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Abstract: Building extraction from remote sensing images holds significant importance in the fields
of land resource management, urban planning, and disaster assessment. Encoder-decoder deep
learning models are increasingly favored due to their advanced feature representation capabili-
ties in image analysis. However, because of the diversity of architectural styles and issues such
as tree occlusion, traditional methods often result in building omissions and blurred boundaries
when extracting building footprints. Given these limitations, this paper proposes a cutting-edge
Multi-Scale Frequency-Spatial Domain Attention Fusion Network (MFSANet), which consists of
two principal modules, named Frequency-Spatial Domain Attention Fusion Module (FSAFM) and
Attention-Guided Multi-scale Fusion Upsampling Module (AGMUM). FSAFM introduces frequency
domain attention and spatial attention separately to enhance the feature maps, thereby strengthening
the model’s boundary-detection capabilities and ultimately improving the accuracy of building ex-
traction. AGMUM first resizes and concatenates attention enhancement maps to enhance contextual
understanding and applies attention guidance to further improve prediction accuracy. Our model
demonstrates superior performance compared to existing semantic segmentation methods on both
the WHU building data set and the Inria aerial image data set.

Keywords: remote sensing; building extraction; dual-domain learning; multi-scale fusion

1. Introduction

Advances in deep learning are fueling rapid growth in building extraction from remote
sensing images. Analyzing remote sensing images has enabled the application of tech-
niques such as pixel-level object classification and building extraction across diverse fields,
including land resource management [1], urban planning [2,3], and disaster assessment [4].
In comparison with lower- and medium-resolution counterparts, high-resolution remote
sensing images provide richer details of the targets, but they also increase the computa-
tional volume and complexity of the image-processing process, posing various challenges
to the building-extraction task. Furthermore, the varying shapes and sizes of buildings,
along with different lighting conditions, shadows, and occlusions in the surrounding
environment, complicate the segmentation process, leading to problems such as blurred
boundaries, missed targets, and incomplete extraction areas in the final predictions [5].

In recent years, various semantic segmentation models have emerged. Most deep
learning-based building-extraction methods focus on spatial domain information process-
ing. Despite their proficiency in overall segmentation accuracy, they still face challenges
in handling regions with gray-level variations, such as edges and shadows [6–8]. The
frequency domain features are more sensitive to information in these regions. Therefore,
incorporating frequency domain information into building-extraction networks is necessary.
The utilization of frequency domain information in digital image processing [9–12] has gar-
nered increasing attention. Ref. [13] introduced a new neural network input method based
on frequency domain learning. By selectively retaining essential frequency components,
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this method reduces the input data size and enhances the accuracy of instance segmenta-
tion tasks. The discrete cosine transform (DCT) efficiently transforms image data into the
frequency domain, providing superior energy compaction compared to the discrete Fourier
transform (DFT). This enables the DCT to gather more crucial image information while
discarding relatively unimportant frequency domain regions, as illustrated in Figure 1. Ac-
cordingly, the DCT represents an optimal choice for image compression [14,15]. However,
solely depending on frequency domain data could lead to a forfeiture of spatial information,
since spatial domain characteristics include a variety of semantic details across different
styles and categories. Thus, utilizing the inherent frequency-spatial domain characteristics
of remote sensing images for accurate large-scale building analysis is still a formidable
challenge [16].
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While existing building-extraction methods have achieved high accuracy rates, they
still face significant challenges. Downsampling enables the extraction of features at varying
levels of an image, but it simultaneously reduces resolution, which can lead to information
loss, particularly for small or irregularly shaped buildings. The loss of relevant feature
information leads to problems such as lost predictions and blurred boundaries [17,18].

To address these challenges, we propose a deep learning network that innovatively
integrates frequency domain components and utilizes multi-scale feature fusion to achieve
high accuracy in building extraction. Key contributions are outlined below:

1. Frequency-Spatial Domain Attention Fusion Module (FSAFM): We integrate a fre-
quency domain component into the attention module, which enhances the detection
of features of interest within the feature maps. In this module, by integrating fre-
quency and spatial feature enhancements, we enable the model to concentrate its
attention on the most critical features, leading to a more sensitive perception of
boundary information.

2. Attention-Guided Multi-scale Fusion Upsampling Module (AGMUM): The module is
divided into two parts: (1) Multi-Scale Features Fusion (MSF): This part integrates
attention feature maps from various depths, improving the model’s comprehension of
contextual information and facilitating the capture of boundary details. (2) Attention
Upsampling (AU): Through frequency-space fusion attention, this part effectively
compensates for the losses incurred during upsampling.

3. Multi-Scale Frequency-Spatial Domain Attention Fusion Network (MFSANet): Based
on the above structure, we propose the MFSANet architecture, which integrates rich
frequency domain information while preserving spatial domain details. This network
is designed in two distinct phases: the initial phase employs dual-domain attention
mechanisms to refine feature extraction, directing the network’s focus towards salient
features; the subsequent phase utilizes multi-scale feature concatenation along with
attention-guided upsampling, enabling the network to perceive multi-scale informa-
tion effectively.

The structure of this paper is organized as follows: Section 2 provides a review of
the current landscape in building segmentation of remote sensing imagery, focusing on
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feature enhancement methods in the frequency domain. Section 3 delivers a comprehensive
overview of the entire architecture of the building-extraction network, covering the two
key components, FSAFM and AGMUM. Section 4 evaluates the model’s efficacy through
experimental outcomes using two data sets of remote sensing imagery. Section 5 presents a
synthesis of the research outcomes and further explores future research directions.

2. Related Works

This section provides an overview of methods and recent advances in semantic seg-
mentation for remotely sensed images, with a particular focus on techniques related to the
frequency domain.

