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Abstract: The segmentation of medical images, particularly for brain tumors, is essential for clinical
diagnosis and treatment planning. In this study, we proposed MMAformer, a Multiscale Modality-
Aware Transformer model, which is designed for segmenting brain tumors by utilizing multimodality
magnetic resonance imaging (MRI). Complementary information between different sequences helps
the model delineate tumor boundaries and distinguish different tumor tissues. To enable the model
to acquire the complementary information between related sequences, MMAformer employs a multi-
stage encoder, which uses a cross-modal downsampling (CMD) block for learning and integrating
the complementary information between sequences at different scales. In order to effectively fuse the
various information extracted by the encoder, the Multimodal Gated Aggregation (MGA) block com-
bines the dual attention mechanism and multi-gated clustering to effectively fuse the spatial, channel,
and modal features of different MRI sequences. In the comparison experiments on the BraTS2020 and
BraTS2021 datasets, the average Dice score of MMAformer reached 86.3% and 91.53%, respectively,
indicating that MMAformer surpasses the current state-of-the-art approaches. MMAformer’s innova-
tive architecture, which effectively captures and integrates multimodal information at various scales,
offers a promising solution for tackling complex medical image segmentation challenges.

Keywords: brain tumor segmentation; cross-modal downsampling; multimodal gated aggregation;
multimodality; multiscale; Transformer

1. Introduction

An abnormal tissue growth in or near the brain or surrounding regions, known as
a brain tumor, can be either benign or malignant [1]. Malignant gliomas represent the
most frequent and aggressive type of primary brain tumors, posing significant harm to
patients [2]. The automated diagnosis of these tumors can greatly improve the prognosis of
patients by enabling earlier and more accurate detection. This article focuses on the chal-
lenges and advancements in the automated diagnosis of malignant glioma. Multimodality
magnetic resonance imaging (MRI) analyzes the brain by providing rich multimodality
information and the commonly used MRI sequences. Referring to Figure 1a, this includes
T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2-fluid at-
tenuated inversion recovered (T2-flair) images, which are generated by these different
sequences that are usually complementary in imaging, and they are useful in distinguish-
ing between the enhancing tumor, peritumoral edema and tumor core in each of the three
specific objects [3–5]. These different tumors are shown in Figure 1b. For clinicians, these
automatically segmented tumors with multiple regions are very helpful in clinical diagnosis
and therapy.
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Figure 1. Multimodal MRIs. Adapted from [6]. (a) T1, T2, T2-flair, T1Gd; (b) red: tumor core; yellow: 
enhancing tumor; green: peritumoral edema. 

In recent years, deep learning-based image segmentation has become a widespread 
task in medical image analysis, which is backed by numerous studies [7]. Currently, con-
volutional neural networks (CNNs) have made significant advancements in the field of 
image analysis and processing [8], and brain tumor segmentation has become a particu-
larly active area of research. 

In terms of creating segmentation models, the currently used segmentation models 
can be categorized into 2D and 3D models. The earliest 2D segmentation model is the 
Fully Convolutional Network (FCN) proposed by Long et al. [9], which is capable of di-
rectly outputting pixel-level labels. However, due to excessive feature information loss 
and insufficient feature utilization, the network suffers from several issues, including the 
tendency to produce nulls and discontinuous segmentation results. Subsequently, the 
VGG model [10] builds on FCN with a deeper architecture with smaller convolutional 
filters to achieve better segmentation. However, the increased depth also led to higher 
computational costs and memory usage, which are limitations in practical applications. 
Notably, the introduction of the U-Net [11] model marked the emergence of a new net-
work architecture that consists of downsampling and upsampling phases, which are com-
monly referred to as the encoder and decoder. In the downsampling stage, the process 
involves extracting progressively smaller-sized features from an image, reducing its size 
through a series of convolutional and pooling layers, and increasing the number of image 
channels to obtain low-resolution, high-level features. In the upsampling stage, the pro-
cess reverses by enlarging the image through specialized convolutions, decreasing the 
number of channels, and finally restoring the original size of the target image. U-Net has 
been proven to achieve outstanding success in fields with small datasets, such as medical 
imaging [12]. However, its performance can be limited by its reliance on symmetric archi-
tecture, which may not fully capture complex spatial hierarchies, especially in 3D medical 
imaging. 

