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Abstract: In recent years, intelligent methods based on transfer learning have achieved significant
research results in the field of rolling bearing fault diagnosis. However, most studies focus on the
transfer diagnosis scenario under different working conditions of the same machine. The transfer
fault diagnosis methods used for different machines have problems such as low recognition accuracy
and unstable performance. Therefore, a novel multi-task self-supervised transfer learning framework
(MTSTLF) is proposed for cross-machine rolling bearing fault diagnosis. The proposed method is
trained using a multi-task learning paradigm, which includes three self-supervised learning tasks
and one fault diagnosis task. First, three different scales of masking methods are designed to generate
masked vibration data based on the periodicity and intrinsic information of the rolling bearing
vibration signals. Through self-supervised learning, the attention to the intrinsic features of data in
different health conditions is enhanced, thereby improving the model’s feature expression capability.
Secondly, a multi-perspective feature transfer method is proposed for completing cross-machine
fault diagnosis tasks. By integrating two types of metrics, probability distribution and geometric
similarity, the method focuses on transferable fault diagnosis knowledge from different perspectives,
thereby enhancing the transfer learning ability and accomplishing cross-machine fault diagnosis of
rolling bearings. Two experimental cases are carried out to evaluate the effectiveness of the proposed
method. Results suggest that the proposed method is effective for cross-machine rolling bearing
fault diagnosis.

Keywords: fault diagnosis; rolling bearing; self-supervised learning; transfer learning; multi-
task learning

1. Introduction

Rolling bearings, as crucial components of rotating machinery, directly affect the
stability of equipment operation. Often operating under variable loads and complex
environments, rolling bearings are prone to faults. These faults can lead to economic
losses at best and safety accidents at worst [1–3]. Therefore, fault diagnosis of rolling
bearings is of great value for ensuring the safe operation of rotating machinery. With
the continuous development of deep learning, intelligent fault diagnosis technology has
achieved significant results in the field of rolling bearing fault diagnosis and has become
a hot research topic. Most deep learning-based rolling bearing fault diagnosis methods
generally assume that the probability distributions of the training and testing datasets are
similar [4,5]. However, in practical situations, the operating conditions of rolling bearings
are time-variant, and the distributions of data collected under time-variant conditions are
different. Consequently, a model that performs well on data from one operating condition
may perform poorly on data from another condition.
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Transfer learning can acquire generalized and transferable fault diagnosis knowledge,
enabling fault diagnosis of rolling bearings under different working conditions without
training models from scratch using new data or fine-tuning the models with a small quantity
of new data [6]. Domain adaptation, as a commonly used transfer learning method, is
widely applied in the field of fault diagnosis [7]. Wasserstein distance, as a commonly
used probability distribution measurement method, has been widely studied in the field
of domain adaptive rolling bearing fault diagnosis [8]. Wang et al. [9] proposed a new
cross domain fault diagnosis method based on conditional Wasserstein distance, which
improved the model’s ability to transfer fault diagnosis. To solve the problem of bearing
transfer fault diagnosis from multiple domains to the target domain, Zhao et al. [10]
proposed a transfer learning approach called conditional weighting transfer Wasserstein
auto encoder. By utilizing Wasserstein distance to generate transferable features that
approximate Gaussian distributions, the ability of the model to diagnose transfer faults has
been improved. However, Wasserstein distance only narrows down the difference between
the source and target domains from the perspective of probability distribution, and a single
measurement method may not fully exploit transferable features when facing more complex
cross-mechanical fault diagnosis problems. Cosine similarity, as a measurement method
for mining similarity relationships between data, has been applied in fields such as image
recognition, neural network optimization, and computer recommendation systems [11–13].
Therefore, combining Wasserstein distance and cosine similarity, a multi-perspective feature
transfer method is proposed to solve domain adaptation.