2.1. CNN-Based Semantic Segmentation

As the potential of deep learning is continuously explored, CNN-based algorithms are
increasingly replacing traditional building segmentation methods. Conventional building-
extraction algorithms, including support vector machines [19], conditional random fields
(CRF) [20], and random forests [21], typically require additional manual intervention and
exhibit a more limited scope of applicability. However, with the advent of CNNs, the field
of building extraction has reached a new height. For the first time, FCNs have achieved
pixel-level classification through end-to-end convolution operations, generating segmenta-
tion maps with the same resolution as the input images, allowing for automatic building
extraction. Subsequent building-extraction methods are largely based on FCNs or their
variants. The most classic semantic segmentation network, U-Net [22], is a symmetrical
architecture featuring an encoder-decoder structure. By utilizing efficient skip connec-
tions, more contextual information is preserved in image-segmentation tasks, significantly
improving the segmentation accuracy. However, during the encoding process, while
more contextual information is captured, the spatial resolution of feature maps gradually
decreases, potentially leading to the loss of certain minute details. During the decoding pro-
cess, restoring low-resolution feature maps to their original resolution may cause blurriness
and an inability to accurately reconstruct the boundaries.

To address the issue of information loss during downsampling, Chen et al. [23] pro-
posed Res2-UNet, which decomposes the feature map into different sub-feature maps by
channels, organized using a residual network structure. This method enhances multi-scale
learning capabilities. Ali et al. [24] proposed EPD, which uses the class uncertainty within
local windows to generate soft labels. This method effectively preserves edge details and
significantly improves the network’s ability to produce high-quality predictions at low
resolutions. With the emergence of attention mechanisms, their application in remote sens-
ing building extraction is continually being explored. Attention mechanisms are resource
allocation strategies that allow models to focus on the most important aspects of input
data, improving accuracy and efficiency in processing and prediction. Since Hu et al. [25]
proposed SENet, which introduced channel attention mechanisms to enhance feature repre-
sentation in convolutional neural networks, various attention mechanisms have emerged.
Zhou and Wei [26] proposed FANet, which combines the Pyramid Vision Transformer to
capture global features and further optimizes these features through the Feature Aggrega-
tion Module and Difference Elimination Module to form a unified representation.

CNN-based methods typically operate solely within the spatial domain, overlooking
the spectral characteristics of the image. This underutilization of information can lead to
distortion when extracting contextual information.

2.2. Transformer-Based Semantic Segmentation

Transformer-based network architectures have also been extensively studied and ap-
plied in remote sensing image analysis. Through the self-attention mechanism, Transformer
networks can capture global contextual information, thereby effectively improving the
accuracy of semantic segmentation in complex backgrounds of remote sensing images.
Transformer-based methods can be divided into two categories: the first category is the
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fully Transformer encoder-decoder. Xie et al. [27] proposed SegFormer, a semantic segmen-
tation model that unifies Transformers with MLP decoders for efficient and accurate image
analysis, surpassing previous methods in performance and efficiency. Cao et al. [28] intro-
duced Swin-Unet, a pioneering pure Transformer model for medical image segmentation,
which incorporates the Swin Transformer in both the encoder and decoder. It has achieved
significantly higher accuracy than traditional convolutional networks in tasks such as
multi-organ and cardiac segmentation. The second category combines the advantages
of CNNs and Transformers. Zhang et al. [29] proposed the Swin Transformer, a model
that combines the advantages of Transformers and CNNs. It effectively captures global
contextual information of images and utilizes local feature details to enhance segmenta-
tion accuracy, particularly when dealing with complex objects and rich details in images.
Wang et al. [30] introduced UNetFormer, a semantic segmentation model for remote sens-
ing imagery, which combines a lightweight CNN encoder with a Transformer decoder. It
outperforms other models in accuracy and efficiency on urban scene data sets.

Unlike traditional Convolutional Neural Networks (CNNs), Transformer networks
enhance feature representation by modeling long-range dependencies, overcoming the
limitations of CNNs in handling large-scale contextual information.

2.3. Learning in Frequency Domain

It is crucial to learn frequency domain information from images because frequency
domain analysis allows models to understand image content from frequency levels. By
transforming to the frequency domain, image details and edges (high-frequency informa-
tion) as well as smooth areas and overall structure (low-frequency information) can be dis-
tinctly identified and processed separately. Dong et al. [31] proposed a headless lightweight
semantic segmentation architecture called AFFormer, which introduces a lightweight adap-
tive frequency filter, significantly reducing parameters and computational complexity while
preserving high precision. Huang et al. [32] proposed FSDR, which learns a model with
strong generalization ability by randomizing specific frequency components of images in
the frequency space. Qin et al. [33] proposed FcaNet, which compresses channels based on
DCT and utilizes frequency analysis to address the compression challenges in traditional
channel attention caused by large amounts of information. Zhu et al. [34] proposed MDNet,
which employs a dual-dimension Discrete Cosine Transform attention module (D3AM) and
a multi-scale Discrete Cosine Transform pyramid (MDP) to effectively harness frequency
domain information, thereby enhancing the feature representation for change detection
tasks. Fan et al. [35] proposed MIFNet, an approach that significantly enhances the model’s
resilience to diverse interferences by leveraging the complementary advantages of CNNs
and Transformers, while also incorporating frequency domain information. Zhang et al. [36]
proposed a Dual-Domain Transformer method, achieving comprehensive feature extraction
by combining the Fast Fourier Transform and boundary-aware modules.

Frequency domain compressed representations encompass vital patterns essential for
tasks related to image comprehension [13]. So far, frequency domain learning methods
have not seen widespread application. In the field of building extraction, incorporating
spectral analysis in models can help identify subtle differences in the spectral features of
various buildings, particularly in data where features are similar but spectral characteristics
differ, such as boundary areas obscured by shadows.

In conclusion, CNN-based methods are primarily concerned with the exploitation
of spatial domain data, which ultimately results in the incomplete utilization of the in-
herent information present within the image. Furthermore, this approach may introduce
blurring in building-extraction tasks, leading to inaccurate boundary predictions. There-
fore, incorporating frequency domain information to achieve frequency-spatial domain
fusion can enhance the model’s sensitivity to boundary details and improve its learn-
ing of spatial domain information, ultimately leading to more accurate results in remote
sensing applications.
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3. Method

In the following, the general structure of the Multi-Scale Frequency-Space Domain
Attention Fusion Network proposed in this paper is first introduced, followed by a detailed
discussion of the two key modules of the MFSANet: FSAFM and AGMUM.