Brain tumor images are obtained by MRI and CT scanning. In 3D MRI and CT im-
ages, slicing 3D images into 2D images will lose a lot of spatial information, while 3D 
models help to preserve this spatial connection. Numerous 3D models inspired by the U-
Net model have been developed [13–15]. For instance, the V-Net model [16] adapts the 2D 
U-Net into a 3D segmentation model, significantly improving accuracy. To enhance the 
V-Net architecture, which originally featured just a single downsampling path, Guan et 
al. [17] introduced the 3D AGSE-VNet. A combined segmentation model based on V-Net 
that integrates the SE module and AG module, the 3D AGSE-VNet cleverly utilizes the 
channel relationship to enhance the useful information in the channel and suppress the 
useless information in the channel by using the global information. However, the local 
receptive fields of CNNs limit their capacity to model the global context, and U-Net may 
have difficulty in effectively capturing details far from the region in the image when pro-
cessing more complex medical images. 

Therefore, Vaswani et al. [18] introduced the Vision Transformer (ViT) module [19] 
into various fields of computer vision as an attention-based mechanism. This module ad-
dresses the shortcomings of CNNs by providing superior capabilities to capture and 
model long-range features. Following the introduction of the ViT module, the CNN–
Transformer combination models [20–23] were quickly developed. In the field of brain 

Figure 1. Multimodal MRIs. Adapted from [6]. (a) T1, T2, T2-flair, T1Gd; (b) red: tumor core; yellow:
enhancing tumor; green: peritumoral edema.

In recent years, deep learning-based image segmentation has become a widespread
task in medical image analysis, which is backed by numerous studies [7]. Currently,
convolutional neural networks (CNNs) have made significant advancements in the field of
image analysis and processing [8], and brain tumor segmentation has become a particularly
active area of research.

In terms of creating segmentation models, the currently used segmentation models
can be categorized into 2D and 3D models. The earliest 2D segmentation model is the
Fully Convolutional Network (FCN) proposed by Long et al. [9], which is capable of
directly outputting pixel-level labels. However, due to excessive feature information loss
and insufficient feature utilization, the network suffers from several issues, including the
tendency to produce nulls and discontinuous segmentation results. Subsequently, the
VGG model [10] builds on FCN with a deeper architecture with smaller convolutional
filters to achieve better segmentation. However, the increased depth also led to higher
computational costs and memory usage, which are limitations in practical applications.
Notably, the introduction of the U-Net [11] model marked the emergence of a new network
architecture that consists of downsampling and upsampling phases, which are commonly
referred to as the encoder and decoder. In the downsampling stage, the process involves
extracting progressively smaller-sized features from an image, reducing its size through a
series of convolutional and pooling layers, and increasing the number of image channels to
obtain low-resolution, high-level features. In the upsampling stage, the process reverses by
enlarging the image through specialized convolutions, decreasing the number of channels,
and finally restoring the original size of the target image. U-Net has been proven to achieve
outstanding success in fields with small datasets, such as medical imaging [12]. However,
its performance can be limited by its reliance on symmetric architecture, which may not
fully capture complex spatial hierarchies, especially in 3D medical imaging.

Brain tumor images are obtained by MRI and CT scanning. In 3D MRI and CT images,
slicing 3D images into 2D images will lose a lot of spatial information, while 3D models
help to preserve this spatial connection. Numerous 3D models inspired by the U-Net model
have been developed [13–15]. For instance, the V-Net model [16] adapts the 2D U-Net
into a 3D segmentation model, significantly improving accuracy. To enhance the V-Net
architecture, which originally featured just a single downsampling path, Guan et al. [17]
introduced the 3D AGSE-VNet. A combined segmentation model based on V-Net that
integrates the SE module and AG module, the 3D AGSE-VNet cleverly utilizes the channel
relationship to enhance the useful information in the channel and suppress the useless
information in the channel by using the global information. However, the local receptive
fields of CNNs limit their capacity to model the global context, and U-Net may have
difficulty in effectively capturing details far from the region in the image when processing
more complex medical images.

