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Abstract: Aerial photography using unmanned aerial vehicles (UAVs) to detect foreign objects is an
important method to ensure the safety of transmission lines. However, existing detection algorithms
often encounter challenges in complex environments, including limited recognition capability and
high computational demands. To address these issues, this paper proposes YOLO-LAEF, a lightweight
foreign object detection algorithm that is based on YOLOv8n and incorporates an innovative adaptive
weight pooling technique. The proposed method introduces a novel adaptive weight pooling
module within the backbone network to enhance feature extraction for detecting foreign objects
on transmission lines. Additionally, a multi-scale detection strategy is designed to integrate the
FasterBlock and EMA modules. This combination enables the model to effectively capture both global
and local image features through cross-channel interactions, thereby reducing misdetection and
omission rates. Furthermore, a C2f-SCConv module is introduced in the neck network to streamline
the model by eliminating redundant features, thus improving computational efficiency. Experimental
results demonstrate that YOLO-LAF achieves average accuracies of 91.2% and 85.3% on the Southern
Power Grid and RailFOD23 datasets, respectively, outperforming the original YOLOvS8n algorithm
by 2.6% and 1.8%. Moreover, YOLO-LAF reduces the number of parameters by 23.5% and 14.8%
and the computational costs by 19.9% and 24.8%, respectively. These improvements demonstrate the
superior detection performance of YOLO-LAF compared to other mainstream detection algorithms.

Keywords: transmission line; lightweight; adaptive weight; multi-scale

1. Introduction

Transmission lines are a critical component of the power grid, providing a continuous
and stable supply of electricity for both industrial and residential use [1]. However, as the
demand for electricity grows and the coverage of transmission lines expands, these lines
have become increasingly vulnerable to the effects of adverse weather, natural disasters,
and foreign object interference. Such factors can lead to faults that pose significant risks
to the safety and reliability of the power grid. Among these, foreign object interference
is a major cause of transmission line faults, particularly in regions with strong winds or
densely populated urban areas. Objects such as bird nests, hanging debris, and floating
materials are prone to becoming entangled with transmission lines. Such interference not
only disrupts residents’ daily lives but also increases the difficulty and cost of maintenance
and cleaning [2]. Therefore, the timely detection and removal of foreign objects is crucial to
ensuring the safe and reliable operation of transmission lines.

Traditional target detection methods generally consist of two main steps: feature
extraction and recognition. In the feature extraction phase, these algorithms rely heavily on
manually extracted features, such as target size, shape, and texture. Recognition is then
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performed using conventional classification algorithms [3,4]. However, these traditional
methods are vulnerable to interference from complex backgrounds, particularly in scenarios
with significant lighting variations or high background noise, which can severely degrade
detection accuracy. Moreover, traditional approaches tend to be computationally expensive
and require high-performance hardware, making them challenging to deploy for real-time
detection tasks.

In recent years, deep learning [5] technology has made significant advancements in
the field of target detection. Unlike traditional methods, deep learning models have the
ability to automatically learn key features from images, leading to enhanced recognition
performance. Consequently, these models have been widely adopted for detection tasks
in various complex environments. Currently, mainstream deep learning target detection
algorithms are primarily categorized into two types: two-stage detection algorithms (e.g.,
the R-CNN series [6-8]) and single-stage detection algorithms (e.g., the YOLO series [9-15],
SSD [16]). Extensive research in this area has been conducted by scholars and research
institutions. For example, Zhang et al. [17] introduced a feature balancing network into the
YOLOv5 model to better balance semantic and spatial information across features of differ-
ent scales. However, its detection performance for small targets in complex scenes remains
inadequate. Sun et al. [18] proposed an improved YOLOv7-tiny algorithm for foreign
object detection on transmission lines, utilizing channel pruning and diverse branching
blocks. While this approach improves model efficiency, it often sacrifices accuracy and
may fail to fully capture detailed features. Hao et al. [19] enhanced feature extraction by
incorporating a triple attention mechanism (TA) and an improved bidirectional feature
pyramid network (BiFPN). However, there may be conflicts among features on different
scales. Wang et al. [20] enhanced the network’s ability to capture key target features by
introducing a two-branch pooling module in the YOLOvVS8 neck network. However, this
approach increases computational overhead and model complexity, limiting its efficiency
for real-time inspection tasks.