3.1. Multi-Scale Frequency-Spatial Domain Attention Fusion Network (MFSANet)

Figure 2 illustrates the comprehensive architecture of MFSANet, which is specifically
engineered for high-resolution remote sensing imagery building-extraction tasks. Recent
research indicates that most models are based on an architecture that includes both an
encoder and a decoder. During the encoding phase, as downsampling takes place, the
resolution of feature maps gradually decreases. This results in the loss of certain boundary
details and blurriness of other information, which subsequently impacts the precision
recovery during upsampling. Additionally, inadequate design of the feature fusion strategy
during upsampling may impede the effective integration of contextual information, dimin-
ishing the model’s predictive power. To address these issues, we use FSAFM and AGMUM
to perform layer-by-layer enhancement and scale fusion of different layers of feature infor-
mation. The FSAFM design enhances the model’s capacity to concentrate on critical details
across multiple scales, thereby improving its feature representation and learning capacity.
The AGMUM design combines high-level abstract information with low-level detailed
features, significantly enhancing the network’s ability to capture contextual information.
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Algorithm 1 offers a comprehensive overview of the algorithmic structure of our pro-
posed model. It includes four key components: feature extraction, frequency-space domain
enhancement, multi-scale fusion, and attention-guided upsampling. The deep structure of
VGG16 enables the network to learn diverse levels of intricate feature information, which
is vital for downstream tasks such as image segmentation. Furthermore, the pre-trained
weights of VGG16 have been optimized on a multitude of standard data sets, thereby
facilitating transfer learning. MFSANet is comprised of four principal components:

Algorithm 1: Segmentation Model Based on Dual-Domain Enhancement

Input: 512 × 512 remote sensing images
Output: Building segmentation map
1: Use VGG16 to extract the feature maps of five layers of the input image
2: Apply FSAFM for frequency-space domain attention enhancement on the first four
layers of feature maps
3: Apply MSF to fuse the enhanced multi-scale features
4: Apply attention-guided upsampling

a. Skip connections
b. Apply FSAFM enhancement again to the concatenated features

5: Utilize the segmentation head to produce the final segmentation map
6: Output the building segmentation map

Figure 2 illustrates that MFSANet first extracts five feature maps at different levels
from the input remote sensing image. The first four feature maps are enhanced by FSAFM,
followed by multi-scale attention information integration through MSF. The fused feature
maps maintain consistency in both channel dimensions and spatial size with the original
feature maps at each level, while exhibiting higher attention and clarity for boundary
information. The deepest feature map is first upsampled and then concatenated with the
processed features from the fourth layer. The concatenated features are subsequently guided
by FSAFM to compensate for the upsampling loss and enhance feature representation. This
step is repeated for the other three layers. This process effectively enhances and integrates
information from different levels to achieve high-performance building segmentation.

3.2. Frequency-Spatial Domain Attention Fusion Module (FSAFM)

Incorporating attention mechanisms into building extraction aims to boost the model’s
targeted emphasis on critical feature zones, refine the richness of feature representation,
mitigate overfitting, and ensure higher accuracy in image-segmentation tasks. In addition,
the mechanism improves the adaptability of the model to complex remote sensing envi-
ronments. Traditional building-extraction methods have primarily focused on the spatial
domain, underutilizing the potential of frequency domain information. This indicates that
frequency domain enhancement holds significant promise for research and application.

To fully utilize the inherent information of images, this paper introduces a Frequency-
Spatial Attention Fusion Module (FSAFM), as shown in Figure 2a. This module is applied to
the skip connection part. The FSAFM is designed to maximize the utilization of image data
and emphasize the overall features of buildings. It enhances the model’s capacity to identify
object boundaries and improve the clarity of the regions of interest in the input feature
maps, ultimately achieving enhanced segmentation performance. The overall algorithm
flow of FSAFM is shown in Algorithm 2.
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Algorithm 2: Frequency-Spatial Domain Attention Fusion Module

Input: Multi-level feature maps X ∈ RC×H×W

Output: Fusion attention enhancement feature map Z
1: For the feature maps derived from various tiers of the backbone network:
2: Frequency-domain attention component
3: Segment into n parts across the channel dimension
4: Assign 2D-DCT frequency components to each part
5: Output 2D DCT enhanced feature map Y1
6: Spatial-domain attention component
7: Refine the feature map through the application of average and max pooling
8: Concatenate the two feature maps
9: Integrate the spatial weight map with the original feature map, resulting in a spatial
attention-enhanced feature map Y2
10: Add the frequency-domain enhanced feature map and the spatial attention map
pixel-wise
11: end for
12: Output the feature map refined by frequency-space domain attention Z

3.2.1. Spatial Domain Attention Enhancement

Spatial domain attention models enhance the model’s sensitivity to spatial information
by focusing on key areas within the image. Essentially, these models transform spatial
information from the original image into another space through a spatial-transformation
module, preserving critical information, generating weighted masks for each location, and
outputting the results with weighting, thereby enhancing the target area and weakening
irrelevant background areas.

Initially, apply average pooling and max pooling to the input feature map. Next,
combine the outcomes of these two processes. Apply the Sigmoid function to generate
attention maps. Finally, perform a pixel-wise multiplication between these attention maps
and the original input feature map.

AvgPool =
1

h × w

i+h−1

∑
p=i

j+w−1

∑
q=j

xp,q (1)

MaxPool = max
({

xp,q
∣∣p ∈ [i, i + h − 1], q ∈ [j, j + w − 1]

})
(2)

where xp,q represents the value at position (p, q) in the input feature map, h × w is the size
of the pooling window, and i and j are the positions in the pooled output feature map.

