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Abstract: This paper describes an analysis of power supply rejection and noise improvement tech-
niques for an envelope-tracking power amplifier. Although the envelope-tracking technique improves
efficiency, its power supply rejection ratio is much lower than that of average power tracking or
a fixed-supply power amplifier. In FDD systems with the envelope-tracking technique, the low
power supply rejection ratio generates much output noise in the RX band and degrades the receiver’s
sensitivity. An SM is designed by using a 130 nm CMOS process, and the chip die area is 2 × 2 mm2

with a 25-pin wafer-level chip-scale package. The designed SM achieved peak efficiencies of 78–83%
for LTE signals with a 5.8 dB PAPR and various channel bandwidths. For the low-output-noise-
supply modulator, noise reduction techniques using resonant-frequency tuning and a notch filter
are employed, and the measured results show maximum 1.8/5/5.3/3.8/3 dB noise reduction in LTE
bands B17/B5/B2/B3/B7, respectively.

Keywords: envelope tracking; long-term evolution; power amplifier; power supply rejection ratio;
RX-band noise; supply modulator

1. Introduction

Wireless communication systems have a complex modulation scheme and a high
peak-to-average power ratio (PAPR) to maximize data throughput with limited spectrum
resources. Envelope tracking (ET) is an essential efficiency improvement technique for
a power amplifier (PA) to achieve a longer battery lifetime in mobile handsets. An ET
PA has much better efficiency than average power tracking (APT) or a battery-connected
PA undergoing saturated operation under a modulated supply voltage. However, an ET
PA has many difficulties in terms of commercialization and mass production. Receiver
sensitivity due to the PA noise in the receiver band is one of the most difficult issues in ET
PAs in a frequency division duplex (FDD) system because of the simultaneous operations
of transmitting and receiving, as shown in Figure 1. In an APT or a battery-connected
PA, the upconverted supply noise is not a problem because the supply noise can easily
be suppressed by a large decoupling capacitor, and the mixing gains of the RF input and
supply noise are small. Typically, PA noise from RFIC noise is larger than that from supply
modulator (SM) [1–8] noise in an APT PA. In an ET PA, this relation is reversed because
the upconverted supply noise is much larger than in APT due to its larger supply noise
and mixing gain. The supply noise suppression is limited because the large decoupling
capacitor is not allowed to provide a large-bandwidth envelope signal. The mixing gain of
ET is much larger than that of APT because the PA operates in a saturated region.

In [9], the power supply rejection ratio (PSRR) of a PA is analyzed to figure out the
spectral regrowth and mask violation of a 2G system. However, the analysis is for PA
operation in a linear region under a fixed supply voltage, not in a saturation region under
a modulated supply voltage for ET operation. In Section 2, the receiver sensitivity and
PSRR of a PA in a linear region as well as a saturation region are analyzed to specify the
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requirements of SM noise. In [10–13], some noise reduction methods for a supply modulator
are suggested. The reduced switching frequency in [10] improves noise performance, but it
degrades efficiency. The methods in [11–13] are very effective for low levels of noise with
little or no efficiency degradation. In Section 3, noise reduction techniques based on the
above references and a notch filter are described for further improvement in SM noise. In
Section 4, the measured output noise performances of a supply modulator are presented.
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Figure 1. RX-band noise transfer from ET PA in FDD system.

2. Sensitivity and PSRR of Power Amplifier

In an FDD system with an ET PA, the receiver’s sensitivity is degraded by the PA
output noise (PPAN) from the SM noise (PSMN), as shown in Figure 1. The receiver sensi-
tivity is the minimum detectable input power (Pin_min_dBm), and it can be defined in the
following equations:

Pin_min_dBm = 10log10
Pthermal+PAN

1m
+ NF + SNR − AttenDP (1)

Pthermal+PAN(mW) = 10(−174 dBm/Hz+10log10BW)/10 + 10(PPAN /10) (2)

PPAN = PSMN − PSRRPA (3)

where BW is the signal bandwidth in Hz, NF is the noise figure of the receiver path, SNR
is the required signal-to-noise ratio of the system, and AttenDP is the attenuation of the
duplexer. If the specification for sensitivity degradation is lower than 0.4 dB and the
attenuation of the duplexer is 45 dB, the required PA noise is under −139 dBm/Hz. The
required SM noise is determined from the required PA noise and PSRR of the PA (PSRRPA),
as given in (2). The PSRR of the PA can be defined in the following equations:

PSRR = 20 × log10
∆VCC_ωn

∆VPAOUT_ωc±ωn
(4)