Compared to earlier versions of the YOLO algorithm, YOLOvS further optimizes the
model structure and feature extraction techniques, utilizing a deeper feature fusion module
to capture more detailed image features. These enhancements make YOLOVS8 promising for
foreign object detection on transmission lines. However, YOLOv8 encounters challenges
in detecting small foreign objects due to the limitations of traditional pooling operations,
which lack adaptive feature processing across different channels. Additionally, the feature
fusion mechanism for handling multi-scale targets is inadequate in complex environments,
leading to reduced recognition accuracy for targets on varying scales. To address these
challenges, this study proposes a novel lightweight object detection method based on
YOLOVS. The proposed method enhances the feature extraction capability for small targets,
increases detection accuracy in complex scenes, and optimizes the model structure to lower
computational costs. The main contributions of this study are as follows:

(1) Designing a lightweight adaptive weight pooling module that dynamically adjusts
channel weights for adaptive feature processing. This approach minimizes the loss of
critical features during pooling, allowing more effective capture and preservation of
key feature information. Consequently, the quality of the pooled feature representation
is enhanced, improving the model’s ability to detect small objects.

(2) Constructing an efficient multi-scale fusion module by integrating the FasterBlock
module with the EMA attention mechanism. This module effectively fuses features
across different scales, seamlessly combining global and local features. It enhances
the model’s ability to comprehend complex scenes, resulting in better generalization
and robustness.

(3) Introducing the C2{-SCConv module with partial connectivity to reduce redundant
computations, which ensures that the model remains lightweight while retaining
strong feature representation capabilities. The module also performs spatial con-
volutions across different channel features, capturing and expressing inter-feature



Electronics 2024, 13, 4645

3o0f17

relationships more effectively. This enhances the model’s understanding of input data
features and boosts overall performance.

2. Improved Algorithm YOLO-LAEF, Based on YOLOvVS8n

YOLOvV8 makes several optimizations and improvements based on the YOLOv5
algorithm: (1) The C3 structure of YOLOVS is replaced by the C2f structure, which provides
a richer gradient flow, significantly improving model performance. (2) The head network
adopts an anchor-free design, eliminating issues related to the mismatch between anchor
boxes and actual targets, thus enhancing detection flexibility. (3) More efficient activation
functions, such as SiLU or Mish, are introduced, boosting the model’s convergence speed
and overall performance.

In order to further improve the robustness and accuracy of YOLOvS in the transmission
line foreign object detection environment, this paper proposes a lightweight adaptive
weighted pooling multi-scale foreign object detection algorithm. The network architecture
isillustrated in Figure 1. Firstly, we replace the last three convolutional blocks of the original
backbone network and the first convolutional block of the neck network with a lightweight
adaptive weight pooling module. This module dynamically adjusts weights based on
input feature differences, ensuring strong detection capability in complex scenes. Secondly,
we replace the C2f module in the backbone network with an efficient multi-scale fusion
module, which integrates features from multiple resolutions. This enhances the model’s
ability to detect foreign objects in challenging environments. Finally, we introduce the
C2£{-SCConv module after the Concat connection layer in the neck network. This module
reduces model complexity and computational cost by minimizing redundant features, thus
significantly improving overall performance.
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Figure 1. Network architecture of YOLO-LAF.

2.1. Lightweight Adaptive Weight Pooling Module

To address the challenge of feature extraction imbalance in foreign object detection
within the complex environment of transmission lines, this paper proposes the Lightweight
Adaptive Weighted Pooling Module (LWM for short). The structure of this module is
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shown in Figure 2. The LWM specifically targets the issue of smaller objects being lost
during feature pooling in the detection process. By dynamically adjusting the pooling
weights, the module adaptively allocates feature extraction resources based on the size of
the targets, ensuring that key features are effectively preserved.
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Figure 2. LWM module structure.

