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Abstract: The tasks assigned to neural network (NN) models are increasingly challenging due to the
growing demand for their applicability across domains. Advanced machine learning programming
skills, development time, and expensive assets are required to achieve accurate models, and they
represent important assets, particularly for small and medium enterprises. Whether they are deployed
in the Cloud or on Edge devices, i.e., resource-constrained devices that require the design of tiny
NNs, it is of paramount importance to protect the associated intellectual properties (IP). Neural
networks watermarking (NNW) can help the owner to claim the origin of an NN model that is
suspected to have been attacked or copied, thus illegally infringing the IP. Adapting two state-of-the-
art NNW methods, this paper aims to define watermarking procedures to securely protect tiny NNs’
IP in order to prevent unauthorized copies of these networks; specifically, embedded applications
running on low-power devices, such as the image classification use cases developed for MLCommons
benchmarks. These methodologies inject into a model a unique and secret parameter pattern or force
an incoherent behavior when trigger inputs are used, helping the owner to prove the origin of the
tested NN model. The obtained results demonstrate the effectiveness of these techniques using AI
frameworks both on computers and MCUs, showing that the watermark was successfully recognized
in both cases, even if adversarial attacks were simulated, and, in the second case, if accuracy values,
required resources, and inference times remained unchanged.

Keywords: watermarking; backdoors; tiny machine learning: micro-controllers; image use cases

1. Introduction

The seminal work of [1] has proven the ability to convert high-dimensional tensors
into low-dimensional representations by training a multi-layer neural network (NN) with a
tiny layer in the middle of the topology to approximate the inputs accurately. Since then,
artificial intelligence (AI) has been increasingly developed and applied in many ways, thus
becoming more and more pervasive in everyone’s daily life [2].

In the AI and data science domains, machine learning (ML) plays an important role
due to its capabilities to learn from and process large amounts of heterogeneous data, thus
enabling ML workloads to automatically provide results which are often more accurate
than the ones generated by hand-crafted or traditional ML approaches [3]. Thus, ML has
been proven in a wide range of domains, such as image recognition, facial recognition,
object detection, natural language processing, and machine translation, among others.
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ML is also a key technology in autonomous systems like self-driving cars and humanoid
robotics, where ML workloads process sensor data constantly acquired in real-time and
provide critical decisions which are actuated.

The initial deployment of ML models was on powerful computing devices, as they are
typically available in Cloud infrastructures. They are positioned very far from data sources.
This approach has been proven to not scale with the ever-increasing number of users over
the years. Furthermore, there are a number of other concerns when ML workloads are
Cloud-centric, such as the instability of Cloud connectivity in rural, harsh, and remote
areas, data privacy, too high computational costs, and power consumption, just to name a
few. The awareness of these challenges and the need to find new approaches to achieve ML
decentralization on Edge gave rise to the TinyML community, which was established in
2019 [4]. The TinyML Foundation, at the heart of this community, is a worldwide non-profit
organization empowering a community of professionals, academic researchers, students,
and policymakers focused on low-power AI at the very edge of the Cloud. Moreover,
TinyML is a category of ML that allows models to run on smaller, less powerful devices. It
involves hardware, algorithms, tools, and embedded software that can analyze sensor data
on these devices with very low power consumption (e.g., under 1 mW), making it ideal for
always-on use cases and battery-operated devices.

Thanks to the advent of TinyML in several markets, tiny neural networks (tiny NNs)
became increasingly popular, and they have been employed in many embedded applica-
tions running on low-power devices, such as image classification use cases developed for
MLCommons benchmarks [5]. They are off-the-shelf micro-controllers (MCUs) running
at several hundreds of MHz (the operative core frequency), embedding up to 1 Mbyte of
RAM and 2 Mbytes of FLASH memories, for example. The MCU can run tiny NNs that
process data at either floating-point precision (fp32) or an integer (e.g., 8 bits) with a range
of performances adequate for most of the embedded AI applications currently available on
the market.

Despite the small footprint and low cost of these embedded devices, many AI develop-
ers still require lots of hand-crafted ML design. Also, the training processes to get accurate
tiny NN solutions are costly and time-consuming. Moreover, most of the project time is
spent on dataset creation, labeling, and updating.

Since tiny NNs are the essential core technology in Edge AI, unfortunately, they can be
easily copied. They represent the intellectual properties (IPs) of many small and medium
enterprises (SMEs); therefore, protecting them against unwanted copies is of paramount
importance [6]. This is currently considered a top priority. Therefore, the ML community is
required to enable them to achieve such a level of protection.

The application of robust watermarking in neural networks extends beyond theoretical
concepts and provides practical benefits for real-world users across various domains. For
example, in the field of computer vision, watermarking techniques have been effectively
applied to NN models trained with CIFAR-10 to protect intellectual property. A scenario
can be envisioned in which a trained neural network for image classification is purchased.
By embedding a robust watermark, the origin of the network can be verified, ensuring
that the acquired model is genuinely the one intended and protecting against fraudulent
replacements. This capability extends to the detection of unauthorized copies; if a stolen or
duplicated network is used without permission, the embedded watermark can serve as a
unique identifier, allowing rightful ownership to be asserted. This protective mechanism
holds particular significance in industries that deploy their proprietary models in small
devices, such as the IoT sensors distributed in large areas. Watermarking these models
ensures that their origin can be verified regardless of their deployment, thus providing a
layer of security and fostering trust throughout the model’s lifecycle.

The possibility of forcing a unique behavior or making NN layer weights unique has
been examined using two state-of-the-art methods, which led to the development of two
adaptable approaches that can be applied across various Edge AI use cases, particularly
within image classification neural networks. These methods were designed to enhance
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flexibility and robustness, enabling effective deployment in resource-constrained Edge
environments. The resulting solutions were tailored to ensure compatibility with typical
Edge AI scenarios, addressing challenges such as limited computational resources and data
constraints while maintaining high accuracy and responsiveness in image classification
tasks using only a few dozen layer weights. Overall, two NNW methods are examined
in this study. For the first one, a black-box approach is considered, and three distinct
approaches for generating these trigger sets are explored. For the second method, a white-
box application is considered, focusing on embedding the watermarks directly into the
model’s weights through selective modification of specific bits using layer weight regular-
izers. All the models extracted with the different combinations considering the use cases
and the NNW methods are evaluated by computing adequate metrics and leveraging a
third-party methodology, following the MPAI (https://mpai.community/ (accessed on
13 November 2024)) standardized evaluation procedure under attack simulation.

The main contributions of the paper are summarized as follows:

• We define a methodology that allows developers to associate a unique identifier to the
NN model that is recognizable to avoid wasting investments;

• We define multiple watermarking approaches according to a methodology that can
be reproducible;

• We investigate the possibility of applying watermarking to a hypo-parametric model
(more challenging than applying watermarking to a model with a high number of
parameters);

• We define a method that requires no extra cost in deploying the device;
• Given the industrial importance of preserving the IP, we define a watermarking

method that meets this specification.

Before delving deeper into the details, the paper is organized as follows: Section 2
describes the background knowledge essential to understanding the watermarking process
applied to NNs; Section 3 describes the known approaches in the literature; Section 4
defines the problem this paper addresses with the definition of some requirements to be
fulfilled; Section 5 describes the use cases considered for the watermarking application;
Section 6 describes the approaches that have been coded to achieve the watermarking of
tiny NNs; Section 7 explains the results achieved in this work with the related interpreta-
tions; Section 8 shows the results achieved through deployability on the MCU; Section 9
explains the results achieved after some attacks were applied to verify the robustness of
the watermarking processes; Section 10 concludes the paper and introduces some future
developments about the continuation of the research.

2. Background on Watermarking

A digital watermark (DW) can be defined as a marker embedded in a noise-tolerant
processing algorithm such as the NN pipeline. It can be used to identify IP ownership. More
precisely, digital watermarking is the process of hiding digital information, for example,
among the hyper-parameters of an NN such that the hidden information embodied shall
contain a relation to them. A DW may be used to verify the authenticity or integrity of the
NN, which would be intended as IP, or to prove the identity of its creator. It is typically used
to help detect copyright infringements. Moreover, the DW should not negatively affect
the expected performance in operative conditions and when the copyright infringement
does not need to be detected. If the DW distorts the NN performance, it is considered less
effective and intrusive performance-wise.

A DW process can be designed based on the level of access it has. Additionally, it can
be divided into two main areas:

• White-box watermarking;
• Black-box watermarking.

In white-box watermarking, the process is designed to be open and transparent,
allowing authorized individuals to fully understand and verify the embedded watermark.

https://mpai.community/
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In black-box watermarking, the process is designed to be hidden and inaccessible, making
it difficult for unauthorized individuals to comprehend or tamper with the watermark [7].

The required properties of a DW may depend on the use case in which it is applied.
For marking parameterized models, with copyright information, such as an NN, a DW
has to be rather robust against modifications such as knowledge distillation (KD), pruning,
weights and activations quantization, additive noise to the inputs, etc. A digital copy of
the NN is exactly the same as the original. DW is a passive approach; it can just mark
the parameters and does not degrade NN task performance as expected with respect to
the unwatermarked (unWMd) version [8]. One application of DW is source tracking.
A watermark can be embedded into an NN model in several different stages. In the
event that an unauthorized copy of the model has hypothetically been found, these NNW
methods can help the owner to do the following:

• Provide proof that the originally inserted watermark has been recognized in the
tested model;

• Provide the keys and extraction and detection method used to assert the previous point.