Although the aforementioned domain adaptation methods can achieve fault diagnosis
of bearings under different working conditions, the data used for model training all come
from the same machine. In practical applications, data usually come from multiple ma-
chines of the same type or different types of machines. The differences between data also
need to consider the impact of objective factors such as machine characteristics and operat-
ing environments [14,15]. Compared with data obtained from different working conditions
of the same machine, the distribution differences in data collected from different machines
are greater, and the negative impact on the model is greater. Some studies have attempted to
solve the problem of cross-machine rolling bearing fault diagnosis. Yang et al. [16], inspired
by the idea of transfer learning, proposed a domain adaptation transfer neural network for
transferring diagnostic knowledge from laboratory datasets to actual locomotive bearings,
achieving bearing transfer fault diagnosis. Guo et al. [17] proposed a deep convolutional
transfer learning network based on transfer learning for transfer fault diagnosis between
different machines, improving the model’s transfer learning ability by maximizing domain
recognition errors and minimizing probability distribution distances. To improve the do-
main generalization ability of the model, Jia et al. [18] used defined causal and noncausal
factors to train a fault diagnosis model. Jia et al. [19] proposed an unsupervised domain
adaptation method for solving cross-machine fault diagnosis problems that uses Wasser-
stein distance to measure the similarity between samples, determine soft pseudo-labels,
and improve the accuracy of fault diagnosis in the target domain.

The aforementioned methods all employ a single-task training approach, which is
prone to the problem of data specification. Regarding the large differences between different
machines, exploring universal fault features is more helpful for solving cross-machine fault
diagnosis problems. Multi-task learning provides a powerful tool that can enhance the
model’s adaptive learning ability by focusing on the common knowledge between multiple
related tasks [20]. Multi-task learning can uncover the underlying general features among
different tasks and alleviate overfitting by adjusting the model’s attention to multiple
tasks, which has a positive guiding effect on the completion of transfer diagnosis tasks.
Xie et al. [21] proposed a novel multi-task attention-guided network for achieving multi-
objective fault diagnosis under small samples. The method consists of a task-shared
network capable of learning global features and a task-customized attention network
capable of completing different tasks, enabling the simultaneous training of different tasks
and the extraction of common domain knowledge valuable for multiple tasks. Moreover,
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to improve the model’s task adaptability, an adaptive weighting method was proposed
to adjust the weight parameters of the multi-task model. Kong et al. [22] proposed a
multi-task self-supervised method to obtain diagnostic knowledge from unlabeled data,
designing three self-supervised learning tasks to extract information contained in vibration
signals from different levels, completing fault diagnosis tasks for bearings and motors. In
summary, multi-task learning can learn general fault diagnosis knowledge and has certain
advantages in fault diagnosis. However, the aforementioned methods all have attached
some constraints to multi-task learning design, without paying attention to the temporal
correlation of vibration data. Therefore, introducing multi-scale information of vibration
data, three multi-scale self-supervised learning tasks are proposed.

Combining the advantages of transfer learning and multi-task learning may provide
assistance in addressing the issue of cross-machine rolling bearing fault diagnosis. There-
fore, the multi-task self-supervised transfer learning framework (MTSTLF) is proposed for
rolling bearing fault diagnosis on cross-machine. The main contributions are summarized
as follows:

1. A novel multi-task self-supervised transfer learning framework is proposed for rolling
bearing fault diagnosis on cross-machine. The proposed method is trained on three self-
supervised tasks and one fault diagnosis task, which can extract general transferable
fault diagnosis features via multi-task learning. By multi-task learning, the ability of
the model to resist overfitting has been improved. The effectiveness of the proposed
method is evaluated on three datasets from different test-beds. The experimental
results indicate that the proposed multi-task framework can complete cross-machine
rolling bearing fault diagnosis effectively.

2. Multi-scale self-supervised learning tasks are constructed to fully extract the intrinsic
information from the original vibration data. Leveraging the label-free data feature
extraction capability of self-supervised learning, the model is more capable of focusing
on the data rather than the task level. Moreover, different self-supervised training
tasks focus on different intrinsic features of the data, which enhances the diversity in
the model’s feature extraction capabilities.

3. A multi-perspective feature transfer method based on Wasserstein distance and cosine
similarity is proposed to acquire transferable fault diagnosis knowledge, thereby
completing fault diagnosis of rolling bearings on cross-machines. By integrating
probability distribution metrics and geometric similarity metrics, the model pays
attention to diverse transferable diagnostic knowledge from different levels, enhancing
the model’s transfer diagnostic ability, and thus efficiently accomplishing the task of
cross-machine bearing fault diagnosis.