The LWM module contains two branches, of which the first branch generates a weight
map through average pooling and 1 x 1 convolution. It calculates the importance of each
position in the attention weight map by transforming the array dimensions, preserving
key information and features as much as possible. The resulting weights are then nor-
malized into a probability distribution using the Softmax activation function, ensuring
that the weights across all regions sum to 1. The second branch draws inspiration from
the Focus slicing operation, which reorganizes the spatial structure in the feature map.
This operation redistributes pixel points initially in the spatial dimension into the channel
dimension, effectively compressing spatial information into the channel and simplifying
model processing. However, due to the high computational cost of this slicing operation, we
propose an improvement in which it is replaced with a depth-separable convolution with
a stride of 2. This modification significantly reduces computational overhead, enhancing
the model’s efficiency and making it more lightweight. Depthwise separable convolution
decomposes the standard convolution into depthwise convolution and pointwise convolu-
tion. In depthwise convolution, each input channel is convolved independently using a
separate kernel. In pointwise convolution, a 1 x 1 convolution kernel is used to process the
output of depthwise convolution. This approach improves computational efficiency and
model compression. Finally, the weight information extracted from both branches is fused
by using a weighted summation operation, which ensures that the model maintains feature
diversity while improving computational speed and detection performance. In summary,
the computation of the LWM module can be expressed as follows:

LWM = Softmax(c' ' (AvgPool(X))) x ReLU(Norm(d**¥(X))) (1)



Electronics 2024, 13, 4645

50f 17

In the equation, ¢! *! refers to a 1 x 1 convolution, while d**¥ denotes a depthwise

separable convolution with a kernel size of k x k. The term Norm indicates normalization,
X represents the input feature map, and AvgPool signifies average pooling. To minimize
computational overhead and reduce the number of parameters, average pooling is used to
aggregate global feature information from each receptive field. A1 x 1 convolution is then
applied to facilitate the exchange of information among the features. Finally, the Softmax
activation function is applied to emphasize the importance of each feature within the
receptive field. The dimensional transformation of the array is expressed in Equation (2).

DIM = {bs, ch, h, w} = {bs, ch, h/2, w/2, S} (2)

In the equation, bs represents the batch size; ch denotes the number of channels in the
input feature map; and k and w refer to the height and width of the original feature map,
respectively. S represents the weight information, with a default size of 4. As indicated in
Equation (2), after the pooling operation, the height and width of the original feature map
are reduced to half of their original dimensions, while the number of channels remains
unchanged. The feature information is preserved in the weight channel S, enabling the
network to focus more effectively on detailed information and ensuring that key features
are successfully captured, even in complex environments.

2.2. FasterBlock—EMA Module

The foreign object detection model for transmission lines requires substantial supplies
of data and computational resources. Additionally, the imbalance between global and local
feature representation in the training data causes the model to converge prematurely on
certain features, leading to poor generalization in complex environments and increasing
the risk of false detections or missed objects. To address this issue, this paper introduces
the FasterBlock [21] module into the YOLOv8n algorithm; the module effectively reduces
redundant convolutional computations and memory accesses, thus enhancing the model’s
operation speed and resource utilization efficiency [22]. In addition, the Efficient Multi-
Scale Attention (EMA) [23] module is introduced into the FasterBlock module to construct
the multi-scale module FasterBlock-EMA (FEA for short). This enhancement aims to
further improve the performance and efficiency of the model across various scenarios.

The FasterBlock module consists of four parts: Partial Convolution (PConv), Conv,
Batch Normalization (BN), and a Rectified Linear Unit (ReLU). PConv selectively applies
standard convolution only to a subset of input channels for spatial feature extraction,
while leaving the remaining channels unchanged. This reduces the computational burden
and improves the processing speed of the model. In addition, during consecutive or
regular memory accesses, PConv computes only the first or last contiguous channel as a
representative of the whole feature map, ensuring an equal number of channels for input
and output feature maps. Therefore, this module is well suited for vision tasks requiring
fast processing.