These can be useful when malicious individuals take advantage of unclaimed IP. This
helps to protect IP and ensures that the model cannot be used unlawfully without attribution.

NN watermarking (NNW) is composed of two main steps [8]:

1. Embedding the watermark: The process begins by selecting a DW, which could be a
sequence of bits or a unique pattern. The DW is embedded into the NN model during
the training phase or post-training phase. This can be achieved by subtly altering the
parameters of the model, such as weights and biases, to inject the DW information.
Alternatively, it can be integrated into the inputs as well;

2. Detection: Once the NN has been trained and the DW embedded, it can be deployed
for its intended task. To verify the authenticity of the model, the DW needs to be
extracted. This is typically performed by providing a set of inputs to the model and
observing its outputs. Specialized algorithms, such as trigger set-based detection [9],
steganalysis-based Detection [10], and zero-bit watermarking [11], are then used to
analyze the model’s behavior and extract the DW from its parameters or its activations.
The extracted watermark is compared against the original one to verify the authenticity
and ownership of the model.

DW techniques face several challenges, including ensuring robustness against mali-
cious attacks, preserving content quality, and providing security to prevent unauthorized
detection and removal. Effective DW must balance these challenges while also offering
sufficient capacity and computational efficiency. To address these issues, experiments can
be conducted to test robustness against attacks such as Gaussian noise, pruning, and quan-
tization attacks, as reported in Section 9. Afterward, the watermark is evaluated to assess
efficiency. These experiments help refine techniques to ensure they meet the necessary
requirements and perform effectively in real-world scenarios.

3. Related Works

Recent studies have investigated watermarking methods. Some of them were related
to ML algorithms, and others to deep NNs (DNNs). Related works in digital watermarking
can be categorized into three macro areas:

1. Watermarking applied to data:

(a) Without ML methods;
(b) With ML methods;

2. Watermarking applied to NNs by modifying layers and weights:

(a) Fine-tuning the pre-trained model;
(b) Training the ML approach from scratch;

3. Watermarking based on the level of access to the ML model:

(a) White-box watermarking;
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(b) Black-box watermarking.

3.1. Watermarking Applied to Data

This section discusses the DW achieved with and without ML approaches.

3.1.1. Without ML Methods

The work exposed in [12] proposed a watermarking algorithm for colored images,
combining the discrete wavelet transform (DWT), the discrete cosine transform (DCT), sin-
gular value decomposition (SVD), and scrambling. More investigations into watermarking,
based on DWT and SVD, using colored images were discussed in [13,14]. Ref. [13] proposed
a semi-blind image watermark scheme that used the finite ridgelet transform (FRT), particle
swarm optimization (PSO), and the Arnold transform, in addition to the conversion of
RGB images into YCbCr color space [13]. Ref. [14] presented a robust image watermark-
ing approach, considering the image as a third-order tensor and transforming it using
tensor-SVD [14]. In medical imaging, SVD was applied combined with the fast curvelet
transform (FCT), achieving WMd medical data [15]. Further, SVD has been employed for
watermarking authentication and self-recovery in [16], and images were divided into four
groups and fed into the SVD algorithm, with the results replacing the least significant bit
(LSB) of each block. Another choice introduced was a watermarking scheme based on a
block mapping algorithm and dual matrix, generating authentication and recovery data
from the original image [17].

Ref. [18] employed watermarking systems for colored images based on the fusion of
spatial domain and LU factorization. LU factorization is a method used to decompose a
matrix as the product of a lower triangular matrix and an upper triangular matrix [19].
The watermark was embedded by altering elements that exhibited strong correlations with
the L matrix (lower diagonal matrix). Another application of the watermarking technique
utilizing LSB substitution was by [20], and a blind fragile watermark was applied for
colored images to detect manipulations and enable self-recovery; this method employed a
pseudo-random binary sequence based on a secret key as the watermark, with recovery
information stored accordingly.

3.1.2. With ML Methods

While former studies focused on applying watermarking techniques directly to data,
there was an increasing tendency to integrate ML algorithms as part of watermarking methods.

A review was presented in [21] that introduced a watermarking process exploiting
a multi-head cross-attention mechanism. The watermark was generated by resizing the
image, which was then binarized using a pixel threshold approach. The process was
repeated to create a mixed watermark. The system included four components, which were
as follows:

• An embedder;
• An encoder;
• A decoder;
• An extractor.

These components worked together to create the WMd image, aiming to take out
critical characteristics through the generation of invariant domains and extracting the
watermark, which had to be similar to the original. The encoder incorporated convolu-
tional layers and fully connected layers. Another method combined convolutional neural
networks (CNNs) with DWT for embedding and extracting watermarks [22]. This method
involved two stages to embed the WMd into the image:

• For the image host;
• For the watermark.
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The DWT was used to split up the colored host image into four levels, one of which
was chosen for watermark inclusion. During these processes, CNNs facilitated the water-
marking procedure.

Furthermore, a “box-free” multi-bit watermarking method was introduced by [23] to
protect IP, which was robust against various attacks. This method incorporated watermark-
ing by introducing a loss factor during the training of GANs, ensuring the presence of an
invisible watermark in images that can only be recovered by a pre-trained watermark de-
coder. This approach was adapted to CNN-based architectures, protecting their robustness
by converging to a large and flat minimum of the watermark loss factor.

Ref. [24] proposed an end-to-end network for watermarking, and a CNN assessed
the robustness based on image content. This approach embedded, attached, and extracted
gray scale watermarks within a single frame. The method employed a stochastic gradient
descent (SGD) optimizer during training to improve robustness.

Ref. [25] used a watermarking method to protect GAN IP by embedding a watermark
in the model. This method involved inserting a pre-trained CNN watermark that decoded
a block into the G output and modifying the G loss to include a watermark loss term, which
made it easier the watermark extraction from the generated images. The watermark was
then incorporated through a fine-tuning procedure.

3.2. Watermarking Applied to NNs by Modifying Layers and Weights

This category did not focus on data but specifically on NNs themselves.
Ref. [26] proposed a new framework called PreGIP to mark graph neural network

(GNN) encoder pre-training, safeguarding IP while preserving the quality of the embedding
space. This framework incorporated a task-free watermarking loss to mark the embedding
space of the pre-trained GNN encoder. Furthermore, it implemented fine-tuning resistant
watermark injection, ensuring similar representations for each pair of different watermark
graphs during pre-training. This approach ensured that if the representations of two
paired WMd graphs were close enough, they would receive the same predictions from the
classifier. In contrast, an independent model trained on unlabeled data would produce
distinct representations for each pair of labeled graphs, leading to inconsistent results.

Ref. [27] examined the watermarking capability of NNs from an information theory
perspective. A new definition of watermark capacity for NNs was proposed, similar to
channel capacity. The study analyzed its properties and defined an algorithm to estimate
its upper limit in cases of adversarial overwriting. Furthermore, a method was proposed to
safeguard the transmission of identity messages through multiple rounds of ownership
verification. Ref. [28] applied watermarking for IP protection of NN models against an
extraction model called MEA-Defender. The watermark was achieved by combining
samples of two original input classes.

Moreover, exploration involved a taxonomy of various watermarking techniques
for ML models, introducing a threat model to compare various methods in different
scenarios [29]. This taxonomy outlined the desired requirements and attacks against
watermarking models for ML.

Ref. [30] investigated watermark removal and highlighted the limitations of existing
watermarking methods.

Ref. [31] proposed incorporating the concept of “identity bracelet” into DNNs as a
means of protecting IP. This approach extended existing trigger set watermarking tech-
niques by embedding a post-cryptography style serial number directly into DNNs, where
both the input data and the watermark were processed within the same network.

The related works’ studies suggested that none of the research mentioned used a
watermarking algorithm without affecting the pre-trained NN.

Additionally, regarding integrating watermarks into ML models, there were two main
approaches: training from scratch and fine-tuning pre-trained models, which are addressed
in the following sections.
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3.2.1. Fine-Tuning the Pre-Trained Model

Starting from a pre-trained ML model [32], the watermark was introduced as part
of the fine-tuning process itself. Since the model already had pre-learned weights from a
dataset, the watermark was incorporated during the adjustment phase when the ML model
was adapted to a new dataset or task. This allowed the watermark to be embedded in a
model that already featured a certain level of knowledge, potentially making the watermark
more robust against removals or tampering.

3.2.2. Training from Scratch

A unique watermark was introduced by [33] during the initial training of the model.
As the model was learnt all the way using a specific dataset, the watermark, often a unique
pattern or set of data, was embedded within the model’s parameters. This meant that
the model was designed to recognize and respond to the watermark from the outset,
establishing a clear marker of ownership or origin.