The rest of this paper is organized as follows: In Section 2, the related researches
about self-supervised learning, transfer learning, and multi-task learning are introduced
briefly. The proposed method is described in detail in Section 3. In Section 4, two cross-
machine rolling bearing transfer experiments are carried out to verify the effectiveness of
the proposed method. The conclusions are drawn in Section 5.

2. Related Works
2.1. Self-Supervised Learning

Self-supervised learning is a branch of unsupervised learning that trains models
using unlabeled data to automatically generate labels. It enables models to learn valuable
knowledge from unlabeled data by learning useful representations and parameters. Stacked
autoencoders and deep belief networks can be considered early forms of self-supervised
learning, which learn from unlabeled data through a layer-wise greedy training approach.
After the model is pre-trained, it is usually fine-tuned. The pre-trained parameters of the
model are transferred to downstream tasks, which can improve the model’s performance
on the target task with simple training from scratch.

The design of pre-training tasks takes various forms. They often involve transform-
ing or masking a part of the original input data, with the aim of forcing the model to
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predict the missing parts of the data, thereby learning the intrinsic features of the data.
Self-supervised learning can be divided into generative and discriminative types. Gen-
erative self-supervised learning takes the entire or part of the input data as the model’s
predicted output, with the goal of making the model’s generated output closer to the
original input data [23,24]. Typical generative self-supervised learning models consist of
an encoder and a decoder, such as generative adversarial networks (GANs) [25]. Discrimi-
native self-supervised learning is trained by discriminating positive and negative samples,
requiring well-designed sample pairs for training. Typical methods include contrastive
learning [26,27], which learns valuable knowledge in the process of distinguishing the
authenticity of samples. However, the discriminative self-supervised learning method
needs manually created sample pairs, which relies on expert experience. This paper
uses a generative self-supervised learning approach and does not perform pre-training,
directly integrating the constructed self-supervised tasks into the proposed multi-task
learning framework.

2.2. Transfer Learning

Transfer learning primarily aims to acquire transferable knowledge from source do-
main tasks and then apply this knowledge to related but distinct target domain tasks.
Transfer learning encompasses two concepts: domain and task. A domain consists of
a feature space and a probability distribution, while a task includes a label space and a
decision function, which must be learned from sample data. In practice, a domain can
be observed through examples with or without labels. For instance, the source domain
is composed of labeled examples, whereas the target domain contains entirely unlabeled
examples. Transfer learning utilizes the knowledge obtained in the source domain to
improve the decision function learned in the target domain, making the target domain
decision function better adapted to the target domain task. For cross-machine rolling
bearing fault diagnosis, transfer learning involves training a model on the data from one
machine and then transferring and applying it to the data from another machine, ensuring
good diagnostic performance.

Domain adaptation is widely applied in the field of fault diagnosis. The maximum
mean discrepancy (MMD) is usually chosen as a means of domain adaptation [28,29]. MMD
uses the method of mapping features into a high-dimensional kernel space for computation,
which is not conducive to the gradient computation process during model training [30].
The Wasserstein distance does not have the shortcomings of MMD and is therefore chosen
as the measurement method.

2.3. Multi-Task Learning

Multi-task learning was initially widely applied in fields such as computer vision
and natural language processing, capable of fully leveraging the intrinsic correlation
information between different tasks to handle multiple tasks simultaneously. Unlike
traditional deep learning, which processes each task independently, multi-task learning
aims to achieve multiple task objectives by simultaneously optimizing the loss functions of
multiple tasks [31]. Multi-task learning is similar to the human brain’s ability to handle
multiple tasks and has the following advantages: (1) Multi-task learning can avoid the
repetitive learning of general features across tasks, improving training efficiency. (2) Multi-
task learning can learn more generalized features by reducing the interference of noise
information from multiple tasks. (3) Multi-task learning can train a generalized model by
balancing the optimization objectives of multiple tasks, making the model more adaptable.
(4) Multi-task learning can focus on the correlation features between multiple tasks, learning
more complex knowledge and alleviating overfitting phenomena in single-task frameworks.