PSRRSSB = PSRR + 3dB (5)

where ωn is the TRX offset frequency of the FDD system, ω0 is the RF carrier center
frequency, ∆VCC_ωn is the supply noise amplitude at ωn, and ∆VPAOUT_ωo±ωn is the RF
output noise amplitude at ωo ± ωn. Because the RF output noise due to the supply noise
is located at a positive and negative offset frequency of ωn, the single-sideband PSRR
(PSRRSSB) is a meaningful value that can be used to express RX-band noise. In this paper,
the noise amplitude and noise power are calculated and measured with a 50-Ohm load
impedance for convenience.
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Figure 2 shows the PSRR difference between the linear region and saturated region
of the PA. In the linear region, the PA has a high PSRR because it has little gain variation
due to the supply voltage change. In the saturation region, the PA has a much decreased
PSRR due to the large gain variation over the supply voltage. To quantify and compare the
PSRR of APT and ET, a mathematical PA model [14] is used to simulate gain and the PSRR
at various supply voltages and input/output power values.
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Figure 2. PSRR of PA in linear and saturated regions near P1dB.

Figure 3 shows the simulation results, and the simulated PSRR is well matched at a
low frequency offset (tens of MHz) from the carrier frequency. For a large frequency offset
(larger than 100 MHz), the PSRR increased due to the reduced gain caused by the limited
PA bandwidth. In APT mode under 3.5 V, the PSRRSSB range is from −3 dB to over 50 dB.
The average PSRRSSB of APT is about 15 dB for the LTE signal, with a 6 dB PAPR. In ET
mode, the PSRRSSB curve is located around 0 dB, and it is changed by an envelope-shaping
function and the saturation level. The average PSRRSSB of ET is about 0 dB for LTE, and
its slope is about −4 dB per 1 dB of output power. From this result and the required PA
output noise, the required SM noise is determined to be about −134 dBm/Hz. If there is a
margin in the SM noise, the ET PA system has many advantages such as better sensitivity,
reduced requirement for duplexer attenuation, and higher PA efficiency due to having
more saturated ET operation with a reduced PSRR. Therefore, noise reduction techniques
are essential in SM design.
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3. Trade-Off Between Efficiency and RX-Band Noise

In the ET PA, the operating point of the PA is an important factor in determining
efficiency and RX-band noise. If the PSRR is not an important factor (TDD system, good
duplexer isolation, good SM noise), case 1 in Figure 4, having the highest PAE (Power-
Added Efficiency) and a poor PSRRSSB, is a suitable operating curve. If the PSRR is an
important factor (FDD system, poor duplexer isolation, poor SM noise), case 2, having
a good PSRRSSB and reduced PAE, is a suitable operating curve. Figure 5 shows the
characteristics of the PA according to the saturation level in ET operation. As shown
in this figure, the efficiency of the PA and RX-band noise (or PSRR) are in a trade-off
relationship with each other, and the operating curve should be carefully determined by
the system requirements.
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4. Low-Noise-Supply Modulator Design

Figure 6 shows a block diagram of the supply modulator. RFT is a noise-blocking
technique that blocks noise from the VSW node to the VOUT node. CLs and notch filters
(LNF and CNF) are noise-removing techniques used at the VOUT node. In APT operation,
the supply noise is easily suppressed by the very low impedance of a large decoupling
capacitor. In ET operation, the wideband linear amplifier acts like a large decoupling
capacitor. However, the output impedance is increased as frequency increases due to
decreased loop gain. In [11], low output impedance is achieved with a linear amplifier at
a low frequency and a load capacitor (a few nF) at a high frequency. The voltage-sensing
negative feedback loop of the linear amplifier lowers the SM output impedance within
the unit loop bandwidth, so the linear amplifier can provide low output impedance as a
voltage source. Figure 7 shows the SM output noise open-loop model. In this paper, a load
capacitor, resonant-frequency tuning (RFT), and a notch filter are used for noise reduction.
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Figure 8a shows an inductor (LSW) of a switching amplifier with its parasitic capacitor
(CPARA) and a variable capacitor (CVAR), which are integrated into the IC. The switching
noise at the VSW node is blocked at a certain frequency (fopen) by the high impedance of the
parallel LSW and the equivalent capacitance of CPARA±CVAR. Figure 8b shows the equiva-
lent load resistance of the PA, CL, and notch filter. The PA has a low impedance at a certain
frequency (fshort) due to the notch filter and at a high frequency due to CL. The optimized
noise performance for each band is possible by controlling the resonant frequencies of fopen
and fshort according to the separation between the uplink and downlink frequencies.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 7. SM output open-loop noise model and noise contribution depending on frequency offset. 