Modelling cross-channel relationships through channel dimensionality reduction
may have a negative impact on deep visual feature extraction; to address this problem,
we introduce the EMA model without dimensionality reduction, thereby preserving the
information of each channel while reducing computational overhead. Additionally, EMA
introduces an information aggregation method across spatial dimensions, enabling richer
feature fusion. When EMA is combined with the FasterBlock module, the resulting FEA
module further reduces computational costs and selectively emphasizes key local features
while maintaining attention on global features. This improves the detection performance
of the models for multi-scale targets. The structure of FasterBlock-EMA is illustrated in
Figure 3, where * represents the convolution operation.
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Figure 3. FasterBlock-EMA module structure.

2.3. C2f-SCConv Module

In target detection tasks, the extraction of redundant features by convolutional layers
not only increases the computational burden and memory consumption but may also
degrade model performance, particularly in complex scenes and for small targets. To
address these challenges, this paper introduces the Spatial and Channel Reconstruction
Convolution (SCConv) [24] to improve the Bottleneck module in the original C2f structure.
The proposed C2f-SCConv module replaces standard convolution with SCConv, forming a
new SCBlock module that is embedded in the C2f structure. The structure of this module is
shown in Figure 4, where h and w represent the height and width of the original feature
map, c is the number of channels, and n denotes the number of layers.
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Figure 4. C2f-SC module structure.

The structure of SCConv is shown in Figure 5 and primarily consists of the Spa-
tial Reconstruction Unit (SRU) and the Channel Reconstruction Unit (CRU). The SRU
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addresses spatial redundancy by employing weight decomposition to separate and re-
construct redundant features, thereby suppressing redundancy in spatial dimensions and
enhancing the expressiveness of the features. The CRU adopts a “split-transform-merge”
strategy to effectively reduce channel redundancy, lowering computational and storage
costs. By combining these two reconstruction units, SCConv accurately captures complex
relationships within the input features. This not only controls feature redundancy but
also reduces the number of model parameters and floating-point operations per second
(FLOPs), significantly enhancing the model’s feature extraction capability.

w
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Spatial Reconstruction Unit

——— e e e,

SR e S ) ) \

Channel Reconstruction Unit

Y;
Gwe
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Spatial - Refined
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Figure 5. SCConv module structure.

3. Experiments
3.1. Experimental Environment and Parameter Configuration

In the model training process of this study, the Stochastic Gradient Descent (SGD)
optimizer [25] was utilized to reduce the risk of the model converging to local optima.
The training environment included PyTorch 2.0.1, CUDA 11.3, and Python 3.9.0, with the
detailed server configurations provided in Table 1. The input for model training was a
640 x 640 three-channel image, with an initial learning rate of 0.01, a momentum factor of
0.937. The batch size was set to 16, and the model was trained for a total of 300 epochs.

Table 1. Server configuration environment.

Configuration Name Version/Parameter
Operating system Ubuntu 20.04LTS
GPU RTX4090ti * 2
RAM 48 GB
Memory 2 TB SATA

3.2. Experimental Dataset

To evaluate the performance of the target detection algorithm proposed in this paper,
experiments were conducted on two public datasets: the Southern Power Grid dataset
and RailFOD23 [26] dataset. The dataset splits are detailed in Table 2, while the label
distribution is shown in Figure 6. The effect of these datasets on the performance of YOLO-
LAF in detecting each target is summarized in Table 3. A brief description of the two
datasets is provided below:

(1) The Southern Power Grid dataset primarily consists of data collected by drones,
totaling 2400 images that encompass four types of foreign objects: bird nests, kites,
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balloons, and rubbish. The UAVs are equipped with multi-spectral cameras capable of
capturing images in various spectral bands, including visible light and near-infrared.
These bands enable the identification of foreign objects on transmission lines by
analyzing reflectivity and texture characteristics. Potential threats, such as kites, bird
nests, and rubbish, can be effectively distinguished through this analysis. Considering
the limited number of images, data augmentation techniques such as flipping, scaling,
and cropping were applied to expand the dataset. An example of data augmentation
is shown in Figure 7. After augmentation, the dataset increased to 3200 images, which
were then split into training, validation, and test sets in an 8:1:1 ratio.

The RailFOD23 dataset leverages large models such as ChatGPT and text-to-image
generation techniques to create foreign object detection data for railway power trans-
mission lines. It includes four common types of foreign objects: plastic bags on
power lines, objects fluttering or suspended on wires, bird nests on transmission
towers, and balloons near transmission lines. This dataset contains 14,615 images and
40,541 annotated objects, divided into training, validation, and test sets in a 7:2:1 ratio.