X = Conv
(
Cat

(
AvgPool

(
xp,q

)
, MaxPool

(
xp,q

)))
(3)

Y2 = Sigmoid(X)⊗ X (4)

where X denotes the feature map with one channel resulting from Conv applied to the
concatenation of AvgPool and MaxPool outputs of the input feature map x(p,q). The kernel
shape of the Conv is (in = 2, out = 1, k = 7, p = 3). Y2 represents the feature map enhanced
by spatial domain attention, and

⊗
represents element-wise multiplication.

3.2.2. Frequency Domain Attention Enhancement

The calculation of the 2D DCT is represented by the following formula:

F2d
h,w =

H−1

∑
i=0

W−1

∑
j=0

x2d
i,j Di,j

h,w (5)

Di,j
h,w = cos

(
(2i+1)πh

2H

)
cos

(
(2j+1)πw

2W

)
(6)
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where Di,j
h,w is the basis function of the 2D DCT, F2d

h,w ∈ RH×W is the frequency spectrum
representation, x2d ∈ RH×W is the input feature map, and H and W correspond to its height
and width, respectively.

In the frequency domain enhancement section, the input feature map is initially split
into n segments along the channel dimension, denoted as [X0, X1, · · · Xn−1], Xi ∈ RC′×H×W ,
i ∈ {0, 1, · · · , n − 1}, C′ = C

n . A 2D DCT is then applied to each segment to obtain
the frequency components for each part as shown in Equation (7). Then, all parts are
concatenated using Equation (8) and the compressed overall information is output as
frequency domain attention enhancement.

Freqi = DCT(Xi) =
H−1

∑
h=0

W−1

∑
w=0

Xi
h,wDh,w (7)

Freq = cat
([

Freq0, Freq1, · · · Freqn−1
])

(8)

where Freqi ∈ RC′
represents the frequency components of the i-th segment Xi after

splitting along the channel dimension, with a dimension of C′. The calculation for the final
output of the frequency domain attention enhancement is as follows:

Y1 = Sigmoid( f c(Freq))⊗ X (9)

where f c denotes a sequence of fully connected layers used for both dimensionality reduc-
tion and expansion, while maintaining the same size, followed by activation and output of
attention weights, X represents the input feature map, and Y1 represents the feature map
after frequency domain attention enhancement.

Fuse the feature map enhanced by frequency domain attention with the feature map
enhanced by spatial domain attention using element-wise addition.

Z = Y1 ⊕ Y2 (10)

where Z represents the feature map enhanced by frequency-spatial domain fusion attention,
and ⊕ represents element-wise addition. This design, by leveraging the characteristics of
different domains, can comprehensively perceive the details of the image’s features and
better allocate attention weights.

3.3. Attention-Guided Multi-Scale Fusion Upsampling Module (AGMUM)

As downsampling continues, it may lead to the degradation of key information in
the original data. Furthermore, downsampling is likely to disrupt the continuity of data
through time and space, causing discontinuities in time series and geographic distributions,
thus affecting the accuracy and reliability of subsequent analysis. Relying solely on feature
maps from the downsampling process for reconstructing the predicted image can lead
to significant errors. We introduce an Attention-Guided Multi-Scale Fusion Upsampling
Module (AGMUM) to tackle this problem. The framework of this module is depicted in
Figure 2b, with the Multi-Scale Feature Fusion (MSF) part shown in Figure 3a. In the multi-
scale fusion part, improvements are made to the skip connections, effectively integrates
contextual information by combining shallow edge features with deep detail features.
This enables precise recovery of image details during the upsampling and reconstruction
process, thereby improving segmentation accuracy.

F1 = Q1 (11)

F2 = Cat(RS(Q1), Q2) (12)

F3 = Cat(RS(Q1, Q2), Q3) (13)

F4 = Cat(RS(Q1, Q2, Q3), Q4) (14)
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where Fi represents the feature maps at each level output after fusion and Qi, i ∈ {1, 2, 3, 4}
represents the feature maps at each level of downsampling. RS denotes the adjustment
of the input feature map’s scale to match the dimensions of a specific tier. Cat denotes
concatenation along the channel dimension.
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In the feature-reconstruction phase of upsampling, we leverage the complementary
strengths of bilinear interpolation upsampling and transposed convolution upsampling,
as depicted in Figure 3b. Additionally, an attention mechanism is introduced during the
upsampling process to achieve high-accuracy feature reconstruction. Bilinear interpolation
upsampling effectively preserves edge details of the image. Transposed convolution
upsampling not only effectively restores image details and textures but also enhances the
model’s capacity to capture details. It uses multi-scale convolution kernels to facilitate the
fusion of features across various levels, thereby improving image quality. After transposed
convolution, the PReLU activation layer introduces non-linearity, which improves the
training efficiency and generalization ability of the model. This facilitates a quicker training
phase and elevates the clarity of the resulting imagery. The fusion of the two upsampling
methods enhances the model’s adaptability and robustness to different types of images.
After performing upsampling of deep features and skip connections with shallow features,
attention is introduced, namely the FSAFM module, which enhances the feature maps by
frequency and spatial domain attention.

upi = FSA(Conv(UpSample(x, Bilinear))⊕ PRelu(ConvTranspose2d(x))) (15)

where upi, represents the output feature map after attention-guided upsampling. FSA rep-
resents frequency-spatial domain attention fusion. Bilinear represents bilinear interpolation
upsampling, and ConvTranspose2d represents transposed convolution upsampling.

The incorporation of multi-scale feature fusion, coupled with attention-guided upsam-
pling, significantly enhances the model’s ability to detect a comprehensive range of both
high- and low-frequency information. This approach effectively addresses common issues
such as detail omission and boundary blurring that occur during the upsampling process,
ultimately achieving greater accuracy in reconstructing the predicted feature maps.
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4. Experiments
4.1. Data Sets and Hardware Environment

To evaluate the efficacy and usability of our method, tests were carried out on two
accessible data sets in the public domain. These data sets contain aerial images of buildings
captured in different urban environments. The data sets are described in detail below.

1. WHU building data set [37]. The data set is composed of aerial and satellite imagery.
For our experiments, we utilize the aerial image data set to validate the model’s
effectiveness. It contains 187,000 buildings across more than 450 square kilometers,
totaling 8189 images, each sized at 512 × 512 pixels. In the experiment, for the
training, there are 4736 images (60% of the total data set); for validation, the count is
1036 images (15%); and for testing, the number stands at 2416 images (25%).

