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Abstract: Parkinson’s disease is a neurodegenerative disease that seriously affects the quality of
life of patients. In this study, we propose a new Parkinson’s diagnosis method using deep learning
techniques. The method takes multi-channel sensor signals as inputs, and the full convolutional and
LSTM blocks of the model perceive the same time-series inputs from two different views, and connect
the extracted spatial features with temporal features. In order to improve the detection performance,
a channel attention mechanism was incorporated into the model, and a data augmentation approach
was used to eliminate the effect of unbalanced datasets on model training. The pd vs. hc and pd vs.
dd classification tasks were performed, which improved accuracy by 4.25% and 8.03%, respectively,
compared to the previous best results. Both improvements were higher than the previous methods
using machine learning combined with feature extraction. To utilize the available data resources
more effectively, this study conducted the pd vs. hc vs. dd triple classification task for the first time,
which improved the model’s ability to identify disease features. In that task, the accuracy rate reached
78.23%. The experimental results fully demonstrated the effectiveness of the proposed deep learning
method for Parkinson’s diagnosis.
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1. Introduction

In recent years, the incidence of age-related cognitive impairment has increased with
the aging of the population [1]. Parkinson’s disease (PD) is a widespread neurodegenerative
condition that impacts the central nervous system. Characterized by its progressive nature,
PD leads to the degeneration of neurons, particularly those producing dopamine, which
plays a pivotal role in regulating movement. It is marked by a range of motor impairments,
including rigid muscles, tremors in the hands, and a slowdown in movement known
as bradykinesia. As the disease progresses, it severely affects patients’ quality of life.
While no therapies currently exist that can halt the neurodegenerative process or promote
regeneration in Parkinson’s disease, timely diagnosis and intervention are crucial. They
play a significant role in mitigating the disease’s impact and associated costs [2].

Indeed, the medical community faces significant challenges in identifying Parkinson’s
disease in its early stages. Even as their health may decline, individuals can enhance their
quality of life significantly with prompt medical attention and appropriate interventions [3].
This is challenging because PD symptoms coincide with those of other diseases, putting PD
at risk of being unrecognized or, worse, misdiagnosed. A score is then given based on the
criteria of the Unified Parkinson’s Disease Rating Scale (EADS) [4] and the Simpson–Angus
Scale (SAS) [5].

In the last decade or so, as various sensors and electronic devices have become smaller
in size, higher in performance, and lower in cost, these electronic components have become
more widely used in everyday life [6]. Compared to the drawbacks of deploying external

Electronics 2024, 13, 4638. https://doi.org/10.3390/electronics13234638 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234638
https://doi.org/10.3390/electronics13234638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0001-6042-1750
https://doi.org/10.3390/electronics13234638
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234638?type=check_update&version=1


Electronics 2024, 13, 4638 2 of 17

devices to recognize the human body’s activity status, an approach that is costly and poorly
portable, wearable sensors can be conveniently used with integrated sensors to collect
various behavioral data from the human body [7]. Wearable accelerometers or Inertial
Measurement Units (IMUs) have been widely used in medical research [8,9], especially in
situations where motion may be affected. Existing studies have shown that monitoring
localized discharge signals can be effective in providing early warning of disease, and this
approach has promising applications [10,11]. A multitude of data modalities have been
meticulously analyzed in the context of Parkinson’s disease (PD), encompassing a range of
physiological and behavioral aspects. These include the assessment of hand movements,
gait and balance, eye movements, and speech capture [12,13]. The majority of studies
utilizing these modalities have reported high accuracy rates in differentiating individuals
with PD from healthy controls (HC), a capability that is pivotal for the clinical application
of such diagnostic tools [14,15]. This high accuracy in discrimination is a significant
advancement, as it not only aids in the early identification of PD but also holds the potential
to enhance treatment strategies and improve the quality of life for those affected by the
disease [16]. Furthermore, the integration of multiple data sources, such as gait data
combined with clinical and metabolomics information, has been shown to enhance the
robustness of predictive models and improve diagnostic accuracy [17]. This comprehensive
approach to diagnostics reflects the multifaceted nature of PD and underscores the value of
multimodal data analysis in capturing the complexity of the disease. Current research has
shown that analytics using speech capture or action-based tasks have an accuracy rate of
over 90% [18,19].

Previous research has harnessed the power of smartphones to monitor daily movement
patterns and to document short self-administered tasks like finger tapping or spiral draw-
ing [20,21]. These studies have leveraged the ubiquity and convenience of smartphones
to gather valuable health data in a non-invasive and user-friendly manner. By utilizing
smartphones, researchers can collect a wealth of data on individuals’ movement habits
and motor functions over extended periods, providing insights into their health status and
potentially aiding in the early detection of conditions like Parkinson’s disease [22]. The
ability to track these subtle motor symptoms over time could be particularly beneficial for
monitoring disease progression and evaluating the effectiveness of treatments.

While the classification model excels at differentiating PD from healthy subjects, it
may struggle to accurately classify other movement and neurological disorders. This
limitation arises because the model captures general movement anomalies rather than the
distinctive characteristics that define PD. In clinical reality, this is very important because
neurologists may not know in advance whether a patient has PD or a similar movement
disorder. Furthermore, while numerous past studies have relied on passive monitoring
methods, incorporating interactive assessments could unveil the advantages of capturing
subtle, often unnoticed phenomena. For instance, Parkinson’s-disease-related tremors may
emerge in conjunction with cognitive tasks or resurface when individuals perform actions
such as lifting and sustaining the position of their arms [23–25].

The assessment and diagnosis of Parkinson’s disease through sensor-collected feature
data relies on manual analysis, and specialized and complex data analysis is not clinician-
friendly; thus, there is a need to find an objective and accurate technique for automated data
analysis. Machine learning methods are gradually being applied in the field of Parkinson’s
disease diagnosis due to their excellent performance in data analysis.