Label distribution

Nest Balloon Trash/plastic bag  Kite/fluttering object

M SouthNet M RailFOD23 dataset

Figure 6. Label distribution.

Original picture Zoom Rotate

Figu

re 7. Data enhancement example diagram.

Table 2. Dataset distribution.

Dataset Train Val Test Total

Southern Power Grid 2560 320 320 3200
RailFOD23 10,230 2923 1462 14,615
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Table 3. YOLO-LAF models detect results in each target category.
Southern Power Grid RailFOD23
Category P % R % mAP50 % P % R % mAP50 %
Plastic bag 92.9 94.6 96.9 914 87.6 91.6
Fluttering object 92.5 81.8 84 88.4 73.6 77.1
Nest 87.2 89.4 924 90.4 79.1 88.2
Balloon 85.3 82.6 91.5 90.2 72.5 84.3
All 89.5 87.1 91.2 90.1 782 85.3

3.3. Evaluation Index

When evaluating object detection algorithmes, it is essential to consider key metrics
such as detection accuracy, detection speed, and memory usage. Therefore, this paper
utilizes precision, recall, mean average precision (mAP), giga-floating point operations per
second (GFLOPs), and the number of parameters (Params) as evaluation metrics [27]. The
specific calculation methods are detailed below.

Precision = %EFP 3)
TP
Recall = TPLEN 4)
1
AP = / Precision(t)dt (5)
0
1 N
mAP = N A—1 AP(n) (6)

In the formulas, T and F represent the true positive and true negative classes, respec-
tively, while P and N indicate the predicted positive and negative classes. TP refers to the
number of samples that are both truly positive and predicted as positive, FP refers to the
number of samples that are actually negative but predicted as positive, and FN refers to
the number of samples that are actually positive but predicted as negative. AP represents
the average precision for each category, while mAP is the mean of the AP values across
all categories.

3.4. Experimental Results and Analysis
3.4.1. Experimental Analysis of Lightweight Adaptive Weight Pooling Module

To verify the effectiveness of the lightweight adaptive weight pooling module (LWM),
we compared its performance when integrated at different positions within YOLOVS.
Meanwhile, in order to retain more key information during the pooling process, we replaced
the last three convolutional blocks in the backbone network and the two convolutional
blocks in the neck network with the proposed LWM module. Comparative experiments
were conducted on the SouthNet dataset, and the results are shown in Table 4.

In Table 4, YOLOv8n-LWM-i indicates that the i-th standard convolution has been
replaced with the LWM module. Replacing standard convolutions with the LWM module
at various positions improves detection accuracy while reducing the number of model
parameters and computational requirements. Among the configurations, YOLOv8n-LWM-
3,4,5,6 achieved the best performance, with mAP50 of 90.7%, which is 2.5% higher than
that of the original YOLOv8n. Furthermore, the number of parameters was reduced by
0.87M, and the computational cost decreased by 0.9 GFLOPs.
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Table 4. Validation experiment of adaptive weight pooling module on the SouthNet dataset.
Model Precision %  Recall %  Params M  GFLOPs  mAP50 %
YOLOv8n 90.8 83.7 3.06 x 10° 8.1 88.6
YOLOv8n-LWM-3 91.0 84.2 3.01 x 10° 8.1 89.7
YOLOv8n-LWM-4 91.1 84.1 2.97 x 100 8.0 89.4
YOLOv8n-LWM-5 90.6 84.5 2.63 x 10° 7.8 89.4
YOLOv8n-LWM-6 90.2 83.9 2.87 x 10° 7.9 90.1
YOLOv8n-LWM-7 89.3 84.2 2.45 x 100 8.1 88.5
YOLOv8n-LWM-3,4,5 90.6 83.3 2.34 x 10° 6.5 89.1
YOLOv8n-LWM-3,4,5,6 91.6 85.8 2.19 x 100 7.2 90.7
YOLOv8n-LWM-3,4,5,6,7 90.6 85.5 2.68 x 10° 7.9 90.2