3. The Proposed MTSTLF Method

The proposed method consists of self-supervised learning task and transfer fault
diagnosis task. As shown in Figure 1, the self-supervised learning consists of feature
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encoder and feature decoder. The backbone of the self-supervised learning is convolutional
and deconvolutional networks, with the encoder using a convolutional network and the
decoder using a deconvolutional network. These are designed as three parallel network
branches to simultaneously process three self-supervised tasks. The fault classifier utilizes
three fully connected layers and incorporates Wasserstein distance and cosine similarity
into the loss function. These metrics measure the differences between data from various
aspects, and by leveraging the backpropagation algorithm, the parameters are updated to
achieve transfer fault diagnosis. The parameters of the proposed method are as shown in
Table 1, with the decoder structures of the three branches being consistent with the decoder
network parameters.
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Table 1. Details on the architecture of the proposed method.

Modules Description of Layer Parameter

Feature
encoder

Kernel size of first convolutional layer 1∗64
Number of units (input, output) in first convolutional layer (1, 16)

Kernel size and stride of max-pooling layer 2∗2/2
Kernel size of second convolutional layer 1∗3

Number of units in second convolutional layer (16, 16)
Kernel size and stride of max-pooling layer 2∗2/2

Kernel size of forth convolutional layer 1∗3
Number of units in third convolutional layer (16, 16)

Kernel size of third convolutional layer 1∗3
Kernel size and stride of max-pooling layer 2∗2/2

Feature
decoder

Kernel size of first deconvolutional layer 1∗3
Number of units (input, output) in first deconvolutional layer (16, 16)

Kernel size and stride of up max-pooling layer 2∗2/2
Kernel size of second deconvolutional layer 1∗3

Number of units (input, output) in second deconvolutional layer (16, 16)
Kernel size and stride of up max-pooling layer 2∗2/2

Kernel size of third deconvolutional layer 1∗3
Number of units (input, output) in third deconvolutional layer (16, 1)

Kernel size and stride of up max-pooling layer 2∗2/2

Classifier
Number of units (input, output) in first full-connected layer 16∗120/512

Number of units (input, output) in second full-connected layer 512/512
Number of units (input, output) in third full-connected layer 512/4
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At present, there is not a systematic method to determine the structure of various deep
learning models and the tasks or hyperparameters in the proposed method are confirmed
by debugging experience and experiments.

The model is built based on the PyTorch 1.14.0 deep learning framework and Python
3.11, which runs on Windows 10 with 8 GB RAM.

3.1. Multi-Scale Self-Supervised Learning Tasks

Usually, due to the collisions between equipment components during operation, the
vibration signals exhibit a multi-resonance phenomenon across the frequency range. The
characteristic information of the vibration signals propagates on multiple time scales, and
focusing on the information of the vibration signals at different time scales is helpful for fully
extracting valuable fault diagnostic features [32]. Therefore, a multi-scale self-supervised
learning task design method has been proposed for the commonly used masking method
in designing self-supervised tasks.

As shown in Figure 2, three masking methods of different scales have been designed.
The vibration amplitude of the signal is set to 0 at the time points where masking is required,
so the process of self-supervised learning is the process of restoring the original signal
based on the masked signal. In this process of self-supervised learning, the model can learn
the intrinsic multi-scale characteristics and periodic information of the vibration signal.
Given an input sample x = {x1, x2, . . . , xn}, n > 0, n indicates the number of data points
contained in the input sample, n can be divided by 2. The mask formulas for different time
scales are defined as follows:

x = {x1, x2, x3, . . . , xn−1, xn}, [x1+2∗τ∗(i−1), x(2i−1)∗τ ] = 0, 1 ≤ i ≤ n/(2 ∗ τ) + 1 (1)

where τ is the time scale; [•] denote the numerical values from the sample in order, includ-
ing the front and back values.
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To realize restoring signals via self-supervised learning, the mean square error is
selected as the loss function. The loss of the self-supervised process is ultimately defined as

Lsel f -supervised =
1

3n

3

∑
τ=1

n

∑
i=1

(y(i) − x(i))
2 (2)

where L denotes the final loss of three self-supervised tasks, and y is the output of the
model with the input x.