Lyons and Pahwa [26] utilized a wearable device to collect data, subsequently de-
veloping a sophisticated classification system designed to differentiate between essential
tremor and tremors associated with Parkinson’s disease. Kostikis et al. [27] introduced a
practical smartphone-based tool designed to accurately evaluate upper limb tremors in
individuals with PD. When the phone was held or securely attached to the subject’s hand,
it captured motion data that was subsequently used to compute a comprehensive set of
metrics. Sajal et al. [28] used a smartphone with a built-in triaxial accelerometer sensor to
capture resting tremor data and speech data from patients diagnosed with PD and healthy



Electronics 2024, 13, 4638 3 of 17

individuals. The methodology involved in this study utilized resting tremor and vowel
articulation data from patients who had been previously diagnosed and labeled using the
Unified Parkinson’s Disease Rating Scale (UPDRS), as well as data from healthy individuals.
This comprehensive dataset was employed to train and fine-tune machine learning (ML)
models, aiming to enhance their ability to accurately detect Parkinson’s disease.

Although sensor- and machine-learning-based research has yielded some results, there
are currently some drawbacks. Traditional machine learning algorithms rely heavily on
feature engineering, and complex feature engineering has limitations for clinical dissem-
ination [29]. Second, machine learning algorithms also have their own shortcomings in
specific applications. For example, the KNN algorithm is weak in processing nonlinear
data and has a high computational cost when analyzing complex data; the decision tree
algorithm is more sensitive to sample imbalance, and is prone to favor the majority class of
samples in the training process, leading to overfitting; the SVM algorithm is sensitive to
parameter training and kernel function, making it difficult to cope with the task of a larger
number of samples [30].

The advent of deep learning effectively addressed the limitations of traditional ma-
chine learning, which often relied on intricate feature engineering. Deep learning models
could process data in a more straightforward and efficient manner, eliminating the need for
manual feature extraction. Currently, deep learning models had been extensively employed
in the evaluation and diagnosis of Parkinson’s disease. The primary areas of research in this
context included early screening, the assessment of movement disorders, and pathological
analysis of the disease [31]. For instance, Qin et al. [32] harnessed the power of surface elec-
tromyography (sEMG) to quantify the severity of tremors in Parkinson’s disease patients.
They utilized a Convolutional Neural Network (CNN) to learn the patterns and similarities
within sEMG signals associated with tremors. In their study, they also compared several
traditional machine learning models. This demonstrated the potential of deep learning to
provide more accurate and nuanced assessments of tremor severity in Parkinson’s disease,
offering valuable insights for clinical diagnosis and treatment planning.

The Long Short-Term Memory Fully Convolutional Network (LSTM_FCN) was a
model for time-series classification proposed by Karim et al. [33]. The model combined the
deep learning model structures of LSTM and FCN and could enhance the FCN model to
significantly improve its performance by a nominal increase in the number of parameters.
There have been studies that could be used for ECG data classification and have achieved
better results, relative to other time-series classification models. Therefore, the model
given above was used in this study to extract features for Parkinson’s disease detection for
classification study.

2. Materials and Methods
2.1. Dataset

In this study, the Parkinson’s disease smartwatch (PADS)dataset (https://physionet.
org/content/parkinsons-disease-smartwatch/1.0.0/ (accessed on 12 June 2024)) was used,
and the data pertained to 469 individual cases [34]. The data presented in Table 1 cate-
gorize participants into three distinct groups: (1) Parkinson’s disease (PD) patients, who
encompass a broad spectrum of ages and diagnostic stages, (2) differential diagnosis (DD)
subjects, which include those with primary tremor, atypical Parkinsonian disorders, and
(3) healthy controls (HC). To ensure a balanced comparison, the healthy controls were
carefully matched in age to the PD group. The dataset comprised a total of 276 PD patients,
79 healthy individuals, and 114 patients with differential diagnoses. This stratification
allowed for a comprehensive comparison of the different groups, enabling researchers to
analyze the distinct characteristics of each population and assess the effectiveness of the
diagnostic models in distinguishing between them. By including these diverse groups,
the study aimed to provide a more nuanced understanding of Parkinson’s disease and its
related movement disorders.

https://physionet.org/content/parkinsons-disease-smartwatch/1.0.0/
https://physionet.org/content/parkinsons-disease-smartwatch/1.0.0/
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Table 1. Participant samples including Parkinson’s disease (PD), healthy controls (HC), and differen-
tial diagnosis (DD).

Class Participant Group Sample Size (Male, Female) Age Years (Std)

PD Parkinson’s disease 276 (195, 81) 65.4 (9.6)
HC healthy controls 79 (29, 50) 62.9 (12.5)
DD differential diagnosis 114 (57, 57) 62.4 (11.5)

Data for the experiment were collected through sensorimotor recordings during an
interactive assessment that encompassed 11 distinct neuromotor steps. The assessment
steps were designed by movement disorder specialists with the main aim of creating easy-
to-understand checks and capturing the most relevant motor features, and each assessment
took approximately 15 min. During the data collection phase, participants were seated
comfortably in an armchair and equipped with two smartwatches (Apple Watch Series 4
(Apple Inc., Cupertino, CA, USA)), with one on each wrist. Throughout the assessment,
these smartwatches simultaneously captured acceleration and rotation data along the three
spatial axes (x, y, z) at a frequency of 100 Hz. The interactive evaluation consisted of eleven
steps, with three steps lasting for 20 s each and the remaining eight steps lasting for 10 s
each, as detailed in Table 2.

Table 2. Smartwatch-based assessment steps.

Steps Durations Description Task Category

1a 20 Resting with closed eyes while sitting. Resting
1b 20 Resting while the patient is calculating sevens. Resting
2 10 Lift and extend arms. Postural
3 10 Arms remain lifted. Postural
4 10 Hold one-kilogram weight in each hand for 5 s. Postural
5 10 Point index finger to the examiner’s lifted hand. Kinetic
6 10 Drink from glass. Kinetic
7 10 Cross and extend both arms. Kinetic
8 10 Bring both index fingers to each other.
9 10 Tap own nose with index finger. Kinetic

10 20 Entrainment. The examiner stomps on the
ground, setting the pace. Postural

Steps: lists the different activities in the experiment. Durations: the duration of each step, which may be in
seconds. Description: a description of the specific actions or requirements for each step. Task category: “Resting”,
“Postural”, and “Kinetic”. These steps are designed to assess a subject’s resting state, postural control, and motor
function through a series of movements, which can be useful in diagnosing diseases such as Parkinson’s disease.