2. Inria aerial image data set [38]. The data set consists of five cities, containing a total
of 360 remote sensing images, each measuring 5000 × 5000 pixels. From this data
set, we selected 180 images for experimentation, cropping the originals into patches
of 512 × 512 pixels. The cropped images were subsequently allocated into training
(12,600 images, 70%), validation (2700 images, 15%), and test (2700 images, 15%) sets.

Experiments were run on an NVIDIA GeForce RTX 4090 24 GB GPU, utilizing Python
3.8, Pytorch 1.11.0, CUDA 11.3, along with libraries like NumPy, Pillow, and OpenCV.

4.2. Evaluation Metrics

We employed standard metrics for remote sensing image segmentation, including F1
score (F1), Intersection over Union (IoU), Precision, and Recall. TP represents the pixels
accurately identified as positive, while FP denotes those incorrectly identified as positive,
and FN signifies the pixels mistakenly identified as negative. The evaluation metrics are
defined as follows:

IoU =
TP

TP + FP + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 =
2 × Precision × Recall

Precision + Recall
(19)

4.3. Experiment Analysis
4.3.1. Quantitative Comparison Results

We performed performance validation of MFSANet on two public data sets. Table 1
presents the overall quantitative evaluation results of different methods on the WHU
building data set.

Table 1. Numerical comparison of different methods on the WHU data set.

Method IoU Recall Precision F1

UNet [22] 88.28 93.81 94.74 93.77
SegNet [39] 85.35 91.31 92.65 91.97
HRNet [40] 86.51 92.67 93.66 93.16

UNetFormer [30] 87.33 92.84 93.64 93.24
LCS [41] 90.71 94.86 95.38 95.12

BuildFormer [42] 90.73 95.14 95.15 95.14
MRANet [43] 90.59 95.22 94.90 95.06

Ours 91.01 95.12 95.47 95.29
Bold font indicates the best performance for each attribute.
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Our proposed model shows significant improvement over other methods, with an
Intersection over Union (IoU) of 91.01%, Recall of 95.12%, and Accuracy of 95.47%. These
improvements are all attributed to FSAFM and AGMUM. Compared to the classic bench-
mark networks UNet, SegNet, and HRNet, our proposed network improves F1 scores by
1.52%, 3.29%, and 2.13%, respectively. When compared to the high-performance Build-
Former, the metrics show improvements of 0.28%, −0.02%, 0.32%, and 0.15%, respectively.
These data indicate that our proposed MFSANet has outstanding feature-extraction and
prediction capabilities.

For additional evaluation of the efficacy and usability of our model, we conducted
experiments on the Inria aerial image data set, and the findings are detailed in Table 2,
where our proposed MFSANet demonstrates superior performance compared to other
models across all metrics.

Table 2. Numerical Comparison of Methods on the Inria data set.

Method IoU Recall Precision F1

UNet 74.40 84.28 86.39 85.32
SegNet 72.00 82.33 84.69 83.49
HRNet 75.03 84.92 86.56 85.73

LCS 78.82 86.77 89.58 88.15
BuildFormer 81.24 88.78 90.65 89.71

MRANet 81.79 90.72 89.26 89.99

Ours 82.45 90.09 90.68 90.38
Bold font indicates the best performance for each attribute.

Experiments on both data sets demonstrate that our proposed MFSANet not only
substantially outperforms traditional segmentation networks but also shows enhancements
compared to the high-performing method BuildFormer. This success can be attributed to
the two key modules we introduced, FSAFM and AGMUM. By effectively leveraging the
inherent frequency and spatial domain information of images and integrating multi-level
features, MFSANet achieves its outstanding performance.

4.3.2. Qualitative Results

We performed visual experiments across two data sets to demonstrate the efficacy of
our approach, with the associated visualizations depicted in Figures 4 and 5. In these figures,
black pixel regions indicate the background, while white pixel regions denote buildings.
Areas where the background is mistakenly identified as buildings are highlighted in red,
and buildings incorrectly categorized as background appear in green.
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In Figure 4, partial visualization results of the WHU building data set are displayed.
We selected two remote sensing images depicting dense urban structures, one image
featuring large buildings, and another showcasing dense vegetation to comprehensively
validate the model’s performance. In Figure 4a, where buildings have irregular shapes,
our model produces smoother predictions along the boundaries and accurately identifies
regions with pixel features akin to the buildings. Likewise, in Figure 4c, there is an area at
the bottom of the image whose features closely resemble those of buildings, other models
encountered certain errors during testing, while MFSANet made better decisions during
prediction. Figure 4b includes dense tree cover, with some buildings were obscured
by the trees. Compared to other networks, MFSANet demonstrates superior overall
performance. In Figure 4d, the buildings on both sides exhibit different styles, other
networks fail to clearly delineate the boundaries, whereas MFSANet predicts smoother
boundary information. Additionally, in this figure, there is a small “H”-shaped building,
which UNet predicts as a single structure along with the surrounding small buildings, while
the other three models exhibit prediction omission issues. In contrast, the visualization
results of building extraction by MFSANet indicate that this model is capable of better
integrating contextual information, enabling more accurate segmentation of buildings from
the background. The extracted building outlines are smoother, effectively optimizing the
issues of false positives and missed detections.