Therefore, Vaswani et al. [18] introduced the Vision Transformer (ViT) module [19]
into various fields of computer vision as an attention-based mechanism. This module ad-
dresses the shortcomings of CNNs by providing superior capabilities to capture and model
long-range features. Following the introduction of the ViT module, the CNN–Transformer
combination models [20–23] were quickly developed. In the field of brain tumor image
segmentation, Wang et al. [23] proposed the TransBTS model, which is a multimodal
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brain tumor image segmentation model that integrates the attention mechanism of the
Transformer with CNNs. This model employs CNNs to create an encoder–decoder ar-
chitecture, utilizes 3D CNNs to capture spatial and depth information, and leverages the
ViT module to model long-range features, achieving high-resolution segmentation results.
However, the encoder–decoder model that combines the Transformer and CNN modules
faces some challenges [24], such as excessive computational demands, requiring more
training data, and longer training times. To mitigate these computational requirements,
Yu et al. [25] used only a simple nonparametric pooling operator as a token mixer; such a
streamlined token mixer also delivers excellent performance and warrants further research
on low-computation and efficient pooling.

In multimodal magnetic resonance imaging, earlier multimodal MRI segmentation
approaches typically conduct modality integration by combining input multimodal MRIs
at the beginning [26,27] or middle of the network [28,29], which limits the exploration of
nonlinear dependencies between modalities. We use a more refined fusion method that
allows the model to progressively map the modality of interest by progressively fusing
feature maps at different resolutions. In this work, as shown in Figure 2, we propose
a framework named Multiscale Modality-Aware Transformer (MMAformer). The key
contributions of this work are outlined as follows:

• In this paper, we proposed a four-stage Transformer framework designed for process-
ing parallel multimodal medical images by using the cross-modality downsampling
(CMD) module. CMD modules are used to select modality types of interest to the
model at different scales, enhancing the modality awareness of the Transformer net-
work for multimodal medical images;

• We designed a multimodality gated aggregation block that combines a dual-attention
mechanism with multi-gated clustering, efficiently enhancing and integrating spatial,
channel, and modal features across different imaging modalities;

• We conducted sufficient experiments on several datasets to validate the segmentation
accuracy of the proposed model. For example, we increased the Dice score from 90.66%
to 91.53% on the BraTS2021 dataset compared to the previous method, which is an
improvement of about 1%. The convergence stability of the model is illustrated by
more experiments in the experimental section.
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2. Related Work
2.1. CNN-Based Segmentation Networks

Convolutional neural networks (CNNs) are extensively employed for image segmen-
tation in the medical image domain [12]. Key CNN models include an architecture of an
encoder, a decoder, and skip connections with notable examples such as 3D-UNet [30],
SegResNet [31], and nnUNet [32]. Traditional 2D models like U-Net often face challenges
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in medical image segmentation due to the limited receptive fields of convolution and
the lack of 3D spatial information, especially the contextual information of neighboring
cuts. To fully leverage the three-dimensional spatial information of images, contempo-
rary approaches process the entire image as input rather than individual slices. 3D-UNet
enhances the traditional U-Net by implementing fully 3D convolutional operations on
volumetric data, capturing the spatial context more effectively by processing entire image
volumes rather than individual slices, which improves accuracy in cases where complex
structures in 3D medical images need to be precisely delineated. The nnUNet stands out by
automatically adapting its architecture and training protocols to various medical imaging
datasets. It optimizes parameters like input resolution, batch size, and learning rate based
on the dataset’s specific characteristics, delivering high performance across diverse tasks
without manual tuning. In medical image processing, the flexibility and adaptability of
nnUNet greatly extends its range of applications.

2.2. Transformers-Based Segmentation Networks

Transformer-based models effectively capture long-range dependencies and complex
spatial interactions, enhancing the capabilities of traditional convolutional neural networks.
TransUNet [20] integrates the strengths of U-Net and Transformers, using CNNs to capture
detailed spatial information at high resolutions and Transformers to identify global depen-
dencies across the data. UNetFormer [33] merges the U-Net architecture with a Transformer
module to significantly improve feature extraction capabilities, particularly in capturing
the context of large image regions, leading to better segmentation accuracy and robustness.
SwinUNETR [27] incorporates the Swin Transformer within the U-Net framework and
adopts a window shifting scheme, which reduces computational complexity while effi-
ciently processing high-resolution medical images, making it ideal for precise 3D medical
imaging. HyperDense-Net [34] combines dense connection layers with the relationship
modeling capabilities of the Transformer, ensuring extensive feature learning and robust in-
formation flow, which enhances segmentation efficiency for complex anatomical structures.
MmFormer [29] utilizes a multi-head self-attention mechanism to integrate features from
different imaging modalities, providing insights into cross-modal dynamics essential for
tasks such as multimodal brain tumor segmentation.