To maintain consistency in the duration of each segment, the 20 s recording was
divided into two parts, with each participant having a total of 14 10 s time series. With
this setup, each participant acquired 168 channels of time-series data (14 recordings ×
2 arms × 2 sensors × 3 axes = 168). Following a thorough analysis of the dataset by
Julian Varghese et al. [34], it was determined that three specific evaluation steps did not
contribute significantly to the classification process and were therefore eliminated: step
3, which involved “lifting and holding” the arms; step 5, which required “pointing a
finger”; and step 8, which entailed “touching the index finger”. This decision was made to
streamline the dataset and focus on the steps that provided the most relevant information
for distinguishing between Parkinson’s disease patients and other groups [35]. After
removing the redundant evaluation steps, the time-series data corresponding to each
participant became 132 channels.

Since the experimental equipment collects both acceleration and gyroscope data, there
was an opportunity to explore the impact of different sensor types on the evaluation task.
Specifically, three different experimental configurations were evaluated in this study:

1. A setup that relied solely on acceleration data (acc);
2. A setup that utilized only rotation data (rot);
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3. A comprehensive setup that integrated data from both sensors to provide a more
nuanced interpretation of the data (both).

2.2. Preprocessing

In data processing, the time series of the first 50 waiting sampling points that did not
have contrasting characteristics were cropped. Initially, the acceleration data underwent
preprocessing to reduce the impact of the Earth’s gravitational field. A technique akin
to segmented linear smoothing, known as l1-trend filtering, was employed to adjust for
variations in the direction of gravity [36].

Since the dataset used in this study was unbalanced, with much more data collected
from PD patients than from HC and DD populations, data augmentation techniques
were applied during training. Data augmentation is a technique that enriches the dataset
by creating additional, varied instances from the original data, preserving the labels.
This method helped to uncover unseen input patterns, curb overfitting, balance class
distributions within the dataset, and bolster the model’s ability to handle diverse real-
world inputs, thereby enhancing its overall robustness and generalization capabilities [37].

Data enhancement techniques were prevalent in domains like image recognition,
where minor variations such as dithering, scaling, cropping, distortion, and rotation nat-
urally occur during observation. These methods, which do not alter the original image’s
category labels, are integral to image data augmentation, as referenced in [38]. Extending
this concept to time-series data, most enhancement strategies rely on random transforma-
tions of the training dataset. This includes the introduction of random noise [39], random
cropping [40], random scaling [41], and both random warping and frequency warping
along the time dimension [42], all aimed at enriching the dataset without changing its
underlying labels. Similar to Um et al. [43], random time bending and axis rotation were
performed, and the enhancement process is shown in Figure 1. The waveforms of the data
before and after enhancement are shown in Figure 2. To maintain the authenticity of the
PD samples in the experiment, no data augmentation was applied to them. To achieve a
relatively balanced state in the sample data, the HC was expanded by a factor of two, and
the DD was expanded by a factor of one. Therefore, there are now 276 PD, 237 HC, and
228 DD samples.
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Figure 2. Enhancement before and after comparison chart. (a) Raw data; (b) enhanced data.

2.3. Model

In order to detect Parkinson’s disease patients from the participants, a novel deep
learning model for sensor data was proposed. The model combined LSTM_FCN and a
channel attention mechanism. Temporal convolution, a technique that involved applying
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convolutional operations along the time axis, had proven to be an effective learning model
for time-series classification problems [44]. Temporal convolution was an effective method
for time-series classification. It used convolution along the time axis. Fully convolutional
networks with temporal convolution served as feature extractors [45]. The fully connected
(FC) layer flattened the convolutional feature maps into a one-dimensional sequence, which
aided in connecting to activation functions for category prediction. All the FC layers in
FCN were replaced by the Global Average Pooling (GAP), which made the input size of the
network unrestricted and strengthened the network’s generalization ability. In addition,
the structure of FCN made it more competent in time-series classification tasks. Since
time-series data differed greatly in dimension and length from image inputs, FCNs could
efficiently retain and extract complex information from time series to prevent the loss of
key features [46]. The structure of FCN is shown in Figure 3.
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The abovementioned convolutional neural networks focused on extracting spatial
features, while temporal features for time-series classification also had important informa-
tion, of which LSTM was the classical network for extracting temporal features [47]. LSTM
evolved from Recurrent Neural Networks (RNN), and both were built on the core idea of
preserving the historical information of the network [48]. As the name suggested, RNN
was characterized by a cyclic recursive structure that allowed it to preserve the information
of all past nodes, and for the current node, it could obtain historical data from both the
previous nodes and the sibling nodes, which ensured the reliability of its updates. However,
it was obvious that since all the data were saved, when the amount of information and the
network gradually became more and more complex, the model overload would inevitably
produce problems such as gradient explosion or gradient disappearance. In addition, the
redundant historical data on the node’s updating choice was also a big test. In order to
solve the abovementioned problems, LSTM was proposed as a structure for data selection,
i.e., filtering and saving valid data in the redundant historical information; the core of
processing data selection was the forgetting gate, which could decide what information the
model discarded in the process of memorization.

The Channel Attention Mechanism (CAM) was a feature relabeling technique used
in deep learning models, especially in Convolutional Neural Networks (CNN) [49]. This
mechanism aimed to enhance the model’s ability to capture critical information by learning
the importance weights of different feature channels. In the structural diagram of Figure 4,
first, a global average pooling operation was applied to the feature map of each channel to
compress the spatial dimensions (height and width) of each channel into a single value. This
operation could be seen as an aggregation of spatial information for each channel to obtain
a global representation. These global representations were then nonlinearly transformed
using a fully connected layer (also called a dense layer). Typically, this fully connected
layer was first downscaled and then upscaled back to the original number of channels. This
was undertaken in order to learn the weights of each channel, i.e., the importance of each
channel to the final task. After the fully connected layer, a Sigmoid activation function was
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used to ensure that the weights of each channel were between 0 and 1. In this way, the
model learned the relative importance of each channel.
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Figure 4. Structural diagram of channel attention.