Figure 5 presents the visual outcomes on select test images of the Inria data set. The
remote sensing images in this data set are sourced from five different regions, which exhibit
certain variations in building styles and lighting conditions, presenting challenges for the
segmentation task. In Figure 5a, the vegetation is dense, and the buildings are largely
obscured by trees, leading to significant missed detections by other networks during testing.
In contrast, MFSANet is able to reduce false detections. In Figure 5b, the buildings are
densely arranged, the lighting is weaker compared to other test images, and trees obstruct
the view between the buildings, causing networks like UNet and LCS to encounter missed
detections during segmentation. Additionally, some small shadow areas are misclassified
as buildings by other networks, while MFSANet can more accurately segment building
boundaries, avoiding over-segmentation of shadow areas. Figure 5c also demonstrates the
issue of UNet and LCS predicting shadow areas as buildings. In Figure 5d, the buildings are
closely connected, and for the background areas surrounding the buildings, other models
exhibit misclassification issues. MFSANet shows improved segmentation performance. The
effectiveness and robustness of MFSANet, particularly in handling irregular boundaries,
high-density small buildings, and severe shadow scenarios, are validated through visual
analysis on the more complex Inria data set.
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Although MFSANet was designed specifically for building extraction in remote sens-
ing images, its architecture and methodology provide a potential foundation for adaptation
to other remote sensing tasks. The ability of MFSANet to effectively integrate multi-scale
features and attention mechanisms suggests that it can handle the diverse challenges posed
by other remote sensing tasks, which often require capturing both global context and
fine-grained details. With appropriate adjustments and optimizations, we believe that
MFSANet could be extended to tasks such as land cover classification and object detection.

4.4. Ablation Study
4.4.1. Quantitative Comparison Results

Ablation analysis was performed on the WHU building data set to measure the indi-
vidual impact of the two modules on the model’s performance. We used a classic semantic
segmentation network as the baseline, and sequentially validated the effectiveness of the
FSAFM and the AGMUM. The outcomes of the experiment are displayed within Table 3.

Table 3. Results of ablation experiments.

Method IoU Recall Precision F1

Baseline 88.28 93.81 94.74 93.77
Baseline + FSAFM 89.64 94.31 94.76 94.53

Baseline + AGMUM 90.51 94.66 95.38 95.01
Baseline + FSAFM + AGMUM 91.01 95.12 95.47 95.29

SegNet 82.83 87.59 93.90 90.60
SegNet + FSAFM 83.67 89.09 93.22 91.10

SegNet + AGMUM 84.08 89.73 93.03 91.35

This paper introduces a frequency-spatial domain fusion attention method in the
encoder part, which helps the model to concentrate on relevant areas. As shown in the table
above, after introducing FSAFM, the four metrics improved by 1.36%, 0.50%, 0.02%, and
0.76%, respectively. In the decoder part, AGMUM is introduced, which enables the model to
better learn contextual information through multi-scale fusion in the first half. Then, in the
upsampling phase, it combines the advantages of two upsampling methods, and, guided
by attention, significantly enhances prediction accuracy. After introducing AGMUM, the
four metrics improved by 2.23%, 0.85%, 0.64%, and 1.24%, respectively. It is noticeable
that both modules independently contribute to the model’s enhanced performance. To
further validate the performance of the two modules, we incorporated them into the SegNet
architecture. The results, shown in Table 3, demonstrate that both FSAFM and AGMUM
continue to improve the model’s performance.

Table 4 shows that although the proposed model increases both computational cost
and parameter count overall, the increase in parameters due to FSAFM is relatively small,
demonstrating the efficiency of 2D-DCT channel compression in reducing the compu-
tational load. While the introduction of FSAFM and AGMUM leads to an increase
in runtime and memory usage, this increase is reasonable considering the significant
performance improvements.

Table 4. Computational efficiency and resource usage.

Method FLOP
(G)

Parameters
(M)

Runtime
(Min)

Memory
(MiB)

Baseline 225.66 24.89 4:34 10,165
Baseline + FSAFM 305.42 28.00 6:48 14,033

Baseline + AGMUM 364.79 33.72 7:50 14,725
Baseline + FSAFM + AGMUM 364.85 33.76 8:01 15,267

SegNet 160.83 29.44 4:30 13,227
SegNet + FSAFM 160.89 29.52 5:18 21,499

SegNet + AGMUM 175.67 35.21 5:26 13,281
The input size is set to 512 × 512 × 3, and the runtime time is the duration required for one iteration over the
WHU training data set.
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4.4.2. Qualitative Results

We present a comparative visualization of four models to intuitively demonstrate the
performance of the two modules: Baseline, Baseline + FSAFM, Baseline + AGMUM, and
Baseline + FSAFM + AGMUM.

From Figure 6, it can be observed that introducing FSAFM and AGMUM in the
Baseline markedly refines the model’s perception of building information.
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As shown in Figure 7, dual-domain attention effectively lowers the model’s false
positive rate by increasing the weight of building pixels. Specifically, in Figure 7b, the
building is surrounded by trees, and FSAFM concentrates on the features of the building,
reallocating weights through attention fusion to help the model more clearly distinguish
between the building and the background. Similarly, in Figure 7c, several containers are
arranged together, and FSAFM, by weighting important features, enables the model to
focus more on recognizing buildings, especially demonstrating excellent performance in
distinguishing between easily confused objects and buildings.
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AGMUM integrates feature information from different levels, allowing the model
to simultaneously capture high-level semantics and low-level details, thus facilitating
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smoother boundary processing when predicting building outlines. Additionally, through
further guidance from attention, it improves the model’s capacity to identify small targets.
As illustrated in Figure 7a, AGMUM comprehensively focuses on buildings of various sizes,
effectively alleviating the issue of missed detections by the model, ensuring the accuracy of
the predicted number of buildings.

Through the introduction of FSAFM and AGMUM, the feature processing and fu-
sion strategies are optimized, significantly reducing the occurrence of missed detections,
ensuring the integrity of building boundaries. Thanks to the multi-scale features fusion,
the network’s predictions of building boundaries are smoother, with finer details. These
improvements enhance the model’s efficacy for building-extraction tasks and increase its
robustness in intricate environments.