3.3. Watermarking Based on Level of Access

A white-box method is applied to a system where the internal operations are fully
known and transparent. The term comes from being able to “see through” the black box.
The terms “white box” and “black box” are used across various fields, including computer
science, engineering, and ML, to describe systems based on the level of internal visibility
and knowledge available to the observer or user. A black-box method is applied to a
system that can be analyzed in terms of its inputs and outputs without any knowledge
of its internal works. The term implies that the internal mechanisms are either unknown
or irrelevant to the user. Depending on the level of access to the NN model’s internals,
watermarking methods and attacks can be classified as either black box or white box.

3.3.1. White-Box Watermarking and Attacks

In the context of ML, a white-box NN is interpretable and explainable, allowing
humans to understand and follow the decision-making process of the model. Similarly,
in white-box watermarking, the process is designed to be transparent and understand-
able, enabling authorized users to comprehend and verify the watermark. Examples of
interpretable models, such as decision trees and linear regression, parallel the concept of
white-box watermarking by providing clarity and traceability of their operations.

In adversarial ML, a white-box attack is one approach in which the attacker has com-
plete knowledge of the ML model, including its architecture, hyper-parameters, and train-
ing data. This allows accurate crafting of the adversarial examples to fool the model.

Table 1 summarizes existing works on NNW using white-box approaches.

Table 1. Related works on NNW focussed mainly on white-box methods.

Method Author Level of Access

“DeepSigns”: A combination of multi-bit and one-bit water-
mark framework gives a WMd version with its key [32] Chen et al. White box and

black box

Embedding a key-vector into the parameters of a DNN [33] Uchida et al. White box

Protect WMd parameters by blocking them with a DNN [34] Tartaglione
et al. White box

Embeds a fragile watermark as a bit string that can be altered
even if a parameter changes [35] Botta et al. White box

3.3.2. Black-Box Watermarking and Attacks

In the context of ML, black-box NNs are complex and non-interpretable, making it
difficult to understand how these models generate any decisions. Similarly, in black-box
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watermarking, the process is designed to be non-transparent and obscure, preventing
unauthorized users from understanding or manipulating the watermark.

In adversarial ML, a black-box attack occurs when an attacker has no knowledge of
the model’s internals and must rely on the model’s outputs to construct the attack. This
type of attack is more common in real-world scenarios where attackers do not have access
to the target model’s details.

Table 2 summarizes existing works on NNW using black-box approaches.

Table 2. Related works on NNW focussed mainly on black-box methods.

Method Author Level of Access

The key inputs should be protected against forging attacks
using a hash function [11] Zhu et al. Black box

“DeepSigns”: A combination of multi-bit and one-bit water-
marks framework gives a WMd version with its key [32] Chen et al. White box and

black box

Key inputs used outside of the dataset [36] Adi et al. Black box

The prediction layer should be actively modified to poison the
attacker’s training [37]

Orekondy
et al. Black box

Key inputs within the dataset should be visibly modified and
associated with a new label [38] Zhong et al. Black box

Adversarial inputs created by the IFGSM algorithm should be
used as keys [39] Merrer et al. Black box

A specific behavior on key inputs is created by modifications
done by API Dawn [40] Szyller et al. Black box

In addition to state-of-the-art watermarking methods, NNW techniques can also har-
ness the intrinsic structures of different DNN architectures to embed watermarks. For
example, in CNNs, watermarks can be embedded within specific convolutional layers,
feature maps, or filters, leveraging these networks’ hierarchical structure and spatial pat-
terns. This allows for seamless integration that remains resilient to network modifications.
On the other hand, recurrent neural networks (RNNs), which operate on sequences and
temporal dependencies, can incorporate watermarks within their recurrent connections or
hidden state transitions. By embedding patterns within sequences or modifying specific
hidden state behaviors, watermarks can be effectively concealed while preserving func-
tionality. GNNs further offer unique opportunities for NNW by embedding watermarks
within nodes, edges, or global graph representations. These structural modifications allow
watermarks to be intertwined with the graph data processing, enhancing robustness to
structural transformations or attacks. Leveraging the architectural properties of different
DNNs enables the creation of highly resilient and adaptive watermarks that align with
the operational characteristics of each specific network type, enhancing their resistance to
attacks and modifications.

Exploring the possible digital object that can be watermarked in the field of NNs,
Wu et al. [41] introduce an innovative watermarking framework designed for deep neural
networks that produce images as outputs. In this framework, any image generated by
a watermarked neural network includes a specific watermark, changing the usual way
of watermarking an NN hiding secret keys into the weights or in the prediction of small
batches of data.

Continuing the discussion of different types of neural network watermarking tech-
niques, it is also important to consider fragile NNW. This specific approach contrasts with
robust watermarking by being highly sensitive to any modifications made to the DNN.
Unlike robust watermarks, which aim to ensure model changes such as pruning, quantiza-
tion, or fine-tuning, fragile watermarks are designed to detect even the smallest alterations
in the model’s parameters or architecture. Such sensitivity makes fragile watermarking
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particularly suited for integrity verification and tamper detection, as any unauthorized
changes can cause the watermark to degrade or disappear entirely, signaling potential
manipulation. By embedding these watermarks through precise adjustments to weights, ac-
tivations, or structural components, fragile watermarking tightly ties itself to the unaltered
state of the model, making it a powerful tool for scenarios demanding strict authenticity
and security assurances.

4. Problem Statement and Requirements

The problem this paper addressed was how to watermark tiny NNs so that IP was
protected at the highest level possible. Furthermore, it was about guaranteeing its deploya-
bility on tiny Edge devices such as MCUs without affecting the behavior of the model and
the resources required to run the model’s inference. In terms of requirements, the solution
to the problem shall provide support for the following:

• Uniqueness, Secrecy, and Invisibility. NN watermarking uses a specific, distinct key
that is unique while remaining secret and confidential, which prevents unauthorized
users from detecting, altering, or removing it. A watermark should be invisible; there-
fore, it has to be imperceptible and undetectable. Additionally, it should not visibly
alter the original host model, ensuring the legitimacy of the content. Importantly, any
increase in inference time due to watermarking must be minimal to avoid negatively
impacting user experience;

• Requirements for the MCU. Since the network should fit in the MCU, it should be
tiny enough to be processed by the device with low latency, and the application of the
watermark should use the least possible RAM and FLASH;

• Performance requirements and time of execution after the application of watermarks.
The watermark needs to be applied without any impact on memory footprint and
inference time. Since watermarking could actually affect the performance of the
system, computational overhead and execution times for embedding extraction and
detecting watermarks are crucial factors to be considered. It is important to optimize
processes to minimize the impact on overall performance and ensure balance between
watermarking robustness and invisibility, explained in the following previous points:
security and robustness of watermarks in NNs and uniqueness, secrecy and invisibility.

• Security and robustness of watermarks in NNs. NNW techniques should be designed
with security and robustness to withstand various attacks. Adversarial attacks, such
as model fine-tuning or parameter pruning, can attempt to remove or tamper with
the embedded watermark. Robust watermarking techniques aim to withstand such
attacks and ensure the watermark remains intact. Moreover, the technique should be
efficient in terms of memory usage to facilitate deployment on resource-constrained
platforms while maintaining robustness.

5. Use Cases

MLCommons [5] is an AI engineering consortium built on a philosophy of open
collaboration to improve AI systems. Through collective engineering efforts involving
industry and academia, it supports how to measure and improve the accuracy, safety,
speed, efficiency, and safety of AI technologies, helping companies and universities build
better AI systems for the benefit of society. One working group in MLCommons is the
tiny MLPerf Inference. It defined the benchmark suite to measure how fast tiny Edge
device systems can process inputs and produce results using a pre-trained NN model.
The MLPerf Inference benchmark definition details the motivation and guiding principles
behind the benchmark suite. Ref. [42] was the first industry-standard benchmark suite
for ultra-low-power tiny ML solutions. It implemented a modular design that enabled
benchmark submitters to show the benefits of their solutions, regardless of where they fall
on the ML deployment stack, in a fair and reproducible manner. Two (out of four) tiny
MLPerf use cases were considered by this work for experimentation: visual wake words
(VWW) and image classification (IC), which are further described in Sections 5.1 and 5.2.
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5.1. Visual Wake Words

This is a relatively simple classification task. The VWW dataset [43] addresses the
detection of at least one person in an image. This task is directly relevant to smart doorbell
and occupancy applications, and the reference network provided as part of the challenge
fits most 32-bit embedded MCUs available on the market. The VWW dataset [44] is used
for the training, validation, and test datasets for all person detection models. The dataset is
pre-processed to train on images that contain at least one person occupying more than 2.5%
of the source image. Images are also resized to 96 × 96 for model training. The VWW NN
is a MobilenetV1 [45], which takes 96 × 96 input images with an alpha of 0.25 and outputs
two classes (person and no person). The pre-trained TensorFlow Lite (TFL) model footprint
is equal to 325 KiB.