As depicted in Figure 5, the full convolutional block and the LSTM block processed the
same time-series input but from two distinct perspectives. The full convolutional block was
composed of three sequentially arranged temporal convolutional blocks, each equipped
with filters with 128, 256, and 128 layers, respectively. Within each block, a temporal
convolutional layer was paired with batch normalization [50]. Feature extraction was ac-
complished by passing the data through a third convolutional block. The feature-extracted
data were multiplied with the channel attention weights to incorporate the channel atten-
tion into the global features. At the same time, the time-series input was transmitted to
the dimensional blending layer. Following the dimensional blending transformation of
the time series, the data were fed into the LSTM block. This particular block in the model
architecture consisted of a standard LSTM layer, which was adept at capturing temporal
dependencies within the data. It was succeeded by a dropout layer, a regularization tech-
nique that was crucial for enhancing the model’s generalization capabilities. This random
deactivation forced the network to develop redundant representations and prevented it
from becoming too reliant on any particular set of neurons. The outputs from both the FCN
and the LSTM blocks were then concatenated. This combined data stream was subsequently
forwarded to the SoftMax classification layer, which assigned a probability distribution
over the predicted output classes, facilitating the final classification decision.
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In this study, the proposed model was designed to process sensor data with time-series
characteristics and was able to capture the temporal dynamics and spatial features of the
data. Features were extracted from the time-series data using LSTM, which captured
the dynamic characteristics of the data over time. With FCN, the model was able to
extract spatial features from sensor data, including local patterns and global structural
information. The time-series features extracted by LSTM and the spatial features extracted
by FCN were fused to obtain a more comprehensive data analysis. This fusion not only
enhanced the model’s ability to capture temporal dynamics but also improved its ability to
recognize spatial features, enabling the model to consider both the temporal and spatial
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dimensions of time-series data. In order to allow the model to adaptively focus on key
parts of the sequence, an attention mechanism was introduced. This mechanism allowed
the model to dynamically adjust its attention to different time steps, thus improving the
ability to recognize critical information. Through the abovementioned feature extraction
and processing steps, the model was able to extract rich temporal dynamics and spatial
features from the sensor data with time-series characteristics, providing strong support for
subsequent analysis and prediction tasks.

2.4. Evaluate

In addressing the binary classification problem at hand, this study opted for the Binary
Cross Entropy Loss function, specifically the BCEWithLogitsLoss. This loss function was
particularly efficient as it amalgamated the sigmoid activation function with the binary
cross-entropy loss into a single operation. This combination allowed for a streamlined
optimization of the model’s parameters by minimizing the difference between the predicted
probabilities and the actual target values.

The model parameters were refined through the use of the Adam optimizer, which
was set with a learning rate (lr) of 0.001 [51]. The Adam optimizer stood out for its ability
to automatically adjust the learning rate based on the estimated first and second moments
of the gradients, thereby combining the benefits of the Momentum and RMSprop (Root
Mean Square Propagation) algorithms. This adaptive feature made Adam highly versatile,
as it could adjust to the varying demands of different stages of training. By doing so, Adam
helped the model to converge more effectively, enhancing its ability to learn from the data
and make accurate predictions.

To evaluate the effectiveness of the classifier, several key metrics were used: accuracy,
precision, recall, and F1 scores [52]. These metrics were crucial for understanding how well
the model performed in distinguishing between Parkinson’s disease samples (considered
positive) and other samples (considered negative).

Accuracy was a metric that indicated the percentage of all samples—both positive
and negative—that were correctly identified by the model. It provided a broad view of
how well the model was performing across the board, capturing its ability to make correct
predictions for the majority of the data points it was evaluated against.

Precision was a measure of the accuracy of the positive predictions. It indicated the
proportion of samples predicted as positive that were actually positive, thus providing
insight into the model’s ability to correctly identify true PD cases without a high rate of
false positives.

Recall, or sensitivity, was the metric that showed how well a model could find all the
positive instances in the data. A high recall meant the model did a good job of identifying
actual positive cases without missing too many.

The F1 score was a blend of precision and recall, giving a balanced measure that
considered both types of errors. It was very handy when there was an uneven number of
instances in different classes, giving a fuller picture of the model’s performance than either
precision or recall by themselves.

By calculating these metrics, it was possible to obtain a full picture of the strengths and
weaknesses of the model and make an informed decision about its suitability for practical
application in the diagnosis of Parkinson’s disease. Higher values across all these metrics
indicated a more effective and reliable model.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)
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F1 score = 2 × precision × recall
precision + recall

(4)

In summary, the data from the dataset were organized by category. Estimated low-
frequency gravity trends were subtracted from the signal data to remove offsets in the
physiological data. The experimental samples contained enhanced data and labels. Tem-
poral dynamics and spatial features were extracted using the proposed CA_LSTM_FCN
model. The PyTorch (2.2.2) framework was used for deep learning model development and
Sklearn (1.3.2) for model evaluation. A 5-fold cross-validation was performed to ensure
a balanced proportion of categories in each fold. During training, losses were recorded,
and the model performance was evaluated after each epoch. The model was evaluated
on the validation set, and the accuracy, precision, recall, and F1 score were calculated. An
early stop mechanism was implemented to stop training early if the performance was not
improved in multiple consecutive epochs.

3. Results

To confirm the effectiveness of the LSTM_FCN network enhanced with the channel
attention mechanism in this study, experiments comparing Parkinson’s disease vs. healthy
controls (pd vs. hc) and Parkinson’s disease vs. differential diagnosis (pd vs. dd) on accel-
erated (acc), rotated (rot), and combined datasets (both) were performed. The outcomes of
these experiments for the aforementioned tasks are documented in Table 3.

Table 3. Performance of the CA_LSTM_FCN model on the dataset.