However, these networks simply stack multimodal data and do not fully exploit the
mutual information between different modalities. Moreover, these methods focus only
on extracting multimodal information from the bottleneck and do not fully utilize modal
information at multiple scales. In contrast, we propose an end-to-end framework that can
retrieve multimodal information from various scales and fuse the spatial, channel, and
intermodal information simultaneously at the middle layer.

3. Methods

In this study, the preparation of the experimental methodology and setup took about
6 months, including designing the model, building the data preprocessing pipeline, and
fine tuning the experimental parameters. The subsequent data collection and experiment
execution phases took about 3 months. Finally, it took about 1 month to obtain the results
and perform the comparative analysis.

We found that relying on a single imaging modality is inadequate for accurately
delineating tumors and the surrounding edema. To achieve more precise predictions, this
paper utilized four MRI modalities as parallel inputs, leveraging the complementary nature
of multimodality image data. For instance, T2 and T2-FLAIR modalities, which employ
water suppression techniques, effectively identify regions of high-moisture content such as
edema to improve the discrimination of different regions. Additionally, the T1ce modality,
which provides contrast enhancement in vascular regions, supplements the segmentation
of the tumor core, where vascular structures are more prominent.

As shown in Figure 2, our method is used for the parallel processing of multimodal
imaging data and employs a four-stage structural encoder. Each stage includes a global



Electronics 2024, 13, 4636 5 of 15

averaging pooling block and a cross-modal downsampling block that enables the model
to search and learn modalities of interest. In addition, a Multimodal Gated Aggregation
block is designed to combine the dual-attention mechanism with multiple gated clus-
tering to efficiently integrate and enhance the spatial, channel, and modal features of
multimodal images.

3.1. Dataset and Pre-Processing

Dataset: The brain tumor segmentation challenge (BraTS Chanllenge) is the oldest of
all the competitions of the Medical Image Computing and Computer-Assisted Intervention
Society and has been running for 10 years. It is one of the most popular competitions in
the field of medical image processing. For evaluation, we used their provided BraTS2020
and BraTS2021 datasets for brain tumor segmentation. These datasets provide diverse
multimodal MRI images, including T1-weighted, T1-weighted post-contrast, T2-weighted,
and T2-FLAIR sequences, facilitating comprehensive assessment across different tumor
types and imaging modalities.

Pre-processing: Initially, we partitioned the BraTS20 [5] and BraTS21 [6] segmentation
datasets roughly into training, testing, and validation sets in a ratio of 60:20:20. Subse-
quently, we employed MONAI [35] for the pre-processing process. The pre-processing steps
for the training process included the normalization of 3D MRI images, random cropping of
patches with a resolution of 128 × 128 × 128 from multimodal 3D MRI images, and data
augmentation. The augmentation process involved random per-channel intensity shifts
between −0.1 and 0.1 and random scaling of intensity between 0.9 and 1.1. Additionally,
random axis mirror flips were applied with a probability of 0.5 for all major axes.

3.2. Encoder

To enhance the utilization of independent information from each modality, this pa-
per adopts a parallel processing approach for multimodality data, as shown in Figure 3.
From modality 1 to modality M, the input images for each modality are generated using
different magnetic resonance imaging techniques. The input image Xm ∈ RH×W×D, where
m ∈ (1, M) and M = 4, with W, H, and D representing the width, height, and depth of the
input image, respectively.
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The encoder is divided into five stages. Stage 0 consists of a convolutional layer with
a kernel size of 1 × 1 × 1, transforming the input image Xm into F0,m ∈ RC×H×W×D, C is
the number of feature channels in the first stage, H, W, D is the feature map size in the first
stage, where C = 16. Stages 1 to 4 each comprise two global average pooling (GAP) blocks
and one cross-modal downsampling (CMD) block, progressively encoding each modal
image into multi-level feature Fi,m ∈ Rc×h×w×d, where i denotes the stage number ranging
from 1 to 4, c is the number of characteristic channels in stage i, and (h, w, d) is the feature
map size in stage i, with (h, w, d) =

(
H
2i , W

2i , D
2i

)
, and c = C × 2i.

Global Average Pooling

Inspired by prior research, this paper employs the Transformer architecture, which
is known for its superior global feature learning over traditional Convolutional Neural
Networks (CNNs). It is proposed to replace the multi-head self-attention mechanism in
Transformers with global average pooling, aiming to reduce computational complexity
while maintaining effectiveness. To balance computational load and feature extraction
capabilities, as shown in Figure 3a, this paper incorporated a Global Average Poolformer
(GAP) block for encoding across different modalities. As illustrated, a GAP block consists
of a learnable global average pooling and a Multi-Layer Perceptron (MLP) block. The
computation is as follows [25]:

Y = GAP(LN(X))W + X
Z = MLP(LN(Y)) + Y

(1)

where X, Z are inputs and outputs, respectively, GAP is global average pooling, LN(∗) is
layer normalize, and W is a learnable parameter in the linear layer.