5.2. Image Classification

It employs the dataset CIFAR-10 [46], a labeled subset of the 80 Million Tiny Images
dataset [47]. The low resolution of the images makes CIFAR-10 the most suitable source of
data for training tiny IC models. It consists of 60,000 32 × 32 × 3 RGB images, with 6000 im-
ages per class. The 10 different classes represent airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. The dataset is divided into five training batches and one
testing batch, each with 10,000 images. A significant amount of prior work in tiny ML has
used CIFAR-10 as a target dataset [48]. The IC model is a customized ResNet-8 [49], which
takes 32 × 32 × 3 input images and outputs a probability vector of size 10. The custom
model is made of fewer residual stacks than the official ResNet: three compared to four.
The pre-trained TFL model for IC is 96 KiB in size and fits on most 32-bit embedded MCUs.

6. Approaches Being Modeled

This work focused on two approaches to achieve NNW, each of them with some
variants. The aim was to apply the two approaches to the use cases in Sections 5.1 and 5.2,
thus evaluating the performance and effectiveness of the watermarking algorithm in
different application contexts. In Sections 6.1 and 6.2, the features of the two algorithms are
explained in detail.

6.1. Watermarking by Means of Regularization

Ref. [33] proposed an NNW technique with the use of a custom regularizer, which was
a function defined by the user to train the model. This method was employed by defining a
watermark key, a watermark matrix, and a custom regularizer. This method ensured that
the watermark was robust against various attacks and modifications, keeping the same
accuracy, computational efficiency, and purpose while embedding a secure and detectable
signature within its parameters. The goal was to embed this information in a way that did
not compromise or alter the original functionality and performance of the NN. The process
used is explained in Sections 6.1.1–6.1.4.

6.1.1. Watermark Key

Through this approach, a specific vector called b was embedded into the weights
of the NN. The vector has a certain size and composition made of a combination of bits.
Accordingly, it has been incorporated exclusively into the weights of a single layer within
the network. In the proposed work, the definition and initialization of b had been done
before the training took place, including its length and the bits chosen inside it. Moreover,
Sections 6.1.3 and 6.1.4 report that b is used during the training of the model to compute a
regularized term and during the detection to prove the ownership of the model.

6.1.2. Watermark Matrix

The watermark matrix is a core element of this method, which embeds and extracts
the watermark. This matrix has a specific shape, where the number of rows corresponds
to the product of the first three values of the weight’s shape, and the number of columns
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corresponds to the first value of the shape of the vector that is supposed to be the key. The
watermark matrix can be built using the following three methods:

• Direct: each row embeds one element set to “1”, with its position chosen randomly
within the row, while all other elements are set equal to “0”;

• Diff: each row embeds two specific elements, one equal to “1” and another equal to
“−1”. Their positions are chosen randomly within the row, while all other elements
are set to “0”;

• Random: values are initialized randomly following a standard normal distribution
N(0, 1), with the mean equal to 0 and variance equal to 1.

Figure 1 shows how this matrix can be set in three different ways.

Figure 1. Process to set the watermark matrix using one of the three options.

One of the three options needs to be performed before the model’s training.

6.1.3. Regularization and Updating of Weights

The watermark is applied through the watermark regularizer class. It is defined as the
Rterm added to the original cost function to train the NN, as explained in Equation (1):

New cost f unction = Original cost f unction + Rterm. (1)

The additional regularized term is defined as the binary cross entropy between vector
b and the sigmoid activation of the scalar product obtained from the watermark matrix and
flattened weights, as in the following equation:

Rterm = k ∗ ∑(−(bj ∗ log(yj) + (1 − bj) ∗ log(1 − yj))), (2)

where b is the watermark key, as explained in Section 6.1.1, yj is the term defined in
Equation (4), and k is the scale factor experimentally chosen. The regularizer term calcula-
tion was done through a function called automatic in the NN training process. Since the
watermark can be applied to a single layer of the NN, it can be introduced as a custom
regularizer in that layer. In this work, a convolutional layer was selected as the one to
watermark. Specifically, during training, the weights w of the convolutional layer chosen
for watermarking are multiplied by the watermark matrix M, as shown in Equation (3):

w′ = ∑ Mji ∗ wi. (3)

As explained in Section 6.1.2, the number of rows i of the watermark matrix, Mji,
corresponds to the product of the first three dimensions of the weight tensor in the layer
where the watermark is to be applied, and the number of columns i corresponds to the
dimension of the key vector, as described in Section 6.1.1. The meaning behind this choice
is to make sure that in the extraction process, the matrix can be multiplied by the weights
of the WMd layer wi; also, the extracted vector then has the same size as the vector b. The
values different from zero in the watermark matrix influence the weights. The result of
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Equation (3) is then passed through a sigmoid activation, which normalizes all the values
between 0 and 1, as shown in Equation (4):

yj = σ(w′) =
1

1 + exp(−w′)
. (4)

Equation (4) and vector b are passed through a binary cross entropy, and then a scale
factor k is applied to obtain the regularized additional loss term as per Equation (2).

All these steps taken for the additional loss term belong to the so-called injection
process. The whole process is shown in Figure 2.

Figure 2. Each step that has been taken to get to Equation (1).

During training, a function to obtain the regularized term in Equation (2) is identified
for every batch size in each epoch. The next step involves the extraction of the watermark,
as discussed in Section 6.1.4.

6.1.4. Extraction and Detection of the Watermark

Extraction and detection occur after training. Extraction is performed by re-applying
the sigmoid function in Equation (4) but with the WMd weights instead. After applying the
sigmoid activation, an array of values between 0 and 1 with the same size as b is obtained.
A threshold is then defined, and values greater than this threshold are classified as ‘True’
or ‘1’, as shown in Equation (5).

σ(∑ MijwWMd) ≥ Threshold. (5)

Figure 3 shows the complete process to extract the watermark from the model.

Figure 3. Watermark extraction and detection process.

The same threshold used in the state-of-the-art method [33] equal to 0.5 is used.
Watermark embedding is considered successfully detected if the bit error rate (BER) is equal
to zero. The BER measures the number of positions at which the corresponding extracted
symbols are different from b, averaged over the total bits, as expressed in Equation (6).

BER =
∑(σ(∑ MijwWMd) ̸= bj)

size of b
. (6)

6.2. Watermarking by Means of Backdooring

Ref. [36] introduced a method called backdooring to incorporate watermarks into ML
algorithms. The work also leveraged commitment schemes to provide a more comprehen-
sive framework to achieve watermarking. This method consisted of three key steps:

1. Keygen() generates the secret marking key and the verification key;
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2. Mark(M, mk) embeds the watermark (mk) into the model (M);
3. Veri f y(mk, vk, M) verifies if the model (M) contains the watermark using the marking

key (mk) and verification key (vk).

6.2.1. Backdooring Algorithm

This is a known technique used to intentionally train a model to produce incorrect
labels to be associated with specific inputs. It involves setting a trigger dataset and a
labeling function, which consists of inputs designed to trigger the backdoor and assign
incorrect labels to these inputs. A backdoor comprises the trigger set and its corresponding
labeling function. A backdooring algorithm takes an oracle (a function that simulates the
model’s behavior), a backdoor, and a model as input. This algorithm outputs a model that
is likely to misclassify inputs from the trigger set with a high probability. Backdoors can be
embedded in models either during training or starting from a pre-trained model. There
are also strong backdoors, which are enhanced versions of backdoors designed to be more
resilient and persistent. They feature the following properties:

• They incorporate multiple trigger sets, making them harder to detect and remove;
• They are difficult to remove without knowledge of the trigger datasets, ensuring their

longevity and effectiveness.

They use the sample backdoor algorithm [36] that obtains the required backdoor. This
watermarking method also uses algorithms that leverage trigger sets as secrets. The sender
can lock a secret, and the receiver can later verify the secret’s authenticity. These algo-
rithms [36] are as follows:

• One locks the secret using a random bit-string;
• Another verifies the authenticity of the secret by checking if the provided proof

matches the original secret and bit-string.

These algorithms try to ensure that neither the sender nor the receiver can access the
secret without each other’s cooperation.

6.2.2. Trigger Datasets

The trigger dataset is a specific set of data and corresponding labels. The data should
match the expected input of the NN (e.g., input shape, values format, etc.). They should be
distinct and uncorrelated with regular training data and, compared to the latter, should be
composed of fewer samples, about 0.2%. For each trigger sample, a label has to be assigned.
Both the data generation process and the label assignment should be unique and secret
to ensure that only the IP owner can recognize their own trigger set. To guarantee that
the trigger set is adequate, the incoherent assignment of labels must be proven rather than
their ground truth classification. The main goal of this approach is to fix the behavior of the
NN model when the trigger dataset is used as its input and to obtain a unique prediction.
In this work, the watermark is injected only during training, and the trigger dataset is
concatenated with the original training data. The NN learns to produce outputs for trigger
inputs while still performing its primary task accurately on non-trigger data. To verify
ownership, trigger inputs should be provided to the NN while observing the outputs. If
these match the expected trigger outputs, it means that the NN model has embedded the
watermark, thus providing evidence of its ownership.

6.2.3. Generation of the Trigger Dataset

Ref. [36] was an example that leveraged a trigger set during training. Since the
watermarking should be unique for each use case, the key has to be unique for each
embedding as well. Therefore, it is essential to find a way to generate a unique key for
each use. While a user could potentially select images, as [36] did, this approach did
not guarantee the uniqueness or robustness of the dataset. Basic features that a trigger
set shall own have been identified, which can be implemented in various ways. One of
the primary objectives of the work presented in this section was to explore, analyze, and
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develop different methods to generate the trigger set while exploring different ways to
apply watermarks to tiny NNs. Thus, only the WMd model can produce specific outputs
associated with unique random labels, provided that the unique trigger data is used
as input.