3.2. Multi-Perspective Feature Transfer Method

Maximum mean discrepancy (MMD) is one of the typical measures of probability
distributions, often used in transfer learning to calculate the distribution differences be-
tween different domain data, serving as an optimization target to train models and narrow
the distribution of cross-domain data. MMD uses the method of mapping features into
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a high-dimensional kernel space for computation, which is not conducive to the gradi-
ent computation process during model training. The Wasserstein distance does not have
the shortcomings of MMD and is therefore chosen as the measurement method. The
Wasserstein distance is a measure commonly used to explore the shortest distance or mini-
mum difference between two distributions, and it is very important in the comparison of
probability distributions. The definition of the Wasserstein distance is as follows:

W(P(X), P(Y)) = inf
µ∈∏ (P(X),P(Y))

E(x,y)∼µ[∥x − y∥] (3)

where ∏(P(X), P(Y)) denotes the joint distribution µ(x, y) of (x, y), P(X) is the mar-
gin distribution of variable x, P(Y) is the margin distribution of variable y, and inf(•)
denotes infimum.

Cosine similarity is the cosine of the angle between two vectors in space, reflecting
the relative spatial position of the vectors, and is a geometric measure of their orientation.
Given two random variables X and Y, the cosine similarity between them is calculated as
follows:

Cosine(X, Y) =
X•Y

∥X∥ ∗ ∥Y∥ =

n
∑

i=1
Xi ∗ Yi√

n
∑

i=1
X2

i ∗
√

n
∑

i=1
Y2

i

(4)

Therefore, by narrowing the distribution differences between the health condition
features of cross-machine bearings from the perspective of probability distribution, the
model can learn features with similar probability distributions. From the perspective of
geometric similarity, by reducing the spatial position angles between the health condition
features of cross-machine bearings, the model can extract positional information between
features. Integrating probability distribution and geometric similarity allows for a multi-
faceted observation and learning of transferable fault diagnosis knowledge, helping the
model to extract rich transferable diagnostic knowledge, thereby enhancing the model’s
transfer fault diagnosis capability. The loss of multi-perspective feature transfer method is
defined as

Ltrans = W(P(S), P(T))+Cosine(X, Y) (5)

3.3. Multi-Task Learning of the Proposed Method

The multi-task learning of the proposed method includes data reconstruction and
fault diagnosis. In data reconstruction task, MSE is selected as loss function. In fault
diagnosis task, cross-entropy is selected as loss function and the Softmax is the classifier.
Furthermore, the loss of multi-view confusion transfer is designed to realize transfer fault
diagnosis. In multi-task learning, different loss functions are designed. During training, the
weights of the model will not be biased by the task represented by one of the loss functions,
and all tasks will affect the training of other tasks. Therefore, the final model obtained is
trained through balancing multiple tasks, which ensures that the data do not exhibit rapid
convergence or even overfitting on a single task, thus alleviating overfitting. So, the loss of
multi-task learning can be calculated as follows:

Lmulti-task = Lsel f -supervised + Ltrans + Ldiagnosis (6)

3.4. The Procedure for the Proposed Method

The procedure for the MTSTLF method, as presented in Figure 3, mainly includes three
stages: data acquisition, multi-task learning, and fault diagnosis. The general procedures
of the proposed method are summarized as follows:

Step 1: Use a data acquisition system containing test rig and acceleration transducer to
collect various health condition vibration signals of rolling bearings on different machines,



Electronics 2024, 13, 4622 8 of 17

divided into a source domain dataset (training dataset) and a target domain dataset (testing
dataset). All data collected from laboratory environment.
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Step 2: Input both the source domain dataset and the target domain dataset with raw
vibration data into the constructed multi-task learning model simultaneously. The feature
encoder extracts universal features, and the feature decoder completes self-supervised
tasks based on feature extracted by the encoder. The fault classifier identifies the health
status of the bearings by utilizing multiple perspectives information based on Wasserstein
distance and cosine similarity to extract transferable fault diagnosis knowledge.

Step 3: Use the well-trained model to complete fault diagnosis on the target
domain dataset.