Figure 8a shows an inductor (LSW) of a switching amplifier with its parasitic capacitor 
(CPARA) and a variable capacitor (CVAR), which are integrated into the IC. The switching 
noise at the VSW node is blocked at a certain frequency (fopen) by the high impedance of the 
parallel LSW and the equivalent capacitance of CPARA±CVAR. Figure 8b shows the equivalent 
load resistance of the PA, CL, and notch filter. The PA has a low impedance at a certain 
frequency (fshort) due to the notch filter and at a high frequency due to CL. The optimized 
noise performance for each band is possible by controlling the resonant frequencies of fopen 
and fshort according to the separation between the uplink and downlink frequencies. 

 
Figure 8. Proposed noise reduction techniques: (a) resonant-frequency tuning (RFT); (b) notch filter. 

5. Measurement Results 
In the RX-band noise measurement, the frequency of interest and number of resource 

blocks for the signal are different because each LTE band has a different TX-RX frequency 
separation and channel bandwidth. Our measurement condition is based on the reference 
sensitivity QPSK PREFSENS (Table 7.3.1-1 in [15]), and the worst noise performance in 
Table 1 occurs at the maximum channel bandwidth. 

The SM is designed by using a 130 nm CMOS process, and the chip die area is 2 × 2 
mm2 with a 25-pin wafer-level chip-scale package, and Figure 9 shows the measurement 
setup with a chip photograph. It delivers envelope supply voltages with peak efficiencies 
of 78–83% for LTE signals with a 5.8 dB PAPR and various channel bandwidths. Figure 10 

A0

β
CL

Buck

RL

Zind

ZLA

Vn Switching
noise

Open-loop 
noise model

Zind

Zout

Vout Vout

RL

Vn

L Cp

f

Zind w/ Cp

Mid. Freq. Offset (50-100 MHz)

A0

β

ZLA

Low Freq. Offset
(<50 MHz)

High Freq. Offset
(>100 MHz)

Figure 8. Proposed noise reduction techniques: (a) resonant-frequency tuning (RFT); (b) notch filter.

5. Measurement Results

In the RX-band noise measurement, the frequency of interest and number of resource
blocks for the signal are different because each LTE band has a different TX-RX frequency
separation and channel bandwidth. Our measurement condition is based on the reference
sensitivity QPSK PREFSENS (Table 7.3.1-1 in [15]), and the worst noise performance in
Table 1 occurs at the maximum channel bandwidth.

The SM is designed by using a 130 nm CMOS process, and the chip die area is
2 × 2 mm2 with a 25-pin wafer-level chip-scale package, and Figure 9 shows the mea-
surement setup with a chip photograph. It delivers envelope supply voltages with peak
efficiencies of 78–83% for LTE signals with a 5.8 dB PAPR and various channel bandwidths.
Figure 10 shows the measured output noise power of the supply modulator. In the default
case, only the load capacitor (CL) is attached to the equivalent load resistance (RPA). In the
case of RFT, it has no effect at 45 MHz for B5 and B8 because the default resonant frequency
(fopen) of the power inductor used (LSW//CPAPR) is around 45 MHz. At 30 MHz for B17,
CVAR is added to CPARA to lower fopen, and this leads to a 1.4 dB reduction in noise. For
other frequencies from 80 MHz to 400 MHz, the inverter makes CVAR negative, and the
noise is suppressed by the increased fopen. The notch filter improves noise performance
from 45 MHz to 95 MHz. At high frequencies (≥95 MHz), CL has enough suppression
without the notch filter. At 30 MHz, the notch filter is not used because it degrades the loop
stability of the linear amplifier.
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sensitivity QPSK PREFSENS (Table 7.3.1-1 in [5]) for each LTE band.

Table 1. Performance comparison.

Ref. Band Duplex Spacing
(MHz)

SM Output Noise
(dBm/Hz)

This Work
B17 30 −136.5
B5 45 −143

[13] ISSCC16
B17 30 −129
B5 45 −134

6. Conclusions

Power supply rejection for the ET PA and receiver sensitivity degradation due to PA
noise were analyzed, and these show the importance of the output noise performance of the
supply modulator. The low output noise is made possible by noise blocking and generating
a low output impedance. The RFT blocks switching noise transfer between the power
inductor of the switching amplifier. The notch filter and load capacitance achieve low
output impedance and remove the output noise. The measured results show a maximum
of 1.8/5/5.3/3.8/3 dB noise reduction in the LTE B17/B5/B2/B3/B7 RX band due to the
RFT and notch filter, respectively. The designed SM achieved peak efficiencies of 78–83%
for LTE signals with a 5.8 dB PAPR with various channel bandwidths.
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