The process begins by defining a helper function to create a one-hot encoded vector
for a single class index. Next, a list of these one-hot encoded vectors has been gener-
ated, with each vector corresponding to a randomly selected class for each image. This
randomness ensures that each image is assigned to a class without any specific order or
pattern, which is crucial for incoherent label assignment in watermarking with trigger sets.
After generating the required number of labels, the function converts the list of vectors into
a NumPy array.

After the generation of the trigger samples, saving them in the same file with the labels
ensures the easy distribution and use of the dataset are achieved, allowing the labels to
be used in various applications such as training classification models, where the one-hot
encoded format is particularly helpful for representing the target classes. The function
finally returns the array of labels, providing immediate access to the generated data for
further use.

Several approaches were explored to gather a set of images that met the conditions for
a trigger set. These approaches are described in Sections 6.2.4–6.2.6.

6.2.4. Trigger Dataset Generated Using GANs

To guarantee the distinctiveness required by the watermarking applications, one of
the preferred approaches involved the creation of novel, one-of-a-kind images. This was
achieved through the application of generative adversarial networks (GANs), which were
capable of synthesizing unique visual content. GAN was introduced by ref. [50] as the first
approach for generative AI (GenAI).

GANs are a class of ML topologies capable of generating realistic image data by pitting
two NNs against each other. A GAN consists of two main components.

Generator (G) generates new image samples from random noise inputs. G is initialized
to produce random outputs. Then, G is trained to produce images that the discriminator
(D) will classify as real.

D is initialized to classify input images as real or fake. It evaluates the authenticity
of the generated samples by G, distinguishing the real samples from the fake samples
G generated.

The NNs are trained in alternating steps: this is done by back-propagating the D’s
feedback through the G, adjusting its weights to improve the realism of the generated
images. The training aims to reach a state where the G produces highly realistic images
that the D can no longer distinguish from real images, leading to a D accuracy of around
50%. D’s loss measures how well the D can distinguish between real and fake images, and
the G’s loss measures how well the G can fool the D into believing its outputs are real.
Over time, the G improves and produces increasingly realistic images that are difficult
to differentiate from real images, achieving high-quality data generation. However, in
this work, the G produced images without the need to be fully differentiable from the
original images, such that they can be distinguished from each other. They were only
required to be classifiable somehow and uncorrelated with each other. In the approach
implemented, the G model was loaded in memory at the beginning from a given file. G
has been previously trained to generate images that mimic the distribution of CIFAR-10.
Random noise vectors were the input to G as seeds from which G produced many images.
For each noise vector, the G outputs a synthetic image. However, these images did not
have the desired output resolution; therefore, they were resized to the target dimension of
the NN model input size. The resizing ensured that all generated images had a consistent
resolution, which is suitable for applications that require a fixed input dimension.
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After resizing, the pixel values of the generated images were adjusted from their
original range (between −1 and 1 due to the use of the TanH activation function in the
G’s output layer) to the standard 8-bit range. This scaling was also required to visualize
and process them through common image-processing tools and libraries. Then, the array
of generated images was stored as a NumPy array. This file format was convenient for
storing large arrays of data and can be easily loaded for further analysis and processing.
An example of these images can be seen in Figure 4.

Figure 4. Examples of GAN-generated images in the original resolution of 64 × 64. The original
low-resolution images are not easily understandable beacause as desired they shall not be the same
as the training dataset.

6.2.5. Trigger Dataset Composed of Random Shapes and Colors

This method created a collection of abstract images, each with its own unique patterns
and colors, by defining a coordinate space for each image and applying a series of math-
ematical and color functions to fill the space with visual content. The process involved
creating a grid of values for the x and y coordinates within the image’s boundaries, which
served as the canvas for subsequent operations. The function contained a library of simple
and compound functions, including random color generation, trigonometric functions,
and arithmetic operations. It then recursively combined these functions in random se-
quences to a specified depth, creating complex mathematical expressions that determined
the color and intensity of each pixel. This recursive process ensures that each image has a
unique abstract design, as the combination of functions and their order can vary widely.
Once an image was generated, it was scaled up to the desired resolution. The pixel values
in the standard 8-bit format represented the 256 levels of red, green, and blue. After con-
verting to this standard format, the image was stored as an array within a larger collection
that holds all generated images. Finally, the complete set of images was saved to a specified
directory in a file format suitable for image data. An example of these images can be seen
in Figure 5.

6.2.6. Trigger Sets Composed of Pre-Selected Images

A unique and robust trigger set is essential for embedding and verifying ownership
in black-box methods. One approach involved using a pre-selected set of random, un-
correlated images. This method ensured that the trigger set was distinct and not easily
replicable, thereby enhancing the security and reliability of the watermarking process. The
software implementation provided by [36] demonstrated the process of loading, resizing,
and preparing a set of pre-selected images for use as a trigger set, as shown in Figure 6.
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Figure 5. Example of an abstract image generated using the pillow library.

Figure 6. An example of the pre-selected images that are resized.

6.2.7. Watermark Embedding by Means of the Trigger Sets

The watermark is injected into the NN models during their training process. Water-
marking is achieved by training it on a combined dataset that includes both the original
training and trigger datasets. The selected trigger datasets and their corresponding random
labels serve as the watermark for the model. Both datasets are then combined to form
an extended training set. The combination is done by vertically stacking the trigger data
on top of the original data. Once the combined dataset is prepared, the method proceeds
to train the NN model. The resulting model is able to perform its intended classification
task while also being able to recognize the watermark using the trigger dataset. Thus,
the trained model is returned, embedding the watermark ready for deployment or any
further evaluation.

Figure 7 illustrates the preferred method to embed a watermark into a neural net-
work model.
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Figure 7. Black-box NN watermarking approach workflow.

6.3. Training Method

Training was performed from scratch. The process differs between the two models
presented in Section 5. A learning rate scheduler was used to adjust the learning rate
dynamically during training, which enhances model convergence. The model considered
for the Section 5.1 use case underwent three separate training iterations, each with a
different learning rate value set to 0.001, 0.0005, and 0.00025, respectively, and then was
given as an argument to an optimizer that implements the Adam algorithm [51]. Regarding
the Section 5.2 use case, an exponential decay scheduler was employed, where the learning
rate started at an initial value of 0.001 and was decayed for each epoch by a power factor of
0.99 raised to the current epoch number. This scheduling technique helped in progressively
reducing the learning rate, allowing the model to produce finer updates to the weights as it
converged towards an optimal solution. The formula used to update the learning rate at
each epoch is shown in Equation (7).

LR = initial_LR · (0.99)epoch, (7)

where LR stands for learning rate, and epoch corresponds to the current number of epochs
for which the model has been trained. The model’s parameters (weights and biases) were
initialized randomly. This ensured that the model started without any prior knowledge.
VWWCOCO (refer to Section 5.1) and CIFAR10 (refer to Section 5.2) were used.

7. Results

In this section, the experimental results produced, based on the use cases described
in Sections 5.1 and 5.2, will be discussed. The results were achieved using two separate
datasets and reference networks and using the watermarking approaches presented in
Sections 6.1 and 6.2. They will be described in Sections 7.1 and 7.2.

7.1. White-Box Watermarking Results and Using a Custom Regularizer

This application has been used for both the cases described in Section 5. In the
following Sections 7.1.1 and 7.1.2, the results will be shown by delving into the epochs that
have been used for training the two models introduced in Sections 5.1 and 5.2. The scale
factor used in Equation (2), the training and the test accuracy achieved, the length that has
been set for vector b described in Section 6.1.1, the number of bits that have been found
to be different from b’s bits, and finally, the BER expressed as well as training and test
accuracy will be reported. By systematically varying the number of epochs and the scale
factor, the study aimed to analyze the impact of these parameters on the performance of
the watermarking procedure, more precisely, to measure quantitatively the performance
of the models in terms of training and test accuracy and to observe the applicability of
watermarking.

7.1.1. Visual Wake Words Results

For the case in Section 5.1, a derived VWW dataset and the MobilenetV1 NN were
used. The watermark has been applied with the three types of matrices explained in
Section 6.1.2 (“direct”, “random”, and “diff”).
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In Table 3, the WMd model trained and evaluated is described for the case in Section 5.1
with the form of the watermark matrix in Section 6.1.2 being set as direct.

Table 3. Results achieved using the Section 5.1 case set direct type of Section 6.1.2.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

3 0.01 67.95 67.65 256 2 0.78

3 0.02 68.51 69.72 256 2 0.78

3 0.05 66,54 67.24 256 0 0.00

6 0.01 73.40 73,79 256 0 0.00

15 0.01 77.13 76.15 256 0 0.00

30 0.01 89.29 72.55 256 0 0.00

90 0.01 84.63 75.23 256 0 0.00

100 0.01 94.78 71.66 256 0 0.00

In Table 4, the WMd model trained and evaluated is described for case Section 5.1,
with the form of the watermark matrix set as random in Section 6.1.2.