Task Dataset Accuracy Precision Recall F1

pd vs. hc
acc 81.55% 83.33% 81.82% 83.25%
rot 88.35% 97.78% 80.13% 88.63%

acc + rot 92.15% 95.08% 89.73% 91.24%

pd vs. dd
acc 72.28% 72.13% 80.00% 76.58%
rot 76.24% 75.41% 83.64% 79.11%

acc + rot 85.38% 88.75% 83.42% 85.51%

The classification task of pd vs. hc is a set of comparison experiments chosen by many
researchers to distinguish people with Parkinson’s disease from the normal population.
The comparative analysis of the experimental results showed that our proposed model
achieved a performance of more than 80% across all datasets, especially on both datasets,
with an accuracy of 92.15%. Although the precision was reduced by 2.7% compared to
the rot set performed, the recall was improved from 80% to nearly 90%, improving the
performance of predicting Parkinson’s disease samples as positive, which was the best
among the three data subsets.

Compared to the pd vs. hc classification task, pd vs. dd may be a little harder, but it is
not as easy to distinguish between PD and HC populations with large behavioral differences.
Upon analysis, the data presented in Table 3 indicate that the model’s performance in this
particular task did not match the efficacy observed in pd vs. hc. Nonetheless, the most
promising experimental outcomes were achieved when evaluating both datasets, yielding
an accuracy of 85.38%, a precision of 88.75%, a recall of 83.42%, and an F1 score of 85.51%.
These figures underscore the model’s capability, albeit noting room for improvement in
certain classification scenarios. Figures 6 and 7 show the validation loss function and
confusion matrix for the two classification tasks on the acc and rot sets, respectively.

Overall, the model showed the best performance in detecting Parkinson’s disease
samples on both sets. Compared to using a single sensor dataset, the model proposed
in this paper could capture body movements and vibrations more comprehensively on
data combining both sensors, and this multidimensional data fusion could lead to a more
comprehensive understanding of the characteristics of tremor in Parkinson’s patients, thus
improving the accuracy of symptom detection. Despite achieving better performance
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across all metrics, the use of both sets led to an increase in data processing time while
improving metrics.
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The performance of our proposed model was benchmarked against previous outcomes
on the same dataset. Julian Varghese et al. [34] employed a variety of machine learning
techniques, including support vector machines (SVM), CatBoost, and neural networks
(NN) for this dataset. They utilized both manually extracted features and the BOSS (Bag-of-
SFA-Symbols) algorithm for automated feature extraction. Our model’s results were then
compared to the outcomes achieved by these methodologies to evaluate its effectiveness
and potential advantages. This comparison helped to situate our approach within the
context of existing research and underscored any improvements in accuracy, efficiency, or
scalability that our model may offer.

As shown in Figure 8, for the pd vs. hc task, the network model effect of our proposed
CA_LSTM_FCN was higher than that presented by Julian Varghese et al., who combined
a machine learning approach with feature extraction in terms of accuracy and precision;
the results were only slightly lower than the other methods in terms of recall and F1 value.
From Figure 9, it can be noticed that the performance of the proposed method in this paper
exceeded the previous results in both cases, with an improvement of nearly 20% in recall
and more than 10% in other metrics.

However, the previous two dichotomous tasks, which limited the comparisons to
two-by-two, amounted to classification experiments under a priori conditions. Therefore,
a new experiment was added to this, namely pd vs. hc vs. dd. This task puts together
samples from all the participants in the dataset in a three-classification experiment. It
allows for a better diagnosis from an unqualified population to see if they are likely to have
Parkinson’s disease, in line with the intended effect of this project.
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Figure 8. Comparison chart of several methods for the pd vs. hc task. A represents a human-defined
feature extraction method, and B represents feature extraction using the BOSS algorithm.
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In this experiment, five-fold cross-validation was incorporated into the hyperparam-
eter optimization process to help select hyperparameters that perform well in different
subsets of the data, thereby improving the robustness of the model. Hyperparameter
optimization plays a pivotal role in the performance of neural networks, but it can be a
complex and time-consuming process. Traditionally, experts rely on their expertise and
trial-and-error methods to find the best hyperparameter settings. However, an automated
approach to searching for optimal neural network architectures offers a more systematic
alternative to this hit-or-miss method.

In this study, the hyperparameter optimization task was simplified by implementing a
regularized evolutionary algorithm [50]. This approach is adept at thoroughly searching
the hyperparameter space, identifying configurations that significantly enhance the model’s
performance. During the learning process, Adam’s algorithm was chosen, which is known
for its fast convergence and high accuracy in all situations.

There are a few key hyperparameters that require particular attention throughout the
tuning process, given as follows:

• The number of hidden layers within the network, which influences the model’s ability
to grasp intricate patterns;

• The count of RNN layers, essential for capturing the temporal dynamics within se-
quential data;

• The dropout rates for both the RNN layers (‘rnn_dropout’) and the fully connected
layers (‘fc_dropout’), which play a key role in mitigating overfitting by preventing the
network from becoming too reliant on any specific weights during training.

By carefully tuning these hyperparameters, the aim was to fine-tune the model for
optimal performance, ensuring that it generalizes well from the training data and makes
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accurate predictions for unseen data. Table 4 presents a list of the hyperparameters con-
sidered in the study, as well as an exploration of the range of values for each parameter.
By systematically tuning these hyperparameters, it was a matter of finding the optimal
configuration that delivered the best performance for the neural network model.

Table 4. Hyperparameters that were selected for optimization.

Hyperparameter Available Option

Hidden_size 64, 128
Lstm_layers 1, 2

Lr 0.001
Weight_decay 10−5

Lstm_dropout 0.2, 0.5, 0.8
Fc_dropout 0.2, 0.5, 0.8

After experimental validation, the best results were obtained on both sets with 128 hid-
den layers and two LSTM layers, with a dropout rate of 0.2, where the accuracy was 78.23%,
the precision was 82.13%, the recall was 75.71%, and the F1 value was 76.02%. Figure 10a,b
show the loss function and confusion matrix, respectively. As the training loss decreased,
the model became increasingly able to capture patterns and relationships in the training
data, which helped avoid overfitting. Ideally, if the training loss decreased along with the
validation loss, this might indicate that the model not only performed well on the training
data but was also able to generalize to unseen data. A decrease in training loss was usually
accompanied by an increase in model accuracy because the model was better at predicting
the training data, as shown in Figure 11.
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Boxplots are a very useful tool to help us quickly understand the performance distri-
bution of different models and to make visual comparisons. Figure 12 shows the results
obtained from different deep learning models in the analysis of various metrics. The com-
parison showed that the CA_LSTM_FCN model proposed in this paper also performed
well in the triple classification task, which was basically higher than the model before
improvement. The performance of the model was stable in different situations, with better
central tendency and stability in all metrics.
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4. Discussion

