder 71.2 (0.0 ↑) 50.3 (0.3 ↓) 59.9 (1.5 ↑) 59.7 (1.6 ↑) 53.3 (0.5 ↓)

B256 + Adapter Module 68.3 48.7 54.9 53.2 47.3
+ Adapter Module + Decoder 68.7 (0.4 ↑) 49.5 (0.8 ↑) 54.6 (0.3 ↓) 54.9 (1.7 ↑) 49.2 (1.9 ↑)

4.6. Limitations

Although the proposed method achieves a comparable performance on most track-
ing benchmarks with the state-of-the-art trackers, it still has some limitations. First, al-
though there may be different impacts due to the distribution of different datasets, the in-
troduction of the pre-trained decoder does not bring a completely stable improvement on
all datasets. Secondly, the introduction of the adapter tuning brings more computation
costs during inference. An inference-friendly parameter-efficient tuning may be considered
and explored.

5. Conclusions

In this work, we present a novel approach to parameter efficiency tuning by migrating
pre-trained decoders, to design an effective tracking method. First, we freeze the pre-trained
weights of the backbone and then add a dynamic adapter structure for every transformer
block for tuning, which makes online fine-tuning effective. Second, we migrate the pre-
trained decoder blocks to the tracking head, which is very suitable for object localization.
The experimental results demonstrate that the presented tracking algorithm achieves better
properties than other competing methods on many challenging tracking benchmarks.
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