4. Experiment Verification
4.1. Experiment 1: CWRU and Ottawa
4.1.1. Dataset Description

The widely used benchmark bearing fault data are supplied through Case Western
Reserve University (CWRU) [33]. As shown in Figure 4, the test setup mainly consists
of a motor, a torque transducer/encoder, and a dynamometer. Single-point faults are
introduced on rolling bearings by using the electro-discharge machining technique. In this
paper, the data utilized are from the drive end bearing under 0hp, corresponding to a motor
speed of 1797 rpm. The data are acquired by an accelerometer transducer, which is fixed
at the top of the bearing block with a sampling frequency of 12 kHz. The experimental
dataset includes three fault types with fault diameters of 0.007 inches, i.e., normal condition
(N), inner race fault (IF), ball fault (BF), and outer race fault (OF). Each health condition
contains 40 samples, and each sample has 1024 data points. The signal waveform is partially
presented in Figure 5b.
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Another dataset is from the University of Ottawa [34]. The experimental test rig
consists of a single-phase motor mounted on a rigid plate supported by anti-vibration
mounts as shown in Figure 6. The shaft is stepped up using a shaft adapter, on which
an SKF E22206 spherical roller bearing is mounted to withstand the load applied by the
cantilever beam. The motor is driven at a constant nominal speed of 1750 rpm and a load
of 400 N. The sampling frequency of the data is 42 kHz, and 10 s of data are collected for
each health condition. The health status of the bearings used in this experiment is healthy,
with ball, inner, and outer race failures. Each health status contains 40 samples, and the
sample length of each sample is 1024. The original signal waveforms of different health
conditions are shown in Figure 5a.
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Two cross-machine transfer fault diagnosis experiments were designed using the
above two datasets. The specific configuration of the experiment is shown in Table 2.

Table 2. The detailed experimental description of cross-machine rolling bearing fault diagnosis.

Task Number Source Domain Target Domain Fault Types and Label The Number of Samples from Each
Health Condition

T0 CWRU Ottawa

Normal/1
Inner race fault/2
Outer race fault/3

Ball fault/4

40

T1 Ottawa CWRU

Normal/1
Inner race fault/2
Outer race fault/3

Ball fault/4

40
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4.1.2. Experimental Result Analysis

To compare and verify the effectiveness of the proposed method, Transfer Component
Analysis (TCA), Deep Domain Confusion (DDC), a Deep Adaptation Network (DAN), and
Domain Consensus Clustering (DCC) [35] were implemented on the cross-machine rolling
bearing fault dataset. The network structure and parameters are stated as follows (it is
worth noting that all models use raw vibration data as input):

4. TCA is a classic transfer learning method that uses MMD as the measurement method
to map the cross-domain data to the same space for distribution difference calculation
without combining in-depth learning. Through grid search technology, the weight
coefficient of TCA regularization term is set to 0.7, and the subspace dimension is 12.

5. The basic structure of DDC is consistent with the proposed method, with the decoder
removed and only MMD used as the migration distance metric.

6. The basic structure of the DAN is consistent with the proposed method, which removes
the decoder. The DAN uses multi-kernel MMD as the transfer distance metric and
calculates the distance of multi-layer output features.

7. The design of the DCC method is consistent with the original literature.

The epoch of DDC, DAN, DCC, and the proposed method is 1000. The learning rate
of DDC and proposed method is 0.0001 and the learning rate of DAN is 0.001.

The comparative experimental results of different methods are presented in Table 3.
From Table 3, it can be observed that the proposed method achieves higher fault diagnosis
accuracy on both transfer tasks T0 and T1 compared to the other four methods, indicat-
ing that the proposed method possesses strong cross-machine migration fault diagnosis
capabilities. A comparison of the experimental results between the DAN and the proposed
method leads to the conclusion that multi-task learning can enhance the ability to extract
valuable features. The knowledge acquired by the model is universal and is not influenced
by the customized weights of the model trained on a single task. In contrast to the single
approach of achieving transfer fault diagnosis by narrowing the probability distribution,
the multi-perspective feature transfer method, which integrates geometric similarity, has
a more powerful transfer learning capability, thereby improving the model’s precision in
cross-machine rolling bearing fault diagnosis tasks. Comparing the two transfer learning
methods, DAN and DDC, it can be seen that the DAN has a higher transfer accuracy rate
than DDC. The reason is that the DAN focuses on richer transferable knowledge due to
using multi-kernel MMD to reduce the distribution difference between the source and
target domain data and calculate the distribution distance of multiple feature layers. Due to
TCA only using MMD to reduce the distribution difference between the source and target
domain data, and extracting only shallow features, it lacks the adaptive learning ability of
deep learning, resulting in the lowest accuracy.

Table 3. The results of different contrastive methods.