3.3. Cross-Modality Downsampling

At the end of each stage, cross-modality downsampling (CMD) is utilized to select
features from modalities of interest. As shown in Figure 3b, M input features Fi−1 are
processed through a convolutional layer with a kernel size of 2 and stride of 2, producing M

features Fi ∈ Rc× H
2i ×

W
2i ×

D
2i . Initially, the features of the different modalities are concatenated

along the channel dimension, resulting in FG ∈ RMc× H
2i ×

W
2i ×

D
2i , which is then reshaped

to
∼
FG ∈ Rc× H

2i ×
W
2i ×

D
2i . Subsequently, a new modality dimension is concatenated, forming

FC ∈ RM×c× H
2i ×

W
2i ×

D
2i . Finally, to calculate the cross-attention between

∼
FG and FC, the query

(Q), key (K) and value (V) in the attention formula are computed as follows [18]:

Q =
∼
FGWq, K = FCWk, V = FCWv (2)

where Wq, Wk, and Wv represent the weight matrices for the query, key, and value. Cross-

attention is computed between
∼
FG and FC, while the input Fi,m for the next stage comes

from the cross-attention operation [18]:

Fi,m = CA
(∼

FG, FC

)
=

∼
FG + SoftMax

(
QKT
√

d

)
V (3)

where CA denotes cross-attention and d is the dimensionality of Q, K, V. Using the CMD
module, the model is able to prioritize the learning of modal features of interest, thus
enhancing the integration of information across different modalities.

3.4. Multimodality Gated Aggregating

The encoder progressively encodes each modal image into advanced features,
Fi,m ∈ Rc×h×w×d, where m ranges from 1 to M, and i ranges from 1 to 4. At the highest-level
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features, the number of layers i= 4, and (h, w, d) =
(

H
16 , W

16 , D
16

)
represents a reduction to

1/16 of the original dimensions of depth D, width W, and height H in the input space. The
channel dimension c = 128, respectively.

Given the highest-level features F4,m ∈ R128× H
16×

W
16×

D
16 , m ∈ (1, M), a new dimension

is introduced in these features, namely the modality dimension. The MGA module utilizes
a dual-attention block [36] and multi-gated clustering for end-to-end operations to integrate
spatial, channel, and modal information.

As shown in Figure 4, the first part employs the dual-attention block. The input feature
map is fed into two feature extraction blocks, and after passing through the position feature
extraction block and channel feature extraction block, respectively, the image integrating
specific position and channel information is output.
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In the second part, multi-gated clustering further computes the global relationships
between different modalities and facilitates the fusion of intermodal information. This
paper introduces a modality-sensitive gating strategy, which uses sigmoid gating to model
intermodal information.

3.4.1. Cluster Spatial and Channel Information

Initially, given the highest-level features F4,m ∈ R128× H
16×

W
16×

D
16 , m ∈ (1, M), as shown

in Figure 4, the high-level feature maps F4,m of M modalities are summed across the spatial
and channel dimensions to obtain F4 ∈ R128× H

16×
W
16×

D
16 . Subsequently, F4 is input into the

dual-attention (DA) block to capture its global feature dependencies in both the spatial and

channel dimensions, resulting in
∼
F4. The details are computed as follows:
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∼
F4 = DA

(
4

∑
m=1

F4,m

)
(4)

where ∑4
m=1(∗) is a pixel summing operation, m refers to the number of modalities (there

are four modalities), and DA(∗) is the dual-attention block. This component is used to
cluster spatial and channel information.

3.4.2. Cluster Intermodal Information

Given tokens
∼
F4, fully connected layers and convolutional layers are used here to

perform the operations of channel squeezing and expanding to obtain the point attention
vector in modal dimension with a shape of (1, 1, 1, C), and C = 128. After passing through
the gating function, correlations of different modal dimensions are included in gm, which
is calculated as follows:

gm = σ

(
Conv

(
FC
( ∼

F4

)))
(5)

where FC(∗) is the fully connected layer, Conv(∗) is a three-dimensional convolutional
layer, and σ(∗) is the sigmoid function.