Table 4. Results achieved using the Section 5.1 case with the random type of Section 6.1.2.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

3 0.01 67.76 68.42 256 78 30.47

3 0.02 66.25 67.23 256 76 29.69

3 0.05 67.16 67.85 256 64 25.00

6 0.01 71.34 70.62 256 63 24.61

15 0.01 78.42 78.29 256 68 26.56

30 0.01 88.99 74.11 256 61 23.82

90 0.01 85.42 83.47 256 57 22.27

100 0.01 94.52 75.76 256 59 23.82

In Table 5, the WMd model trained and evaluated is described for the Section 5.1 case
with the form of the watermark matrix in Section 6.1.2 set as diff.

As reported in Tables 3–5, the best results, according to the BER, were obtained using
a watermark matrix initialized with the direct form. It is evident from Tables 3 and 4 that
by increasing the number of epochs, the results improve considering the training accuracy,
the test accuracy, and the BER metrics. Considering the training accuracy, the test accuracy,
and the BER metrics, the best results were achieved using a scale factor equal to 0.01,
balancing the results for the original task and the watermark detectability. Although in
certain combinations, the results seem to improve by increasing the scale factor k, we
preferred to consider the best set of values found for all the use cases. For this reason,
the results presented in Tables 3–5, referring to a number of epochs greater than 1, are
extracted only taking into account the value for the scale factor equal to 0.1.

7.1.2. Image Classification Results

For the Section 5.2 use case, employing the CIFAR-10 dataset and the ResNet-8 model,
the watermark has been applied with all three types of matrices explained in Section 6.1.2.
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In Table 6, the WMd model trained and evaluated has been described for the Section 5.2
case with the form of the watermark matrix in Section 6.1.2 set as direct.

Table 5. Results achieved using the Section 5.1 case with the diff type of Section 6.1.2.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

3 0.01 67.58 66.84 256 78 34.77

3 0.02 66.16 66.34 256 84 32.81

3 0.05 66.42 66.87 256 92 35.94

6 0.01 71.72 71.47 256 83 24.22

15 0.01 75.80 70.33 256 78 30.47

30 0.01 87.48 66.62 256 76 29.68

90 0.01 83.53 78.70 256 82 32.03

100 0.01 94.46 74.37 256 78 30.46

Table 6. Results using Section 6.1 case with the direct type of Section 5.2 case.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

1 0.01 48.77 44.41 256 2 0.78

1 0.02 48.04 50.32 256 0 0.00

1 0.05 48.81 41.56 256 0 0.00

2 0.01 60.28 57.41 256 1 0.39

5 0.01 72.07 64.82 256 0 0.00

10 0.01 79.83 71.93 256 0 0.00

30 0.01 75.37 65.75 256 0 0.00

100 0.01 83.39 75.04 256 0 0.00

In Table 7, the trained and evaluated WMd model has been described for the Section 5.2
case with the form of the watermark matrix in Section 6.1.2 set as random.

Table 7. Results using Section 6.1 case with the random type of Section 5.2 case.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

1 0.01 46.39 51.54 256 79 30.86

1 0.02 47.13 54.22 256 83 32.42

1 0.05 47.77 50.13 256 78 30.47

2 0.01 60.75 55.57 256 72 28.52

5 0.01 71.25 65.58 256 69 26.95

10 0.01 78.65 65.52 256 70 27.34

30 0.01 76.31 67.33 256 59 23.04

100 0.01 83.78 71.02 256 64 25.39

In Table 8, the WMd model trained and evaluated has been described for the Section 5.2
case with the form of the watermark matrix in Section 6.1.2 set as diff.
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Table 8. Results using Section 6.1 case with the diff type of Section 5.2 case.

Total
Numbers
of Epochs

Scale
Training
Accuracy

[%]

Test
Accuracy

[%]
b-Length

Bits
Extracted

̸= b
BER [%]

1 0.01 47.25 54.52 256 86 33.59

1 0.02 45.45 44.73 256 86 33.59

1 0.05 45.77 45.62 256 88 34.38

2 0.01 61.41 55.06 256 95 37.11

5 0.01 71.46 69.33 256 73 28.52

10 0.01 78.00 70.38 256 85 33.20

30 0.01 76.34 68.06 256 74 28.90

100 0.01 83.78 71.02 256 64 25.39

Tables 6–8 suggest that the best BER results have been achieved with the watermark
matrix initialized with the direct form. Also, in this case, by increasing the number of
epochs, an improvement in the training accuracy, test accuracy, and BER metric was
observed. Training and evaluation were conducted for 100 epochs using only the scale
factor k equal to 0.01, with the best value aiming to maintain a good balance between the
original task and the watermark detectability.

7.2. Results with the Black-Box Method by Means of Trigger Datasets

This application has been used for both the cases described in Sections 5.1 and 5.2.
In the following Sections 7.2.1 and 7.2.2, the results will be shown, delving into trigger sets
used to embed the watermark on the two models introduced in Sections 5.1 and 5.2.

The tables in this section report the accuracy measurements for various image classifi-
cation models, specifically focusing on their performance with different types of watermark
embedding. The resulting models are as follows:

• MobilenetV1 is the original NN without the watermark;
• GANWM is the watermarked model embedded using GAN-generated images, as

described in Section 6.2.4;
• PILWM is the watermarked model embedded using abstract images generated by the

pillow library, as described in Section 6.2.5;
• ADIWM is the watermarked model embedded using pre-selected images, as described

in Section 6.2.6.

Each model was evaluated with the original dataset, and the trigger dataset was used
to inject the watermark.

For this NNW method, the models in which the watermark can be successfully de-
tected are the ones with accuracy greater than 88%, considering the 12% threshold estab-
lished in [36]. This threshold is critical for determining the effectiveness of the watermark-
ing technique. Ref. [36] suggested that a watermark can be detected in a model with an
accuracy above this threshold and that such a model can be considered robust and reliable.

7.2.1. Visual Wake Words

Following the application of watermark embedding, the results of the tests conducted
with four different trigger datasets for the VWW use case Section 5.1 are reported.

Table 9 shows accuracy measurements for two types of models: WMd and unWMd.
The models were fed on the test partition from the original dataset as well as on the trigger
dataset to assess whether the original task is not deviated and that the trigger dataset
is correctly recognized. The results obtained by inserting the watermark through image
generation with the Pillow library show a minimal decrease in accuracy. A larger gap exists
considering the insertion with the trigger dataset GAN. The selected trigger dataset is
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correctly recognized, and the accuracy is maximal. For completeness, the results obtained
with the UnWMd model and the one watermarked with pre-selected images, as described
in Section 6.2.6, have also been added.

Table 9. Accuracy measurements for VWW watermark embeddings.

Original Dataset Trigger Dataset

UnWMd MobilenetV1 78.25 50.70

GANWM 50.01 100

PILWM 72.73 100

ADIWM 85.00 97.00

7.2.2. Image Classification

After applying embedding, the results of the tests conducted for the IC use case are
reported below. Table 10 shows the accuracy measurements for various image classification
models, specifically focusing on their performance with different types of watermark
embedding. The same naming conventions introduced in Section 7.2.1 for the models
are assumed.

Table 10. Accuracy measurements for IC watermark embeddings.

CIFAR10 Trigger Dataset

UnWMd ResNet8 80.66 38.09

GANWM 83.00 100

PILWM 83.44 100

ADIWM 85.00 97.00

Table 10 shows accuracy measurements for two types of models: WMd and unWMd.
The models were fed on the test partition from the original dataset as well as on the
trigger dataset to assess whether the original task is not deviated and that the trigger
dataset is correctly recognized. The results obtained by inserting the watermark through
image generation with GAN or with the Pillow library show almost the same accuracy.
The selected trigger dataset is correctly recognized, and the accuracy is maximal. For
completeness, the results obtained with the UnWMd model and the one watermarked with
pre-selected images, as described in Section 6.2.6, have also been added.

8. Deployability

This section evaluates the performance and capabilities using selected off-the-shelf
MCUs. The following key parameters and required resources were reported:

• Inference time;
• Memory footprint (RAM and ROM).

Table 11 contains the main technical specifications of an MCU versus those in a typical
x86 microprocessor. These values underline the different levels of asset availability to
support the NNW application. From Table 11, MCUs have significantly limited resources
compared to the x86 CPU. However, MCUs’ design allows them to perform specific tasks
efficiently within their constrained assets, as shown in Section 8.1.
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Table 11. Comparison of available resources provided by an MCU and the x86 CPU.