5. Conclusions

This paper employs MFSANet to address the challenge of achieving high precision
in building extraction from high-resolution remote sensing imagery. The network utilizes
a symmetric encoder-decoder framework to initially capture multi-tiered image features,
followed by a reconstruction to the original pixel resolution. In the encoder part, a dual-
domain attention method is introduced for feature enhancement. The decoder phase
incorporates a multi-scale feature fusion, and the upsampling process is guided by attention.
This network fully considers the frequency and spatial feature information in the images, by
fusing the attention from the frequency and spatial domains and redistributing the attention
weights. Additionally, the model successfully combines multi-scale feature information.
This design helps the model better understand the consistency of pixel label assignments
within local areas while maintaining the integrity of larger buildings and reducing the
missed detection of small objects. To verify the effectiveness of MFSANet, quantitative
experiments, qualitative experiments, and ablation studies were conducted on the public
data sets WHU building data set and Inria aerial image data set. Its strong performance
affirms the method’s effectiveness and robustness in carrying out building extraction.

Author Contributions: Conceptualization, J.L. and H.G.; Data curation, Z.L.; Formal analysis,
Z.L.; Funding acquisition, J.L.; Investigation, H.C.; Methodology, H.C.; Project administration,
Z.L.; Resources, J.L.; Software, Z.L.; Supervision, J.L.; Validation, J.L. and H.G.; Visualization, Z.L.;
Writing—original draft, H.C. and H.G.; Writing—review and editing, J.L. and Z.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Henan Province Key R&D Project (241111210400), Henan
Provincial Science and Technology Research Project (242102211007 and 242102211020), and Science
and Technology Innovation Project of Zhengzhou University of Light Industry (23XNKJTD0205).

Data Availability Statement: The WHU Building Aerial Imagery and Inria aerial image data set
used in the experiment can be downloaded at http://gpcv.whu.edu.cn/data/building_dataset.html
(accessed on 22 November 2024) and https://project.inria.fr/aerialimagelabeling/ (accessed on
22 November 2024), respectively.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Huang, X.; Cao, Y.X.; Li, J.Y. An automatic change detection method for monitoring newly constructed building areas using

time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [CrossRef]
2. Chen, Z.; Wei, Y.; Shi, K.; Zhao, Z.; Wang, C.; Wu, B.; Qiu, B.; Yu, B. The potential of nighttime light remote sensing data to evaluate

the development of digital economy: A case study of China at the city level. Comput. Environ. Urban Syst. 2022, 92, 101749.
[CrossRef]

3. Bai, H.; Li, Z.W.; Guo, H.L.; Chen, H.P.; Luo, P.P. Urban Green Space Planning Based on Remote Sensing and Geographic
Information Systems. Remote Sens. 2022, 14, 4213. [CrossRef]

4. Sakellariou, S.; Sfougaris, A.I.; Christopoulou, O.; Tampekis, S. Integrated wildfire risk assessment of natural and anthropogenic
ecosystems based on simulation modeling and remotely sensed data fusion. Int. J. Disaster Risk Reduct. 2022, 78, 103129.
[CrossRef]

http://gpcv.whu.edu.cn/data/building_dataset.html
https://project.inria.fr/aerialimagelabeling/
https://doi.org/10.1016/j.rse.2020.111802
https://doi.org/10.1016/j.compenvurbsys.2021.101749
https://doi.org/10.3390/rs14174213
https://doi.org/10.1016/j.ijdrr.2022.103129


Electronics 2024, 13, 4642 16 of 17

5. Jiang, X.; Zhang, X.; Xin, Q.; Xi, X.; Zhang, P. Arbitrary-Shaped Building Boundary-Aware Detection with Pixel Aggregation
Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2699–2710. [CrossRef]

6. Ok, A.O. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts.
ISPRS J. Photogramm. Remote Sens. 2013, 86, 21–40. [CrossRef]

7. Guo, H.; Du, B.; Zhang, L.; Su, X. A coarse-to-fine boundary refinement network for building footprint extraction from remote
sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 183, 240–252. [CrossRef]

8. Shao, P.; Shi, W.; Liu, Z.; Dong, T. Unsupervised Change Detection Using Fuzzy Topology-Based Majority Voting. Remote Sens.
2021, 13, 3171. [CrossRef]

9. You, S.; Liu, Y.; Lei, B.; Wang, S. Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain. arXiv 2020.
[CrossRef]

10. Chen, H.; Yokoya, N.; Chini, M. Fourier domain structural relationship analysis for unsupervised multimodal change detection.
ISPRS J. Photogramm. Remote Sens. 2023, 198, 99–114. [CrossRef]

11. Yu, B.; Yang, A.; Chen, F.; Wang, N.; Wang, L. SNNFD, spiking neural segmentation network in frequency domain using high
spatial resolution images for building extraction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102930. [CrossRef]

12. Sun, H.; Luo, Z.; Ren, D.; Du, B.; Chang, L.; Wan, J. Unsupervised multi-branch network with high-frequency enhancement for
image dehazing. Pattern Recognit. 2024, 156, 110763. [CrossRef]

13. Xu, K.; Qin, M.; Sun, F.; Wang, Y.; Chen, Y.-k.; Ren, F. Learning in the Frequency Domain. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1737–1746.

14. Gupta, A.; Mahobiya, C. Analysis of Image Compression Algorithm Using DCT. Int. J. Sci. Technol. Eng. 2016, 3, 121–127.
15. Chen, Z.; Liu, T.; Xu, X.; Leng, J.; Chen, Z. DCTC: Fast and Accurate Contour-Based Instance Segmentation with DCT Encoding

for High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8697–8709. [CrossRef]
16. Zhang, C.; Lam, K.-M.; Wang, Q. CoF-Net: A Progressive Coarse-to-Fine Framework for Object Detection in Remote-Sensing

Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5600617. [CrossRef]
17. Zheng, J.; Shao, A.; Yan, Y.; Wu, J.; Zhang, M. Remote Sensing Semantic Segmentation via Boundary Supervision-Aided Multiscale

Channelwise Cross Attention Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4405814. [CrossRef]
18. Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic

Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [CrossRef]
19. Inglada, J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of

geometric image features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248. [CrossRef]
20. Li, E.; Femiani, J.C.; Xu, S.; Zhang, X.; Wonka, P. Robust Rooftop Extraction From Visible Band Images Using Higher Order CRF.