Then,
∼
F ∈ R128× H

16×
W
16×

D
16 is the output of MGA, which simultaneously integrates

spatial, channel and intermodal information. It can be computed as follows:

∼
F =

4

∑
m=1

F4,m ⊙ gm (6)

where ⊙ is the element-wise multiplication. This approach improves the characterization
of features and is important for dealing with complex multimodal data.

3.5. Loss Function

In this study, we employed a combination of Dice Loss [37] and Cross-Entropy
Loss [38] to optimize our model. Each of these loss functions has its own strengths, and by
combining them, we can enhance the overall performance and robustness of the model.

Dice Loss. Unlike the traditional Dice coefficient, Dice Loss calculates the loss using
continuous probability values, making it more suitable for model training. The formula is
as follows [37]:

Dice loss = 1 −
2∑N

i pigi+ ∈
∑N

i pi + ∑N
i gi+ ∈

(7)

where N is the number of samples, pi represents the predicted values, gi represents the
ground truth values, and ∈ is an infinitesimal number. Since the Dice Loss method focuses
on the relative overlap between the predicted and true regions, the Dice Loss method
performs well in dealing with category imbalance.

Cross-Entropy Loss. Cross-Entropy Loss is a function used to measure the difference
between two probability distributions. In medical image segmentation tasks, the cross-
entropy loss can be used in segmentation tasks to calculate the difference between the
predicted boundary and the true boundary. The formula is as follows [38]:

Cross − Entropy Loss = −∑N
i gilog(pi) (8)

where gi is the true label of the sample (usually 0 or 1), and pi is the predicted probability
value. Cross-Entropy Loss optimizes the model by maximizing the log probability of the
true labels, making the predictions more accurate.

Combination of Dice Loss and Cross-Entropy Loss. Both pixel and boundary accuracy
are important in segmentation tasks. By combining Dice Loss and Cross-Entropy Loss, we
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can leverage the strengths of both to refine model training. The combined loss function is
as shown below:

Total Loss = α× Dice Loss + (1 − α)× Cross − Entropy Loss (9)

where α represents the hyperparameters that adjust the relative weights of the two loss func-
tions. By properly tuning these weights, we can better balance the needs of segmentation
and classification tasks.

By using this combined loss function, our model is more effective in dealing with class
imbalance and distinguishing between classes.

3.6. Evaluation Metrics

We used the Dice score and 95% Hausdorff distance (HD95) as quantitative metrics
for comparison. The Dice score quantifies the degree of pixel overlap between predicted
and ground truth segmentations, and the HD95 metric quantifies the maximum boundary
discrepancy, providing a holistic evaluation of segmentation accuracy.

Together, the Dice score and HD95 provide complementary insights into the perfor-
mance of our segmentation model. The Dice score quantifies the overall pixel overlap,
making it a valuable metric for assessing the model’s accuracy in capturing relevant struc-
tures, while HD95 offers a more detailed evaluation of boundary precision, which is critical
in medical image segmentation tasks where the exact delineation of structures is paramount.
These metrics allow for a holistic evaluation of the segmentation quality, ensuring both
accurate structure representation and precise boundary delineation.

4. Experimental Setup
4.1. Implementation Details

We deployed the model’s training on an NVIDIA GTX 3090 GPU, and it uses the
PyTorch framework. The loss function employed was a combination of Dice Loss and
Cross-Entropy Loss, where α is 0.5. The optimizer used the AdamW [39] with a weight
decay of 10−4. The learning rate was empirically set to 10−4. The batch size per GPU
was set to 1. All models were trained for 500 epochs with a linear warmup and a cosine
annealing learning rate scheduler. The best model checkpoints from the validation set
were used for inference. Inference was conducted using a sliding window approach with a
0.5 overlap for neighboring voxels.

4.2. Experiments

In our comparative analysis, we compared our network with representative segmen-
tation methods in the field in recent years to evaluate the results. For fairness, we used
publicly available implementations of these methods and re-trained their networks to
obtain the best segmentation results. The detailed experiments are as follows.

4.2.1. Experiment 1—Comparison in the BraTS2020 Dataset

The training environment is consistent across the methods compared with up to
600 epochs on the BraTS2020 dataset. The segmentation task focuses on delineating the
whole tumor (WT), enhanced tumor (ET), and tumor core (TC) regions. We used a random
selection method to divide the BraTS2020 dataset into a training set (220), a validation
set (80), and a test set (69). The evaluation metrics used in the laboratory were Dice score
and HD95.