This study centered on determining the feasibility of employing sensor data in con-
junction with deep learning models to detect Parkinson’s disease within a given population.
The experiment utilized sensor data extracted from the Pads dataset. In this study, two bi-
nary classification tasks were first set up, namely pd vs. hc and pd vs. dd. The sensor
data from the interaction assessment performed by each person were connected along the
XYZ axis of both hands, and the connected long-series data were input into the improved
model in this paper. The experimental results showed that the model achieved good results,
with accuracy rates of 92.15% and 85.38% for the two tasks, respectively. Notably, the
performance of our model, although similar to the previous methods for the pd vs. hc task,
was significantly higher than that for the pd vs. dd task, with an improvement of about
10%, which indicated that the model could successfully recognize Parkinson’s patients.

LSTM was able to detect sudden changes in acceleration and angular velocity data
and could recognize changes in the state of motion, such as changes in the rate of change or
direction of acceleration [53]. The LSTM part had the ability to capture long-term depen-
dencies in a time series and to understand dynamic changes and trends in time-series data.
FCN extracted local texture and shape features in acceleration and angular velocity data
through convolutional layers to recognize local changes in motion, such as local patterns
of acceleration changes. With a deep convolutional network structure, FCN was able to
capture a wider range of contextual information, which was important for understanding
the spatial distribution of acceleration and angular velocity data [54]. To improve the
detection performance, the model added a channel attention module to the convolutional
network module, which helped the model automatically learn which channels (features)
were important and which were not. For time-series data, the importance of the features
may change at different time points.

In this study, based on the sensors, the datasets could be categorized into the accelera-
tion dataset, the gyroscope dataset, and both datasets. The proposed model was validated
on different datasets, and it was found that the best performance was obtained on the
dataset that combined acceleration and gyroscope. It showed that the proposed model
could work well in extracting the most critical features from the data from different sensors
compared to other methods, which in turn improved the accuracy of the classification task.
Enhancing a model’s capabilities was achieved by integrating data from multiple sensors,
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rather than depending on a single type of data. In deep learning, there is a prevailing
notion that performance is directly proportional to the amount of data. However, this
notion is based on the premise that the data and their corresponding labels are impeccable.
In this study, the problem of limited data availability was addressed by utilizing data from
multiple sensors to improve the overall performance of the model.

So far, most of the researchers studied the pd vs. hc task, and few of them studied pd
vs. dd; there are almost no experiments to classify the three objects together. Therefore, on
this dataset, all samples were put together to further validate the proposed model. The
triple classification model needed to process more category information during the training
process, which helped to improve the generalization ability of the model and made it
perform better when facing new and unseen data.

Data collected by motion sensor devices, combined with deep learning models, could
better differentiate between clinically diagnosed and pre-diagnosed Parkinson’s disease.
Utilizing this type of equipment allowed for passive, continuous collection to obtain reliable
estimates of a person’s motor function and ability, and to detect subtle changes early [55].
This approach was able to identify specific patterns associated with motor acceleration
that were relevant to the future onset or existing confirmed diagnosis of Parkinson’s
disease. Deep learning techniques were able to process large-scale sensor data and extract
features from it that were useful for PD diagnosis, which was crucial for early diagnosis
and treatment.

The current study successfully showed that the CA_LSTM_FCN model was capable
of identifying Parkinson’s disease patients from sensor data. However, one significant
limitation was that the experiments were conducted using only a few minutes of data. To
address this, future work should aim to extend the data collection period to hours or even
days. This would allow for a more comprehensive capture of participants’ movements and
pattern changes, providing a richer dataset for the classification model.

By collecting data over a longer period of time, it was possible to further assess
the accuracy of the data collected by the model at different times and to study how its
performance changes over time. This was crucial for understanding the model’s reliability
and consistency in real-world scenarios. Additionally, conducting longer experiments
enabled the collection of data outside the controlled laboratory environment. Therefore, it
was essential to evaluate the model’s performance in more realistic settings to ensure its
applicability in practical situations.

In summary, extending the duration of data collection and conducting experiments
outside the laboratory would be important steps for future research. This would not only
enhance the model’s generalizability but also provide valuable insights into its long-term
accuracy and reliability in detecting Parkinson’s disease from sensor data.

5. Conclusions

In this paper, a new deep learning method CA_LSTM_FCN was proposed, which
utilizes convolutional neural networks to extract spatial features and LSTM to extract
temporal features to identify Parkinson’s patients from acceleration and gyroscope data
obtained from sensors. The model demonstrated impressive performance, with an accuracy
of 92.15% for pd vs. hc, and an accuracy of 85.38% for pd vs. dd. Furthermore, it
achieved a commendable accuracy of 78.23% in the more complex triple categorization task,
which involved distinguishing between PD, HC, and DD. These results were particularly
significant for accurately identifying diseases with subtle distinctions. The experimental
results showed that the algorithm was effective and outperformed the combination of
machine learning classifiers and feature extraction used by previous authors.

The method presented in this paper offers a promising approach for diagnosing
Parkinson’s disease. Wearable devices could provide continuous, objective data that could
aid in early diagnosis and more accurate assessment of the condition. The effectiveness
of the method could be improved by combining it with other sophisticated deep learning
techniques. These advances may expand their applications beyond their current scope
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to various areas of healthcare and biomedical research. Data collected through wearable
devices could provide Parkinson’s patients with more personalized treatment plans, thereby
improving their quality of life.

Author Contributions: Conceptualization, all authors; methodology, J.Y. and K.M.; software, K.M.;
validation, J.Y. and K.M.; formal analysis, all authors; investigation, J.Y.; resources, T.L.; data curation,
X.W.; writing—original draft preparation, J.Y. and K.M.; writing—review and editing, all authors;
visualization, T.L.; supervision, H.L.; project administration, J.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is supported by National Natural Science Foundation of China (Grant Nos.
12422213, 12372008); the National Key R&D Program of China (Grant No. 2023YFE0125900), the
Natural Science Foundation of Heilongjiang Province (Grant No. YQ2022A008), the Basic Research
Programs of Heilongjiang Provincial Universities (Grant No. 2023KYYWF0980).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mai, A.S.; Deng, X.; Tan, E.K. Epidemiology of early-onset Parkinson disease (EOPD) worldwide: East versus west. Park. Relat.