IEEE Trans. Geosci. Remote Sens. 2015, 53, 4483–4495. [CrossRef]
21. Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved random

forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [CrossRef]
22. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
23. Chen, F.; Wang, N.; Yu, B.; Wang, L. Res2-Unet, a New Deep Architecture for Building Detection From High Spatial Resolution

Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1494–1501. [CrossRef]
24. Ali, S.; Lee, Y.R.; Park, S.Y.; Tak, W.Y.; Jung, S.K. Towards Efficient and Accurate CT Segmentation via Edge-Preserving Probabilistic

Downsampling. arXiv 2024, arXiv:2404.03991.
25. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
26. Zhou, X.; Wei, X. Feature Aggregation Network for Building Extraction from High-resolution Remote Sensing Images. In

Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Jakarta, Indonesia, 15–19 November 2023;
pp. 105–116.

27. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic
Segmentation with Transformers. In Proceedings of the Neural Information Processing Systems, Online, 6–14 December 2021.

28. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image
Segmentation. In Proceedings of the ECCV Workshops, Montreal, ON, Canada, 11 October 2021.

29. Zhang, C.; Jiang, W.; Zhang, Y.; Wang, W.; Zhao, Q.; Wang, C. Transformer and CNN Hybrid Deep Neural Network for Semantic
Segmentation of Very-high-resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408820. [CrossRef]

30. Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient
semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2021, 190, 196–214. [CrossRef]

31. Dong, B.; Wang, P.; Wang, F. Head-Free Lightweight Semantic Segmentation with Linear Transformer. In Proceedings of the
AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 516–524. [CrossRef]

32. Huang, J.; Guan, D.; Xiao, A.; Lu, S. FSDR: Frequency Space Domain Randomization for Domain Generalization. In Proceedings
of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 6887–6898.

33. Qin, Z.; Zhang, P.; Wu, F.; Li, X. FcaNet: Frequency Channel Attention Networks. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2020; pp. 763–772.

https://doi.org/10.1109/JSTARS.2020.3017934
https://doi.org/10.1016/j.isprsjprs.2013.09.004
https://doi.org/10.1016/j.isprsjprs.2021.11.005
https://doi.org/10.3390/rs13163171
https://doi.org/10.1109/TNNLS.2022.3153088
https://doi.org/10.1016/j.isprsjprs.2023.03.004
https://doi.org/10.1016/j.jag.2022.102930
https://doi.org/10.1016/j.patcog.2024.110763
https://doi.org/10.1109/JSTARS.2024.3386754
https://doi.org/10.1109/TGRS.2022.3233881
https://doi.org/10.1109/TGRS.2023.3336665
https://doi.org/10.3390/rs12061050
https://doi.org/10.1016/j.isprsjprs.2007.05.011
https://doi.org/10.1109/TGRS.2015.2400462
https://doi.org/10.1016/j.isprsjprs.2015.03.011
https://doi.org/10.1109/JSTARS.2022.3146430
https://doi.org/10.1109/TGRS.2022.3144894
https://doi.org/10.1016/j.isprsjprs.2022.06.008
https://doi.org/10.1609/aaai.v37i1.25126


Electronics 2024, 13, 4642 17 of 17

34. Zhu, Y.; Fan, L.; Li, Q.; Chang, J. Multi-Scale Discrete Cosine Transform Network for Building Change Detection in Very-High-
Resolution Remote Sensing Images. Remote Sens. 2023, 15, 5243. [CrossRef]

35. Fan, J.; Li, J.; Liu, Y.; Zhang, F. Frequency-aware robust multidimensional information fusion framework for remote sensing
image segmentation. Eng. Appl. Artif. Intell. 2024, 129, 107638. [CrossRef]

36. Zhang, J.; Shao, M.; Wan, Y.; Meng, L.; Cao, X.; Wang, S. Boundary-Aware Spatial and Frequency Dual-Domain Transformer for
Remote Sensing Urban Images Segmentation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5637718. [CrossRef]

37. Ji, S.P.; Wei, S.Q.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite
Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

38. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? the inria aerial image
labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort
Worth, TX, USA, 23–28 July 2017; pp. 3226–3229.

39. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

40. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-Resolution Representations for
Labeling Pixels and Regions. arXiv 2019, arXiv:1904.04514.

41. Liu, Z.Y.; Shi, Q.; Ou, J.P. LCS: A Collaborative Optimization Framework of Vector Extraction and Semantic Segmentation for
Building Extraction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5632615. [CrossRef]

42. Wang, L.B.; Fang, S.H.; Meng, X.L.; Li, R. Building Extraction With Vision Transformer. IEEE Trans. Geosci. Remote Sens. 2022,
60, 5625711. [CrossRef]

43. Jiang, W.X.; Chen, Y.; Wang, X.F.; Kang, M.L.; Wang, M.Y.; Zhang, X.J.; Xu, L.X.; Zhang, C. Multi-branch reverse attention semantic
segmentation network for building extraction. Egypt. J. Remote Sens. Space Sci. 2024, 27, 10–17. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs15215243
https://doi.org/10.1016/j.engappai.2023.107638
https://doi.org/10.1109/TGRS.2024.3430081
https://doi.org/10.1109/TGRS.2018.2858817
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TGRS.2022.3215852
https://doi.org/10.1109/TGRS.2022.3186634
https://doi.org/10.1016/j.ejrs.2023.12.003

	Introduction 
	Related Works 
	CNN-Based Semantic Segmentation 
	Transformer-Based Semantic Segmentation 
	Learning in Frequency Domain 

	Method 
	Multi-Scale Frequency-Spatial Domain Attention Fusion Network (MFSANet) 
	Frequency-Spatial Domain Attention Fusion Module (FSAFM) 
	Spatial Domain Attention Enhancement 
	Frequency Domain Attention Enhancement 

	Attention-Guided Multi-Scale Fusion Upsampling Module (AGMUM) 

	Experiments 
	Data Sets and Hardware Environment 
	Evaluation Metrics 
	Experiment Analysis 
	Quantitative Comparison Results 
	Qualitative Results 

	Ablation Study 
	Quantitative Comparison Results 
	Qualitative Results 


	Conclusions 
	References