Available Resources STM32H743ZI MCU x86 Host

RAM 1 MB 16 GB

FLASH 2 MB 1 TB

CPU frequency 480 MHz i5 CPU, 1.60 GHz

Core number 1 8

8.1. Deployability Results on the MCU

To deploy, program, run, and validate the model’s performance on the MCUs, several
AI tools were used by this work:

• STM32CubeIDE (https://www.st.com/en/development-tools/stm32cubeide.html
(accessed on 13 November 2024)), an integrated development environment (IDE) that
provides comprehensive facilities for MCU programming and debugging;

• STM32CubeMX (https://www.st.com/en/development-tools/stm32cubemx.html
(accessed on 13 November 2024)), a graphical tool that helps in configuring MCU
peripherals and generating initialization code;

• STM32CubeProgrammer (https://www.st.com/en/development-tools/stm32cubeprog.
html (accessed on 13 November 2024)), a tool used for programming the MCU with the
binary generated by the IDE;

• ST Edge AI Core Technology (https://www.st.com/en/development-tools/stedgeai-
core.html (accessed on 13 November 2024)), a command-line interface (CLI) tool to
optimize and compile edge AI models for multiple ST devices, including MCU, MPU,
and MEMS sensors.

Table 12 shows the results achieved in terms of energy consumption, memory footprint,
and inference time to run the models (defined in Sections 5.1 and 5.2) deployed in the MCU.
FP32 means that the model’s weights were represented in 32-bit floating-point precision.

Table 12. Results achieved on the MCU memory footprint and inference time, measured with ST
Edge AI Core Technology, for the models explained in Sections 5.1 and 5.2, respectively.

Board Name

MobileNetV1 (FP32) ResNet-V1 (FP32)

Latency
[ms] RAM FLASH

[KiB]
Latency

[ms] RAM FLASH
[KiB]

NUCLEO-H743ZI2 @480 MHz 110.6 167 855 122.5 140 323

STM32L4R9I-DISCO @120 MHz 835.9 167 855 1.033 140 323

B-U585I-IOT02A @160 MHz 454.8 167 855 528.6 140 323

The watermarked models obtained according to methods explained in Sections 6.1
and 6.2 required no additional energy, execution time, and memory resources. This was
expected since the methods impact how the models are trained and, therefore, the weight’s
values and not the model’s topology and footprint. This finding is significant from an
embedded feasibility perspective since it underlines the efficiency and practicality of
deploying WMd models in real-world applications without incurring extra costs. This
efficiency bolsters the case for utilizing WMd models in various embedded systems, further
enhancing the utility of MCUs in practical scenarios.

9. Attacks and Results

This section reports the experimental analysis of the resilience of the watermarked
models through a series of simulated attacks. The goal is to evaluate how well these
models can withstand adversarial conditions without prior knowledge of the model’s inner
workings. As outlined in Sections 6.1 and 6.2, both white-box and black-box watermark-

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/development-tools/stedgeai-core.html
https://www.st.com/en/development-tools/stedgeai-core.html
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ing techniques were implemented, each with a distinct embedding or detection strategy.
The upcoming sections will focus on these models, subjecting them to a variety of simulated
attack scenarios, including Gaussian noise injection, pruning, and quantization. These
simulations are designed to test the robustness and security of the watermarks, providing
insight into the potential vulnerabilities of these models under adversarial stress.

The MPAI (https://mpai.community/ accessed on 13 November 2024) (Moving Pic-
ture, Audio and Data Coding by Artificial Intelligence) community established the IEEE
3304-2023 standard [52] for NNW to ensure the robustness and reliability of AI models.
According to this standard, NN models may be subjected to various types of attacks to
evaluate their resilience and performance. This is crucial for maintaining the integrity and
reliability of AI systems in real-world applications.

The models were tested under three different types of attacks:

• Gaussian involves adding random noise to the data, which can potentially disrupt the
model’s ability to output accurate predictions. Gaussian noise is a common form of
statistical noise that, when it affects the input data, leads to degraded performance.
For the attacks, the values 0.001, 0.01, 0.1, 1, and 10 represented the standard deviation
of the added noise, with higher numbers indicating more noise that can disrupt the
model’s performance more and potentially its watermark;

• Pruning selectively removes connections between neurons, effectively reducing the
complexity of the NN and potentially degrading its performance. Pruning is often
used to simplify a model’s complexity, but in this context, it is used to test the model’s
robustness. In these attacks, the numbers 0.1 to 0.5 indicated the fraction of the model’s
weights that were removed, with higher values representing more aggressive pruning
that can degrade both the model’s accuracy and the integrity of the watermark;

• Quantization involves reducing the precision of numerical values, which can lead to a
loss of information and accuracy. Quantization typically reduces the bit depth of the
weights of the NN, and according to the MPAI documentation, this is applied only to
the weights as fake quantization. The reduction in bit depth can significantly impact
the model’s performance. For quantization attacks, 16-bits to 2-bits denoted the bit
depth to which the model’s weights were reduced, with lower bit depths reflecting
more extreme quantization, which can result in a significant loss in precision and
potentially damage the watermark.

In Sections 9.1 and 9.2, the results achieved under simulated attacks are presented. The
values under the type of attacks in the first left column provided in Tables 13–16 refer to the
specific parameters of the attacks, proportional to the extent of degradation. The models
have been trained using the Keras AI framework v2.12.0. Since the attacks standardized by
MPAI are implemented based on PyTorch v2.2.0, a lossless conversion has been developed.
Subsequently, the PyTorch attached models were exported in the ONNX exchange format
so that tests could be conducted not only with the original framework on a PC but also
on the NUCLEO-H743ZI2 MCU board with STEdgeAI. Both the results for the original
dataset and the robustness of the previously inserted watermark have been included for
both NNW techniques.

The mentioned watermark is resistant to pruning because of the distribution and
redundancy of the watermark throughout the whole model, which ensures that not all wa-
termark information is lost, even if portions of the network are removed somehow. Similar
to its resistance to pruning, the watermark is also resilient to quantization through careful
design, such as using quantization-aware training to maintain its accuracy even when
the precision of weights changes. By embedding watermarks with these considerations,
the detectability of the watermark is maintained despite the network modifications.

9.1. Results for the White-Box Watermarking Method

In this subsection, the resistance to attacks explained above will be presented for
WMd and unWMd models with datasets explained in Sections 5.1 and 5.2 considering the
watermarking algorithm explained in Section 6.1 with the form of the watermark matrix in

https://mpai.community/
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Section 6.1.2 set as direct. In addition to the results from the inferences with the original
dataset as input, the BER extracted value for each model is reported in Tables 13 and 14. To
ensure the correct identification of watermarks, a BER threshold of 0% has been adopted.
In other words, a watermark was considered to be correctly recognized only if each single
extracted bit matched exactly the original inserted bit. Results that met this criterion are
highlighted in green.

Table 13. Watermark robustness evaluation on UnWMd and WMd attacked models with white-box
method, for the Section 5.1 use case, using ST Edge AI and the original framework. The results for
which the origin of the watermark can be recognized are highlighted in green.

Watermark Detected ST Edge AI Original Framework

VWW Dataset BER VWW Dataset BER
[%] [%] [%] [%]

Original models
UnWMd MobilenetV1 78.25 43.75 78.25 43.75
WMd MobilenetV1 71.66 0.00 71.66 0.00
Gaussian attacks
0.001 60.93 0.00 60.93 0.00
0.01 60.97 0.00 60.97 0.00
0.1 58.68 0.00 58.68 0.00
1 50.00 0.00 50.00 0.00
10 50.00 8.98 50.0 8.98

Prune attacks
0.1 59.96 0.00 59.96 0.00
0.2 58.11 0.00 58.11 0.00
0.3 56.84 0.00 56.84 0.00
0.4 53.21 0.00 53.21 0.00
0.5 50.68 0.00 50.68 0.00
Quantization attacks
16 bit 61.01 0.00 61.01 0.00
8 bit 60.90 0.00 60.90 0.00
7 bit 59.94 0.00 59.94 0.00
6 bit 59.79 0.00 59.79 0.00
5 bit 57.09 0.00 57.09 0.00

The results of the experiments discussed in Section 7.1.1 and reported in Table 13 reveal
varying degrees of effectiveness for each attack on the watermarked model that uses the
dataset explained in Section 5.1 that uses a MobilenetV1 model with the Sections 6.1 and 6.1.2
approaches in direct mode. It has to be noted that when the model is subject to the three
types of attacks (Gaussian, prune, and quantization, its performance in terms of accuracy
shows a decreasing trend as the attack power increases, in fact, from the lowest values of
attack an accuracy that goes from 71.66% to 60.93% could be seen. Despite the decrease in
accuracy values, the model remains robust in terms of the watermark detected; in fact, it
has been possible to notice that the BER value remained steady at 0% in all attack cases
except for the Gaussian attack with an attack value of 10, in which the BER is 8.98%.

The results of experiments discussed in Section 7.1.2 and reported in Table 14 revealed
varying degrees of effectiveness for each attack on the watermarked model that uses the
dataset explained in Section 5.2 that uses a customized ResNet-8 with the Sections 6.1 and 6.1.2
approaches in direct mode. In contrast to the results presented in Table 13, the model
showed greater resistance to attacks of lower intensity. In fact, an accuracy above 70% can
be seen in the first three levels of attack for each case (Gaussian, prune, and quantization).
However, when exposed to more powerful attacks, the model’s performance dropped
significantly. Regarding the detection of the watermark, behavior similar to that described
in Table 13 was observed, with the exception of the Gaussian attack with an attack value of
10, in which a BER of 0.26% was obtained.
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Table 14. Watermark robustness evaluation on UnWMd and WMd attacked models with white-box
method, for the Section 5.2 use case, using ST Edge AI and the original framework. The results for
which the origin of the watermark can be recognized are highlighted in green.