Method Accuracy of T0 (%) Accuracy of T1 (%)

TCA 53.13 51.25
DDC 59.38 55.63
DAN 69.38 62.50
DCC 80.00 81.25

MTSTLF (ours) 91.87 91.25

In order to observe the recognition ability of five methods for different health condi-
tions, a confusion matrix was used to demonstrate the effectiveness, as shown in Figure 7.
Figure 7e shows the recognition results of the proposed method. From the numbers on
the diagonal, it can be seen that he recognition accuracy for different health conditions is
100%. The results indicate the following: (1) The proposed method can effectively extract
transferable knowledge and can be fully applied to the data of new machines. (2) The
proposed method can extract distinguishable features of different health conditions, effec-
tively identifying different health conditions of rolling bearings from the data. Compared
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to other methods that can accurately identify normal and inner circle faults, the recognition
performance of TCA is slightly inferior, indicating its poor ability to extract distinguishable
transfer features.
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To clearly observe the transfer fault diagnosis effect of cross-machine rolling bearings,
t-distributed stochastic neighbor embedding (t-SNE) [36] was used to visualize the outputs
of several methods, as shown in Figure 8. From Figure 8a, it can be seen that only the
inner race fault is accurately distinguished, and the characteristics of normal and outer race
faults are difficult to distinguish when they are mixed together. Comparing Figure 8a–e,
the separability of various health conditions in Figure 8e is the best, and the distance
between different health conditions is relatively large. The characteristics of the same
health condition are closely concentrated together, indicating that the proposed MTSTLF
method has the best classification effect and accurately identifies various health conditions
of cross-machine rolling bearings. From Figure 8d, it can be seen that a few normal features
and ball fault features are confused. This makes the model prone to misjudgment when
distinguishing between the two health conditions, and the cross-machine transfer fault
diagnosis ability is low. From Figure 8e, the features between BF and OF are partially
overlapping, indicating that the proposed method is prone to misjudging above types of
faults. From 8a–e, the features from normal condition are distinguishable. The reason
is that the representative characteristics of damaged bearings and normal bearings are
completely different.

In order to observe the performance of different comparison methods in terms of
computational burn, the time used in the training and testing phases at each epoch was
counted. As shown in Table 4, the training time and testing time of the proposed method
are not the worst. Compared with the proposed method, DCC achieved an improvement
in diagnostic accuracy of about 10% in no more than three times the DCC time. Taking into
account both computational burn and diagnostic accuracy, the proposed method does not
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differ significantly in terms of time, but does have a significant improvement in accuracy
and certain advantages.
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Table 4. The computational time of different contrastive methods.

Method Training Time (s) Testing Time (s)

TCA / 2.6
DDC 1.80 0.38
DAN 7.35 0.43
DCC 2.70 0.88

MTSTLF (ours) 6.48 0.83

4.2. Experiment 2: CWRU and SEU
4.2.1. Data Description

The bearing dataset from CWRU is described in Section 4.1.1 and will not be further
elaborated here.

The other dataset uses a gearbox dataset from Southeast University, collected from
the Drivetrain Dynamic Simulator [37]. The experimental platform consists of a motor
controller, a motor, a planetary gearbox, a reduction gearbox, a load, and a load controller.
This experiment used a subset of bearing fault data collected from the operational condition
with a speed load configuration of 20 Hz–0 V (0 Nm) and a sampling frequency of 5120 Hz.
The health conditions of the experiment using bearing data are normal, ball failure, inner
race failure, and outer race failure, with each health condition containing 40 samples and a
sample length of 1024 for each sample. The transfer tasks are listed in Table 5.
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Table 5. The detailed experimental description of cross-machine rolling bearing fault diagnosis.

Task Number Source Domain Target Domain Fault Types and Label The Number of Samples from
Each Health Condition

T2 CWRU SEU

Normal/1
Inner race fault/2
Outer race fault/3

Ball fault/4

40

T3 SEU CWRU

Normal/1
Inner race fault/2
Outer race fault/3

Ball fault/4

40

4.2.2. Experimental Result Analysis

For comparing and verifying the effectiveness of the proposed method, Transfer
Component Analysis (TCA), Deep Domain Confusion, a Deep Adaptation Network, and
Domain Consensus Clustering (DCC) were implemented. The network structure and
parameters are same as in Section 4.1.2.