3.4.2. Attention Mechanism Selection Experiment

To evaluate the performance of the EMA model within the multi-scale fusion mod-
ule (FEA), this paper conducts comparative experiments between the EMA model in the
FEA module and other attention mechanisms, including SE (Squeeze-and-Excitation) [28],
CBAM (Convolutional Block Attention Module) [29], ECA (Efficient Channel Attention) [30],
CA (Coordinate Attention) [31], and SImAM (Simple Attention Module) [32], using the
RailFOD23 dataset. The results presented in Table 5 show that the model incorporating
the EMA model achieved the highest detection accuracy. Compared with the original
YOLOvS8n model, the accuracy increased by 1.7%, the computational cost was reduced
by 2.2GFLOPs, and the overall detection performance improved by 2.5%. In summary,
the EMA model outperformed all other tested mechanisms, demonstrating its significant
advantages within the FEA module.

Table 5. Attention mechanism selection experiment on the RailFOD23 dataset.

Model Precision % Recall % Params M GFLOPs mAP50 %
YOLOv8n 87.8 81.7 3.06 x 10° 9.3 83.5
YOLOv8n+FasterBlock-SE 87.5 82.2 2.73 x 100 10.9 84.7
YOLOv8n+FasterBlock-CBAM 87.3 84.3 2.55 x 10° 94 85.1
YOLOv8n+FasterBlock-ECA 88.7 83.5 2.32 x 10° 8.6 84.5
YOLOv8n+FasterBlock—CA 88.4 83.9 2.56 x 100 10.8 85.7
YOLOv8n+FasterBlock-SimAM 88.3 82.9 2.48 x 10° 8.5 85.3
YOLOv8n+FasterBlock-EMA 89.5 83.6 2.35 x 100 7.1 86.0

3.4.3. Ablation Experiment

In this paper, YOLOv8n is selected as the baseline model, and ablation experiments are
conducted on the Southern Power Grid and RailFOD23 datasets. The detection results are
shown in Tables 6 and 7, respectively. From the tables, it can be seen that the accuracy of the
LWM module on the Southern Power Grid and RailFOD23 datasets improved by 1.6% and
0.8%, respectively. This improvement is attributable to the LWM’s enhancement of small
target feature extraction through the adaptive weighting module, which, in turn, boosted
the model’s detection performance. The introduction of the FasterBlock-EMA module
improved detection accuracy by 2% and 1.1%, respectively, demonstrating that the FEA
module significantly enhances the model’s feature extraction ability and improves detection
in complex environments. Replacing the original C2f module with the C2f-SCConv module
not only reduces parameters and computational cost but also further improves detection
accuracy, proving its effectiveness in lightweight design. The performance improvement of
the YOLO-LAF algorithm proposed in this paper was the most significant, with the mAP
increasing by 2.6% and 1.8%, respectively, while both computational costs and parameter
counts were significantly reduced. In summary, the modules proposed in this paper
show obvious advantages in feature extraction, accuracy improvement, and computational
efficiency optimization.
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Table 6. Results of ablation experiments on the SouthNet dataset.
Index LWM  FasterBlock-EMA C2£-SCConv Params M  GFLOPs mAP50 %

A 3.06 x 10° 8.1 88.6

B i 2.81 x 10° 7.9 90.2

C vV 2.65 x 10° 7.1 90.6

D i 2.82 x 106 7.7 90.8

E v Vv 2.29 x 10° 7.5 90.5

F v v 2.49 x 10° 7.6 90.2

G Vv Vv 247 x 106 7.8 90.4

H Vv Vv Vv 2.35 x 10° 6.9 91.2
“\/" indicates the corresponding method added.
Table 7. Results of ablation experiments on the RailFOD23 dataset.

Index LWM  FasterBlock-EMA C2{-SCConv Params M  GFLOPs mAP50 %

A 3.06 x 10° 9.3 83.5

B i 2.97 x 10° 9.4 84.3

C Vv 2.69 x 106 8.7 84.6

D v 2.75 x 10° 8.9 83.9

E Vv Vv 2.52 x 10° 8.4 845

F v Vi 2.64 x 106 8.6 83.7

G Vv Vv 2.67 x 10° 8.3 84.8

H Vv Vv Vv 2.45 x 10° 85 85.3

“\/” indicates the corresponding method added.