Disord. 2024, 107126. [CrossRef] [PubMed]
2. Cabestany, J.; Suppa, A.; Ólaighin, G. Editorial: Parkinson’s disease: Technological trends for diagnosis and treatment improve-

ment. Front. Neurol. 2023, 14, 1151858. [CrossRef] [PubMed]
3. Carvajal-Castaño, H.A.; Pérez-Toro, P.A.; Orozco-Arroyave, J.R. Classification of Parkinson’s Disease Patients—A Deep Learning

Strategy. Electronics 2022, 11, 2684. [CrossRef]
4. Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.;

Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale
presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [CrossRef] [PubMed]

5. Simpson, G.M.; Angus, J.W.; Frc, P. A rating scale for extrapyramidal side effects. Acta Psychiatr. Scand. 1970, 45, 11–19. [CrossRef]
6. Li, S.; Wu, Y.; Asghar, W.; Li, F.; Zhang, Y.; He, Z.; Liu, J.; Wang, Y.; Liao, M.; Shang, J.; et al. Wearable Magnetic Field Sensor with

Low Detection Limit and Wide Operation Range for Electronic Skin Applications. Adv. Sci. 2024, 11, e2304525. [CrossRef]
7. Li, B.; Yao, Z.; Wang, J.; Wang, S.; Yang, X.; Sun, Y. Improved Deep Learning Technique to Detect Freezing of Gait in Parkinson’s

Disease Based on Wearable Sensors. Electronics 2020, 9, 1919. [CrossRef]
8. Talaei, F.; Kargar, S.M. Design and Fabrication of a Device for Reducing Hand Tremor in Parkinson Patients during Eating. J. Med.

Signals Sens. 2023, 13, 21–28. [CrossRef]
9. Vidya, V.; Poornachandran, P.; Sujadevi, V.; Dharmana, M.M. IMU sensor based self stabilizing cup for elderly and parkinsonism.

In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 2264–2269.

10. Bagheri, E.; Jin, J.; Dauwels, J.; Cash, S.; Westover, M.B. A fast machine learning approach to facilitate the detection of interictal
epileptiform discharges in the scalp electroencephalogram. J. Neurosci. Methods 2019, 326, 108362. [CrossRef]

11. Hirano, R.; Asai, M.; Nakasato, N.; Kanno, A.; Uda, T.; Tsuyuguchi, N.; Yoshimura, M.; Shigihara, Y.; Okada, T.; Hirata, M. Deep
learning based automatic detection and dipole estimation of epileptic discharges in MEG: A multi-center study. Sci. Rep. 2024, 14,
24574. [CrossRef]

12. Mei, J.; Desrosiers, C.; Frasnelli, J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front.
Aging Neurosci. 2021, 13, 633752. [CrossRef] [PubMed]

13. Klaver, E.C.; Heijink, I.B.; Silvestri, G.; van Vugt, J.P.P.; Janssen, S.; Nonnekes, J.; van Wezel, R.J.A.; Tjepkema-Cloostermans, M.C.
Comparison of state-of-the-art deep learning architectures for detection of freezing of gait in Parkinson’s disease. Front. Neurol.
2023, 14, 1306129. [CrossRef] [PubMed]

14. Bukhari, S.N.H.; Ogudo, K.A. Ensemble Machine Learning Approach for Parkinson’s Disease Detection Using Speech Signals.
Mathematics 2024, 12, 1575. [CrossRef]

15. Roth, N.; Kuderle, A.; Ullrich, M.; Gladow, T.; Marxreiter, F.; Klucken, J.; Eskofier, B.M.; Kluge, F. Hidden Markov Model based
stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients. J. Neuroeng. Rehabil. 2021, 18, 93.
[CrossRef]

16. Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. Cmaj 2016, 188, 1157–1165.
[CrossRef]

17. Brzenczek, C.; Klopfenstein, Q.; Hahnel, T.; Frohlich, H.; Glaab, E.; Consortium, N.-P. Integrating digital gait data with
metabolomics and clinical data to predict outcomes in Parkinson’s disease. NPJ Digit. Med. 2024, 7, 235. [CrossRef]

18. Singh, S.; Xu, W. Robust Detection of Parkinson’s Disease Using Harvested Smartphone Voice Data: A Telemedicine Approach.
Telemed. J. E Health 2020, 26, 327–334. [CrossRef]

https://doi.org/10.1016/j.parkreldis.2024.107126
https://www.ncbi.nlm.nih.gov/pubmed/39307667
https://doi.org/10.3389/fneur.2023.1151858
https://www.ncbi.nlm.nih.gov/pubmed/36864922
https://doi.org/10.3390/electronics11172684
https://doi.org/10.1002/mds.22340
https://www.ncbi.nlm.nih.gov/pubmed/19025984
https://doi.org/10.1111/j.1600-0447.1970.tb02066.x
https://doi.org/10.1002/advs.202304525
https://doi.org/10.3390/electronics9111919
https://doi.org/10.4103/jmss.jmss_116_21
https://doi.org/10.1016/j.jneumeth.2019.108362
https://doi.org/10.1038/s41598-024-75370-9
https://doi.org/10.3389/fnagi.2021.633752
https://www.ncbi.nlm.nih.gov/pubmed/34025389
https://doi.org/10.3389/fneur.2023.1306129
https://www.ncbi.nlm.nih.gov/pubmed/38178885
https://doi.org/10.3390/math12101575
https://doi.org/10.1186/s12984-021-00883-7
https://doi.org/10.1503/cmaj.151179
https://doi.org/10.1038/s41746-024-01236-z
https://doi.org/10.1089/tmj.2018.0271


Electronics 2024, 13, 4638 16 of 17

19. Terlapu, P.V.; Swetha, M.; Ram, J.S.; Srinivas, K.S.; Nataraj, B.S.; Lahari, M.; Sowjanya, G.; Deexitha, B.S.; Mohitha, M.R. Intelligent
Parkinson’s Disease Detection: Optimization Algorithm Implementation for SVM and MLP Classifiers on Voice Bio-Markers. In
Proceedings of the International Conference on Computational Innovations and Emerging Trends (ICCIET 2024), Hyderabad,
India, 4–5 April 2024; Advances in Computer Science Research; pp. 230–241.