4.2.2. Experiment 2—Comparison in the BraTS2021 Dataset

The training environment is consistent across the methods compared with up to
500 epochs on the BraTS2021 dataset. The segmentation task focuses on delineating the
whole tumor (WT), enhanced tumor (ET), and tumor core (TC) regions. We used a random
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selection method to divide BraTS2021 into a training set (750), a validation set (250), and a
test set (251). The evaluation metrics used in the laboratory were Dice score.

4.2.3. Experiment 3—Ablation Study on BraTS2021

We also conducted controlled trials of the proposed GAP, CMD, and MGA modules,
and we conducted ablation experiments on the three modules in three phases: training,
validation, and testing. We conducted ablation experiments on the training stage, the
validation stage and the test stage, respectively. We also plotted the ablation experiment
training process and evaluated the metrics using Dice scores.

4.2.4. Experiment 4—Comparison of Convergence Stability of Training Models

We chose two representative methods from the last two years in medical image
segmentation to compare with our method, and used the Dice score as a metric to evaluate
the training stability of the three methods.

5. Results and Discussion

In Experiment 1, we compare our method with seven other methods (including
three CNN-based methods and four CNN-combined Transformer methods). They are
3D-UNet [13], SegResNet [31], nnUNet [32] and SwinUNet (2D) [22], TransBTS [23], UN-
ETR [26] and SwinUNETR [27]. As shown in Table 1, the Dice and HD95 scores of each
model for segmenting the three different tumor regions on the BraTS2020 dataset are listed
along with their average scores on this dataset. Our model complexity was moderate
with 18.76 million parameters and 104.6 GFLOPs. MMAformer achieved the highest Dice
scores on TC and ET, the lowest HD95 scores on WT and TC, the second-best Dice score on
WT. Our method achieved excellent quantitative results in both average Dice metric and
average HD95 metric with mean values of 86.3 and 4.774, respectively.

Table 1. Quantitative comparison on BraTS2020 dataset. Evaluation of indicator use Dice score values
(Dice) and Hausdorff distance values (HD95). Whole tumor (WT), enhancing tumor (ET), and tumor
core (TC). Bold represents the best indicator. Down arrows indicate that lower scores are better and
up arrows indicate that higher scores are better. Bolding indicates optimal scores.

Methods
Parm FLOPs WT TC ET Ave

(M) ↓ (G) ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓
3D-UNet 122 5.75 1449.59 88.2 5.113 83.0 6.604 78.2 6.715 83.1 6.144

SegResNet 31 18.79 185.23 90.3 4.578 84.5 5.667 79.6 7.064 84.8 5.763

nnUNet 32 5.75 1449.59 90.7 6.94 84.8 5.069 81.4 5.851 85.6 5.953

SwinUNet (2D) 21 27.17 357.49 87.2 6.752 80.9 8.071 74.4 10.644 80.8 8.489

TransBTS 22 32.99 333 91.0 4.141 85.5 5.894 79.1 5.463 85.2 5.166

UNETR 25 92.58 41.19 89.9 4.314 84.2 5.843 78.8 5.598 84.3 5.251

SwinUNETR 26 62.5 295 92.0 4.907 85.3 7.218 80.5 11.419 85.9 7.848

MMAformer (ours) 18.76 104.6 91.3 3.873 86.6 4.559 81.1 5.890 86.3 4.774

In Experiment 2, we also compared our network to seven SOTA methods from recent
years. They are DynUnet (2021) [32], SegtransVAE (2022) [40], SwinUNETR (2022) [27],
PSwinBTS (2022) [41] and CKD-TransBTS (2023) [42]. As shown in Table 2, the Dice scores
of each model for segmenting the three different tumor regions in the BraTS2021 dataset
are listed, along with their average scores on this dataset. Our model achieved the highest
Dice score on TC and ET and the second-best Dice score on WT. Notably, MMAformer
achieved the best overall performance in the average Dice score with a mean value of
91.53. On smaller tumor regions, the Dice values of WT and ET surpass the previous
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models, suggesting that the ability of MMAformer to segment smaller targets is enhanced
by integrating modality information.

The automatic segmentation of small targets in medical images is affected by the
limitations of individual MRI images themselves. As can be seen from Experiment 1 and
Experiment 2, our model in the fusion of different modalities of MRIs, each modality’s MRI
features complement each other, obtaining 1.3 points and 0.6 points of enhancement on
BraTS2020 and 2 points and 0.3 points of enhancement on BraTS2021 for the segmentation
of small targets ET and TC, respectively.