3.4.4. Comparative Experiment

To further validate the performance of the YOLO-LAF detection model, comparative
experiments were conducted with current mainstream target detection algorithms on the
Southern Power Grid and RailFOD23 datasets. The experimental results are shown in

Tables 8 and 9.

Table 8. Results of comparison experiments on the Southern Power Grid dataset.

Model Precision % Recall % Params M GFLOPs mAP50 %

Faster R-CNN 83.2 81.9 52.7 x 107 295.7 82.6
YOLOv3 84.6 84.6 78.5 x 10° 134.6 67.7
YOLOV5s 83.1 78.8 20.8 x 10° 48.3 84.5
Reference [17] 85.3 81.4 51.4 x 10° 27.5 86.9
YOLOX 90.6 83.5 423 x 10° 11.8 90.1
YOLOV7-tiny 90.2 88.9 18.3 x 106 41.26 88.2
Reference [18] 88.3 81.0 553 x 10° 10.2 89.7
YOLOvSn 90.8 83.7 3.06 x 10° 8.1 88.6
YOLOvS8s 90.1 85.2 11.1 x 106 28.4 90.3
YOLOV9-t 2.7 87.2 2.61 x 10° 10.7 90.9
YOLOvV10 91.4 88.3 2.69 x 10° 8.2 89.5
YOLO-LAF 91.6 89.7 2.35 x 10° 6.9 91.2

Tables 8 and 9 show the performance comparison of different detection algorithms.
Faster R-CNN is more computationally intensive and slower due to its complexity. The
YOLO family of algorithms (YOLOv3, YOLOv5s, YOLOX, YOLOV?, etc.) significantly
reduces the number of parameters and the amount of computation through iterative
versions. However, there is still room for optimization in terms of feature fusion and
minimizing information loss. Although YOLOvV9 and YOLOv10 outperform YOLOv8n
in terms of accuracy and number of parameters, their generalization ability is weaker
in transmission line foreign object detection, especially when detecting small targets or
partially occluded objects, where accuracy decreases significantly. The YOLO-LAF model
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proposed in this paper not only reduces the number of parameters to 2.35M and 2.45M and
the computational cost to 6.9 GFLOPs and 8.5 GFLOPs but also improves detection accuracy
to 91.2% and 85.3%, respectively. Meanwhile, YOLO-LAF exhibits less fluctuation on the
precision-recall curve (e.g., Figure 8), demonstrating higher stability and generalization.

Table 9. RailFOD23 dataset compared experimental results.

Model Precision % Recall % Params M GFLOPs mAP50 %

Faster R-CNN 86.3 78.8 89.6 x 107 248.1 83.9
YOLOv3 81.5 82.7 97.4 x 10° 154.7 70.8
YOLOv5s 82.1 80.6 342 x 10° 67.2 82.7
Reference [17] 83.9 80.7 68.1 x 10° 38.4 81.9
YOLOX 87.2 78.9 10.52 x 10° 13.9 83.4
YOLOV7-tiny 88.5 82.3 23.9 x 10° 60.7 82.5
Reference [18] 84.1 784 7.69 x 100 13.4 81.6
YOLOv8n 85.1 78.6 3.06 x 10° 9.3 83.5
YOLOvS8s 87.6 81.4 17.9 x 106 221 84.6
YOLOV9-t 91.3 84.5 3.87 x 10° 13.1 83.2
YOLOv10 92.2 80.4 2.72 x 10° 7.4 84.7
YOLO-LAF 90.1 78.2 245 x 10° 8.5 85.3

Precision-Recall Curve
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Figure 8. Comparison of P-R curves.