The comparative experimental results of different methods are shown in Table 6 and
Figure 9. From Table 6, it can be seen that the proposed method MTSTLF (ours) has an
accuracy of 98.33% and 96.67% on two cross-machine migration fault diagnosis tasks, T2
and T3, respectively, which are higher than the recognition accuracy of the other four
methods. This indicates that the proposed method has a relatively strong cross-machine
transfer fault diagnosis ability. Comparing the experimental results of DDC and DAN
methods, it can be seen that the accuracy of the DAN is significantly higher than that of
DDC. This is because the DAN uses multi-kernel MMD to reduce the distribution difference
between the source and target domain data, and calculates the distribution distance of
multiple feature layers, which focuses on richer transferable knowledge and improves the
transfer diagnosis ability. As shown in Figure 9, the cross-machine transfer fault diagnosis
accuracy of TCA is the lowest, mainly because the features extracted by TCA are relatively
shallow and do not have the adaptive learning ability of deep learning, and the internal
attention to the data is not deep enough.

Table 6. The results of different contrastive methods.

Method Accuracy of T2 (%) Accuracy of T3 (%)

TCA 56.25 53.75
DDC 71.25 66.25
DAN 74.37 77.50
DCC 83.13 83.75

MTSTLF (ours) 95.63 90.00

In order to clearly observe the migration fault diagnosis effect of cross-machine rolling
bearings, t-SNE was used to visualize the outputs of the five methods mentioned above,
as shown in Figure 10. From Figure 10a, it can be seen that only normal health conditions
are accurately distinguished, and the characteristics of inner and outer race faults are
mixed together and difficult to distinguish. Comparing Figure 10a–e, the separability of
various health conditions in Figure 10e is the best, and the distance between different
health conditions is relatively large. The characteristics of the same health condition are
closely concentrated together, indicating that the proposed MTSTLF method has the best
classification effect and accurately identifies various health conditions of cross-machine
rolling bearings. From Figure 10d, it can be seen that although most of the features of the
inner and outer race faults are concentrated together, there are still a few outer race features
scattered around the inner race fault features. This makes the model prone to misjudgment
when distinguishing between the two health conditions, and the cross-machine transfer
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fault diagnosis ability is low. By comparing the experimental results in Figure 10a–e with
those in Section 4.1.2, it is not difficult to find that among the three health conditions, normal
health characteristics are the easiest to distinguish and have stronger distinguishability.
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Taking into account tasks T0, T1, T2, and T3, the average accuracy of TCA is the worst,
and the average accuracy of the proposed method is the best. To some extent, multiple
tasks reflect the average performance of the proposed method, which has more advantages
compared to other migration methods.
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Comparing the results in Tables 3 and 5, it can be seen that the accuracy of CWRU/SEU
is better than that of CWRU/Ottawa on the whole regarding the different methods. There-
fore, the greater the difference in operating conditions, the worse the migration effect.

5. Conclusions

A novel multi-task self-supervised transfer learning framework (MTSTLF) is proposed
for cross-machine rolling bearing fault diagnosis. The proposed method is trained using
a multi-task learning paradigm, consisting of self-supervised learning tasks and fault
diagnosis tasks. Based on the multi-scale information contained in the vibration signals
of rolling bearings, three different data masking methods are designed. By training the
proposed multi-task model through self-supervised learning, the attention paid to the
intrinsic features of data in different health conditions is enhanced, thereby strengthening
the ability of the feature extractor to extract task-universal features. A multi-perspective
feature transfer method is proposed for completing cross-machine fault diagnosis tasks.
Focusing on probability distribution and geometric similarity, the method learns fault
diagnosis knowledge that is transferable and has strong discriminative power, thereby
enhancing the transfer learning ability and improving the adaptability of the proposed
method to complex working conditions. Two experimental cases are carried out to evaluate
the effectiveness of the proposed method. The experimental results demonstrate that
the proposed method has strong transfer fault diagnosis capabilities. It can mitigate the
negative impact of machine-specific attributes on the diagnostic ability and can complete
cross-machine fault diagnosis tasks with high precision.

In forthcoming research, we will analyze and discuss more challenges in adapting
models across different machines, such as machine-specific noise and sensor variability.
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