Table 2. Compared to SOTA on BraTS2021. Evaluation of indicator using Dice score values. Whole
tumor (WT), enhancing tumor (ET), and tumor core (TC). Bold represents the best indicator.

Methods WT TC ET Ave Year

DynUnet 32 92.88 89.71 85.81 89.46 2021

SegtransVAE 40 92.54 89.99 86.22 89.58 2022

SwinUNETR 26 92.73 89.98 86.81 89.84 2022

PSwinBTS 41 93.62 90.43 88.25 90.76 2022

CKD-TransBTS 42 93.33 90.16 88.50 90.66 2023

MMAformer (ours) 93.58 92.21 88.78 91.53 ours

As shown in Figure 5, we performed the visualization on BraTS2020. A comparison
with other methods shows that our method is more accurate in segmenting the small target
enhancing tumor. This is due to the fact that our model allows for complementary multi-
modal information in the encoder, and segmenting small targets is more advantageous.
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In Experiment 3, we also conducted controlled trials of the proposed GAP, CMD, and
MGA modules. As shown in Table 3, we conducted ablation experiments on the three
modules in three stages: training, validation, and testing. In the U-Net method, we deploy
multiple U-shaped coding layers in parallel as encoders and then input different modal
images in parallel to extract features and perform feature fusion by concatenate. The
Baseline method is the replacement of the encoded portion with GAP; the Baseline + CMD
method has CMD blocks added; Baseline + CMD + MGA has an MGA module added,
which is the MMAformer. We use the Dice score as an evaluation metric, and this ablation
experiment demonstrates that the addition of GAP, CMD, and MGA modules can improve
model performance as a whole. As shown in Figure 6, analyzing three curves using Dice
score as an evaluation metric, the CMD and MGD modules improve the predictive accuracy
and stability of our model. Compared to the Baseline method and Baseline + CMD method,
our CMD blocks can help the model extract intermodal relationships between features of
different scales. Compared to the Baseline + CMD method and Baseline + CMD + MGA,
our MGA module can simultaneously fuse spatial, channel and modal information during
feature fusion.

Table 3. Ablation study at different stages on BraTS2021. Evaluation of indicator using Dice score
values. Different stages mean training stage, validation stage and testing stage.

Methods Training Validation Testing

U-Net 89.68 89.83 89.10

Baseline 90.23 90.48 90.35

Baseline + CMD 90.66 90.88 90.80

Baseline + CMD + MGA 91.56 91.60 91.53
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In Experiment 4, we trained SwinUNETR, CKD-TransBTS and MMAformer on the
Brats2021 dataset using the same hyperparameters. As shown in Figure 7, the red color
represents MMAformer, which has faster convergence, higher Dice scores, and better
overall stability than the other two models.
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Limitation

Our model complexity was moderate with 18.76 million parameters and 104.6 GFLOPs.
Our model achieves lightweight architecture to reduce computational complexity, but the
CMD module, which uses cross-attention to fuse multimodal information, incurs a high
computational cost. Currently, we handle up to four modalities on a 3090 Ti GPU, but
processing more modalities or increasing patch resolution may result in longer processing
times. Additionally, the current model should be extended with a more comprehensive
training dataset to improve generalization and facilitate its application to a wider range of
medical imaging tasks. Finally, the model should be optimized for compatibility with other
imaging modalities, such as CT and ultrasound, to enable the real-time segmentation of a
broader range of medical images.

6. Conclusions

In this study, we proposed MMAformer, which is a Multiscale Modality-Aware Trans-
former model. We stack the GAP blocks in the encoder to save a lot of computation. The
encoder extracts the features of M modalities in parallel. Cross-modality downsampling
is used to fuse the intermodal information of multiscale features during downsampling,
enriching the integration of information across different modalities. High-level features are
subsequently fused with spatial, channel, and modal features through the Multimodality
Gated Aggregation module. Through these modules, the network can gradually learn
features of interest from an early stage, efficiently extracting and fully mixing features of
different patterns. The validity of MMAFormer is verified on the BraTS2020 and BraTS2021
datasets. Our framework is independent of the number of modalities and data types; it
can extend to any other multimodal medical data. In future explorations, we will fur-
ther explore the potential of jump connectivity to enable the back-and-forth exchange of
multimodal information.
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