20. Williamson, J.R.; Telfer, B.; Mullany, R.; Friedl, K.E. Detecting Parkinson’s Disease from Wrist-Worn Accelerometry in the U.K.
Biobank. Sensors 2021, 21, 2047. [CrossRef]

21. Lee, C.Y.; Kang, S.J.; Hong, S.-K.; Ma, H.-I.; Lee, U.; Kim, Y.J. A Validation Study of a Smartphone-Based Finger Tapping
Application for Quantitative Assessment of Bradykinesia in Parkinson’s Disease. PLoS ONE 2016, 11, e0158852. [CrossRef]

22. Kamble, M.; Shrivastava, P.; Jain, M. Digitized spiral drawing classification for Parkinson’s disease diagnosis. Meas. Sens. 2021,
16, 100047. [CrossRef]

23. Dirkx, M.F.; Zach, H.; van Nuland, A.J.; Bloem, B.R.; Toni, I.; Helmich, R.C.J.B. Cognitive load amplifies Parkinson’s tremor
through excitatory network influences onto the thalamus. Brain 2020, 143, 1498–1511. [CrossRef]

24. Vlieger, R.; Daskalaki, E.; Apthorp, D.; Lueck, C.J.; Suominen, H. Evaluating Effects of Resting-State Electroencephalography
Data Pre-Processing on a Machine Learning Task for Parkinson’s Disease. Stud. Health Technol. Inform. 2024, 310, 1480–1481.
[CrossRef] [PubMed]

25. Belvisi, D.; Conte, A.; Bologna, M.; Bloise, M.C.; Suppa, A.; Formica, A.; Costanzo, M.; Cardone, P.; Fabbrini, G.; Berardelli, A.
Re-emergent tremor in Parkinson’s disease. Park. Relat. Disord. 2017, 36, 41–46. [CrossRef] [PubMed]

26. Clark, L.N.; Louis, E.D. Essential tremor. Handb. Clin. Neurol. 2018, 147, 229–239. [CrossRef] [PubMed]
27. Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C. A Smartphone-Based Tool for Assessing Parkinsonian

Hand Tremor. IEEE J. Biomed. Health Inform. 2015, 19, 1835–1842. [CrossRef]
28. Sajal, M.S.R.; Ehsan, M.T.; Vaidyanathan, R.; Wang, S.; Aziz, T.; Mamun, K.A.A. Telemonitoring Parkinson’s disease using

machine learning by combining tremor and voice analysis. Brain Inform. 2020, 7, 12. [CrossRef]
29. Gerraty, R.T.; Provost, A.; Li, L.; Wagner, E.; Haas, M.; Lancashire, L. Machine learning within the Parkinson’s progression

markers initiative: Review of the current state of affairs. Front. Aging Neurosci. 2023, 15, 1076657. [CrossRef] [PubMed]
30. Mukhamediev, R.; Kuchin, Y.; Yunicheva, N.; Kalpeyeva, Z.; Muhamedijeva, E.; Gopejenko, V.; Rystygulov, P. Classification of

Logging Data Using Machine Learning Algorithms. Appl. Sci. 2024, 14, 7779. [CrossRef]
31. Xing, X.; Luo, N.; Li, S.; Zhou, L.; Song, C.; Liu, J. Identification and Classification of Parkinsonian and Essential Tremors for

Diagnosis Using Machine Learning Algorithms. Front. Neurosci. 2022, 16, 701632. [CrossRef]
32. Wang, Z.; Xiong, C.; Zhang, Q. Enhancing the online estimation of finger kinematics from sEMG using LSTM with attention

mechanisms. Biomed. Signal Process. Control 2024, 92, 105971. [CrossRef]
33. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access

2018, 6, 1662–1669. [CrossRef]
34. Varghese, J.; Brenner, A.; Fujarski, M.; van Alen, C.M.; Plagwitz, L.; Warnecke, T. Machine Learning in the Parkinson’s disease

smartwatch (PADS) dataset. NPJ Park. Dis. 2024, 10, 9. [CrossRef]
35. Brenner, A.; Fujarski, M.; Warnecke, T.; Varghese, J. Reducing a complex two-sided smartwatch examination for Parkinson’s

Disease to an efficient one-sided examination preserving machine learning accuracy. arXiv 2022, arXiv:2205.05361.
36. Little, M.A.; Volotinen, S.; Sanderson, B.; Huopaniemi, U.; Mowlem, F.; Olt, J.; Byrom, B. Novel algorithms deriving clinical

performance measures from smartphone sensor data collected under a walking test. bioRxiv 2021, 465337. [CrossRef]
37. Yuan, Z.; Gao, X.; Yang, K.; Peng, J.; Luo, L. Performance Enhancement of Ultrasonic Weld Defect Detection Network Based on

Generative Data. J. Nondestruct. Eval. 2024, 43, 102. [CrossRef]
38. Zhang, B.; Fang, J.; Li, Y.; Wang, Y.; Zhou, Q.; Wang, X. GFRENet: An Efficient Network for Underwater Image Enhancement

with Gated Linear Units and Fast Fourier Convolution. J. Mar. Sci. Eng. 2024, 12, 1175. [CrossRef]
39. Bishop, C. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 7, 108–116. [CrossRef]
40. Le Guennec, A.; Malinowski, S.; Tavenard, R. Data Augmentation for Time Series Classification using Convolutional Neural

Networks. In Proceedings of the ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Riva Del
Garda, Italy, 19 September 2016. Available online: https://shs.hal.science/halshs-01357973v1 (accessed on 30 August 2016).

41. Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification
of Parkinson’s Disease from Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform.
2018, 22, 1765–1774. [CrossRef]

42. Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable sensor
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