3.4.5. Visualization and Analysis

To more intuitively compare the performance of the transmission line foreign object
detection model before and after the improvement, this paper selects representative images
for visual analysis, with some of the detection results shown in Figure 9. From the figure,
it can be observed that the Faster R-CNN algorithm exhibited serious misdetection and
omission, as indicated by the red circles in the figure. Although the YOLOv5s, YOLOv7-
tiny, YOLOv8n, YOLOV9t, and YOLOv10n algorithms showed improved detection results,
misdetections and false detections still occurred due to the foreign object targets occupying
fewer pixels in the image. Additionally, the detection results of references [17,18] showed
even more pronounced cases of misdetection and false detection. In contrast, the improved
YOLO-LAF algorithm proposed in this paper can effectively solve the leakage and mis-
detection problems existing in other algorithms. The detection accuracy was significantly
improved while meeting the speed requirements for real-time detection, making it more
suitable for actual transmission line foreign object detection tasks.
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Figure 9. Visualization results of YOLO series and References [17,18].

3.4.6. Thermal Map Visualization Analysis

To clearly demonstrate the effectiveness of the proposed method in regional image
quality assessment, this paper employs Gradient-weighted Class Activation Mapping
(Grad-CAM [33]) for heatmap visualization analysis. Grad-CAM generates heatmaps
by computing the gradients of the feature maps from convolutional neural networks,
highlighting the model’s focus on different areas during image quality detection. Figure 10
illustrates the heatmaps before and after the model improvements, where red indicates
the regions of highest attention, yellow represents areas with moderate attention, and
blue signifies areas with minimal impact on image recognition. As shown in Figure 10,
the contours and shapes of the target regions of the improved YOLOvVS8-LAF model’s
heat map are much clearer, revealing more high-confidence regions. Especially in scenes
with complex backgrounds or dense targets, the enhanced feature extraction of the target
makes the demarcation between the target region and the background more obvious, while
also providing stronger noise suppression. Furthermore, through the optimization of the
feature extraction module, the model effectively reduces the high rate of responses to the
background region, allowing the heatmap to focus more on the target.
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Original picture Before improvement  After improvement

Figure 10. Comparison of heat maps before and after model improvement.

4. Discussion and Conclusions

This paper proposes an improved YOLO-LAF model based on the YOLOvVS algorithm,
which is innovatively tailored to the demands of foreign object detection in transmission
line inspection tasks. By incorporating practical application scenarios, the model demon-
strates that the adaptive weighting module plays an important role in enhancing feature
extraction and reducing the loss of information during pooling. However, the excessive
use of adaptive weighting modules may result in the loss of detailed information, nega-
tively impacting model performance. Therefore, a better balance between computational
efficiency and detection accuracy can be achieved by reasonably configuring the number
and placement of these modules.

To improve the accuracy and efficiency of foreign object detection on transmission
lines, this paper makes improvements in three aspects: (1) A lightweight adaptive weight
pooling module (LWM) is designed to enhance the model’s ability to effectively capture
foreign object target information during the pooling process. (2) An efficient multi-scale
fusion module (FEA) is constructed to improve the fusion of global and local information
for foreign object targets in complex environments. (3) The C2{-SCConv module is inte-
grated into the neck network layer to boost the real-time detection efficiency of the model.
Experimental results showed that the proposed algorithm outperformed existing YOLO
series models on two publicly available datasets, Southern Power Grid and RailFOD23,
with detection accuracies of 91.2% and 85.3%, respectively, showing improvements of 2.6%
and 1.8% over the original YOLOv8 model. Additionally, the number of model parameters
was reduced by 23.5% and 14.8%, respectively, while the computation volume decreased by
19.9% and 24.8%, respectively, resulting in significantly improved detection performance in
transmission line foreign object detection.

Although the YOLO-LAF algorithm has achieved improvement in detection accuracy
and efficiency, its robustness still needs to be further validated in highly complex scenarios,
such as detecting transmission lines under severe weather conditions. Future work will
focus more on how to improve the robustness of the model in extremely complex envi-
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ronments and explore additional lightweight techniques to further optimize the model
structure; the model will be deployed in industrial settings, and more comprehensive data
will be collected simultaneously to improve its performance in complex scenarios.
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UAV unmanned aerial vehicle

EMA Efficient Multi-Scale Attention
SCConv  Spatial and Channel Reconstruction Convolution

SE Squeeze-and-Excitation

CBAM Convolutional Block Attention Module
ECA Efficient Channel Attention

CA Coordinate Attention

SimAM  Simple Attention Module
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