Watermark Detected ST Edge AI Original Framework

Cifar10 BER Cifar10 BER
[%] [%] [%] [%]

Original models
UnWMd ResNet-8 80.67 61.71 80.67 61.71
WMd ResNet-8 75.04 0.00 75.04 0.00
Gaussian attacks
0.001 75.00 0.00 75.00 0.00
0.01 74.63 0.00 74.63 0.00
0.1 73.59 0.00 73.59 0.00
1 10.74 0.00 10.74 0.00
10 10.03 26 10.03 26

Prune attacks
0.1 75.08 0.00 75.08 0.00
0.2 74.69 0.00 74.69 0.00
0.3 73.96 0.00 73.96 0.00
0.4 70.21 0.00 70.21 0.00
0.5 61.25 0.00 61.25 0.00
Quantization attacks
16 bit 75.04 0.00 75.04 0.00
8 bit 74.73 0.00 74.73 0.00
7 bit 71.06 0.00 71.06 0.00
6 bit 56.41 0.00 56.41 0.00
5 bit 57.61 0.00 57.61 0.00

9.2. Results for the Black-Box Watermarking Method

In this subsection, the resistance to attacks explained above will be presented for
WMd and unWMd models with datasets explained in Sections 5.1 and 5.2 considering
the watermarking algorithm explained in Section 6.2 embedded using abstract images
generated by the Pillow library as described in Section 6.2.5. In addition to the results from
the inferences with the original dataset as input, the accuracy value obtained using the
selected trigger value for each model has been reported in Tables 13 and 14. To ensure the
correct identification of watermarks, the accuracy of the trigger dataset should exceed 88%,
with a non-recognition threshold of 12%. Results that met this criterion were highlighted
in green.

The results of experiments discussed in Section 7.2.1 and reported in Table 15 revealed
varying degrees of effectiveness for each attack on the watermarked model that uses the
dataset explained in Section 5.1 that uses a MobilenetV1 model with the Sections 6.2 and 6.2.2
approaches composed of random shapes and colors. In the case presented, a similar behavior
of the model subjected to the three types of attacks (Gaussian, prune and quantization),
obtained in the two previous tables, in terms of accuracy, was also found for Table 15.
The attack does not seem to have been decisive from the beginning, but it was possible to
notice that as the power increased, the accuracy decreased, reaching a minimum of 50%.
The trend of the data is also very consistent with the level of attack applied to the model.
According to the results obtained in Table 15, the WMd model appeared to be more robust
with the application of quantization attack, obtaining a percentage higher than 88% up to
the set 6-bit attack value, while it seemed to be more susceptible to the pruned attack in
which, already from the second level of attack, the trigger dataset reached a percentage
of 77.46%.
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Table 15. Watermark robustness evaluation on UnWMd and WMd attacked models with black-box
method, for the Section 5.1 use case, using ST Edge AI and the original framework. The results for
which the origin of the watermark can be recognized are highlighted in green.

Watermark Detected ST Edge AI Original Framework

VWW Dataset Trigger Dataset VWW Dataset Trigger Dataset
[%] [%] [%] [%]

Original models
UnWMd MobilenetV1 78.25 50.70 78.25 50.70
WMd MobilenetV1 72.73 100 72.73 100
Gaussian attacks
0.001 72.86 95.07 72.86 95.07
0.01 72.36 93.66 72.36 93.66
0.1 67.92 73.94 67.92 73.94
1 49.77 57.74 49.77 57.74
10 50.00 52.81 50.00 52.81

Prune attacks
0.1 72.50 94.36 72.50 94.36
0.2 71.06 77.46 71.06 77.46
0.3 70.06 76.05 70.06 76.05
0.4 64.86 63.38 64.86 63.38
0.5 59.38 55.63 59.38 55.63

Quantization attacks
16bit 72.87 95.07 72.87 95.07
8 bit 72.56 96.47 72.56 96.47
7 bit 71.93 97.18 71.93 97.18
6 bit 72.08 88.02 72.08 88.02
5 bit 67.63 71.83 67.63 71.83
4 bit 51.73 48.59 51.73 48.59
2 bit 50.00 47.18 50.00 47.18

Table 16. Watermark robustness evaluation on UnWMd and WMd attacked models with black-box
method, for the Section 5.2 use case, using ST Edge AI and the original framework. The results for
which the origin of the watermark can be recognized are highlighted in green.

Watermark Detected ST Edge AI Original Framework

Cifar10 Trigger Dataset Cifar10 Trigger Dataset
[%] [%] [%] [%]

Original models
UnWMd ResNet-8 80.67 38.09 80.67 38.09
WMd ResNet-8 83.44 100 83.44 100
Gaussian attacks
0.001 80.42 100 80.42 100
0.01 80.4 98.18 80.4 98.18
0.1 59.69 62.72 59.69 62.72
1 10.0 12.73 10.0 12.73
10 10.01 12.73 10.01 12.73

Prune attacks
0.1 80.26 97.27 80.26 97.27
0.2 77.54 85.45 77.54 85.45
0.3 76.01 73.63 76.01 73.63
0.4 70.34 61.82 70.34 61.82
0.5 48.01 34.54 48.01 34.54

Quantization attacks
16 bit 80.44 100 80.44 100
8 bit 80.38 100 80.38 100
7 bit 80.41 96.36 80.41 96.36
6 bit 75.89 79.09 75.89 79.09
5 bit 75.23 79.09 75.23 79.09
4 bit 48.79 40.00 48.79 40.00
3 bit 8.46 14.54 8.46 14.54
2 bit 10.0 19.09 10.0 19.09
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The results of experiments discussed in Section 7.2.2 reported in Table 16 revealed
varying degrees of effectiveness for each attack on the watermarked model that uses the
dataset explained in Section 5.2 that uses a MobilenetV1 model with Section 6.2 approach
and a Section 6.2.2 composed of random shapes and colors. The performances of the model
subjected to the three types of attacks (Gaussian, prune, and quantization), in terms of
accuracy, were also consistent with the level of attack. However, a strong drop was recorded
for the last attack levels, especially in the case of the Gaussian attack and wuantization
attack, where an accuracy value of 10% was reached. The trend of the Trigger dataset was
very similar to Table 15; in fact, the WMd model remained robust in the first levels of attack,
starting from a percentage of 100% or 97.27%. The further increase in the power of attack
led to a sharp drop in the percentage, reaching values below 20%.

10. Conclusions

In this work, two NNW methods applied to two use cases have been studied. The tests
conducted on the WMd and non-WMd models revealed important insights about the
quality of the injection using a regularizer and a selected trigger dataset as part of the
training dataset. Multiple parameters for both techniques have been studied, and the
results have been analyzed. The best models for each method and each use case have been
maliciously manipulated through the application of adversarial attacks such as Gaussian
noise addition, pruning, and parameter quantization. This evaluation was necessary to test
the robustness of the watermark inserted in the model under deployment by the owner.

These models have also been analyzed and implemented on MCUs using the ST Edge
AI Unified Core technology. The WMd models maintained their efficiency in terms of
computational resources unchanged and also demonstrated superior resilience against
various types of attacks. This ensured the security and reliability of ML applications
without affecting the models’ capabilities. Following this procedure, the IP owner had an
additional tool to be used as proof of ownership of their intellectual property, for example,
in the case of unauthorized use and fraudulent copying.

The results of the study indicate that different methods for generating trigger sets offer
varied levels of robustness and adaptability in NNW. Unique image generation through
GANs proved highly effective in creating resilient watermarks that withstand tampering,
although random image generation using PIL provided a better combination of original
task and trigger set accuracy despite it being a simpler approach.

Considering the accuracy results achieved by combining the trained models and the
original and generated input data, the results confirmed the robustness of these techniques
even for tiny models deployed on microcontrollers.

Future works will be focused on expanding the use cases in the field of audio and
GANs. To further reduce the implementation costs on tiny devices, techniques such as post-
training quantization and quantization-aware training will be the subject of more studies.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BER Bit Error Rate
CNN Convolutional Neural Networks
D Dicriminator
DCT Discrete Cosine Transform
DNN Deep Neural Networks
DW Digital Watermark
DWT Discrete Wavelet Transform
FCT Fast Curvelet Transform
FP32 Floating Point 32 bits
FRT Finite Ridgelet Transform
G Generator
GAN Generative Adversarial Networks
GenAI Generative Artificial intelligence
GNN Graph Neural Network
IC Image Classification
IDE Integrated Development Environment
IP Intellectual Property
KD Knowledge distillation
LSB Least Significant Bit
MCU Micro-controller
ML Machine Learning
NN Neural Networks
NNW Neural Network Watermarking
PSO Particle Swarm Optimization
PIL Python Imaging Library
RNN Recurrent Neural Networks
SGD Stochastic Gradient Descent
SME Small Medium Enterprises
SVD Singular value Decomposition
TFL tensorflow lite
TinyML Tiny Machine Learning
Tiny-NN Tiny Neural Networks
unWMd unwatermarked model
VWW Visual Wake Words
WMd Watermarked model
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