
Citation: Vasquez-Iglesias, P.; Pizarro,

A.E.; Zabala-Blanco, D.; Fuentes-

Concha, J.; Ahumada-Garcia, R.; Laroze,

D.; Gonzalez, P. A Hyper-Parameter

Optimizer Algorithm Based on

Conditional Opposition Local-Based

Learning Forbidden Redundant

Indexes Adaptive Artificial Bee

Colony Applied to Regularized

Extreme Learning Machine.

Electronics 2024, 13, 4652. https://

doi.org/10.3390/electronics13234652

Academic Editor: Maciej Ławryńczuk

Received: 27 September 2024

Revised: 10 November 2024

Accepted: 19 November 2024

Published: 25 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Hyper-Parameter Optimizer Algorithm Based on Conditional
Opposition Local-Based Learning Forbidden Redundant Indexes
Adaptive Artificial Bee Colony Applied to Regularized Extreme
Learning Machine
Philip Vasquez-Iglesias1,† , Amelia E. Pizarro 2,† , David Zabala-Blanco 1,* , Juan Fuentes-Concha 2 ,
Roberto Ahumada-Garcia 2 , David Laroze 3 and Paulo Gonzalez 4

1 Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Avenida San Miguel 3605, Talca
3460000, Chile; fvasquez@ucm.cl

2 Doctorado en Ingeniería, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Avenida San
Miguel 3605, Talca 3460000, Chile; ampizarro@ucm.cl (A.E.P.); juan.fuentes.01@alumnos.ucm.cl (J.F.-C.);
rahumada@ucm.cl (R.A.-G.)

3 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, Chile; dlarozen@uta.cl
4 Facultad de Economía y Negocios, Universidad de Talca, Av. Lircay, Talca 3460000, Chile;

paulo.gonzalezg@utalca.cl
* Correspondence: dzabala@ucm.cl
† These authors contributed equally to this work.

Abstract: Finding the best configuration of a neural network’s hyper-parameters may take too long
to be feasible using an exhaustive search, especially when the cardinality of the search space has
a big combinatorial number of possible solutions with various hyper-parameters. This problem
is aggravated when we also need to optimize the parameters of the neural network, such as the
weight of the hidden neurons and biases. Extreme learning machines (ELMs) are part of the random
weights neural network family, in which parameters are randomly initialized, and the solution,
unlike gradient-descent-based algorithms, can be found analytically. This ability is especially useful
for metaheuristic analysis due to its reduced training times allowing a faster optimization process,
but the problem of finding the best hyper-parameter configuration is still remaining. In this paper,
we propose a modification of the artificial bee colony (ABC) metaheuristic to act as parameterizers
for a regularized ELM, incorporating three methods: an adaptive mechanism for ABC to balance
exploration (global search) and exploitation (local search), an adaptation of the opposition-based
learning technique called opposition local-based learning (OLBL) to strengthen exploitation, and
a record of access to the search space called forbidden redundant indexes (FRI) that allow us to
avoid redundant calculations and track the explored percentage of the search space. We set ten
parameterizations applying different combinations of the proposed methods, limiting them to explore
up to approximately 10% of the search space, with results over 98% compared to the maximum perfor-
mance obtained in the exhaustive search in binary and multiclass datasets. The results demonstrate a
promising use of these parameterizations to optimize the hyper-parameters of the R-ELM in datasets
with different characteristics in cases where computational efficiency is required, with the possibility
of extending its use to other problems with similar characteristics with minor modifications, such as
the parameterization of support vector machines, digital image filters, and other neural networks,
among others.

Keywords: artificial bee colony (ABC); metaheuristics; regularized extreme learning machine
(R-ELM); hyper-parameter optimization (HPO); heuristic optimization; opposition-based learning
(OBL); tabu search (TS); classification applications; artificial neural network (ANN)

Electronics 2024, 13, 4652. https://doi.org/10.3390/electronics13234652 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234652
https://doi.org/10.3390/electronics13234652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-2109-8787
https://orcid.org/0000-0001-5389-2207
https://orcid.org/0000-0002-5692-5673
https://orcid.org/0000-0002-6527-0074
https://orcid.org/0000-0003-1107-4606
https://orcid.org/0000-0002-6487-8096
https://orcid.org/0000-0002-4842-8239
https://doi.org/10.3390/electronics13234652
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234652?type=check_update&version=1

Electronics 2024, 13, 4652 2 of 34

1. Introduction

In neural networks, the training process usually implies the optimization of internal
parameters, for instance, the weights, bias, or learning rate. This optimization process
modifies those parameters to generate a model adapted to the data, with the aim to
predict the behavior of unknown samples. However, models usually require a set of
external parameters used in their initial configuration, fixed before training, that does not
participate in the internal optimization process. Those external parameters are known
as hyper-parameters. Some examples are the number of hidden networks in an artificial
neural network model, C regularization parameter in logistic regression or support vector
machine, or the number of considered neighbors in K-nearest neighbors.

Although the selection of an optimal set of hyper-parameters can directly affect the
model performance, usually this process tends to be underestimated when approaching
it with settings based on empirical knowledge, such as user defined grid search, random
search, or even exhaustive search [1], which requires a lot of processing time (due to the
need to train the model with all possible configurations of hyper-parameters to maximize
metric performance) or gives us suboptimal results. Therefore, it is important to consider
this process as a key component to build an effective machine learning model [1].

Random weight neural networks, such as extreme learning machines (ELM), simplify
the training process by not requiring an iterative adjustment of all network weights. This
allows for efficient and effective training [2], thereby facilitating a focus on hyper-parameter
optimization. In this context, the regularized extreme learning machine (R-ELM) network
is a variant of the original ELM model where a regularization coefficient is introduced.
This coefficient is responsible for balancing between model complexity and the fit to the
training data to improve model generalization performance. As an ELM model, R-ELM
is a single hidden layer feed-forward network where the input weights and biases are
initialized randomly. In this case, the training consists of searching for the output weights
of the network, which can be calculated analytically. As a result, the training times are
significantly reduced compared to traditional methods based on gradient descent.

However, as for any machine learning algorithm, the process of searching for optimal
hyper-parameters is crucial for obtaining a robust and effective model. In a discretized
search space, an exhaustive search ensures we obtain the optimal hyper-parameter con-
figuration. However, it can involve a large number of unnecessary training runs that
significantly increase the time associated with the hyper-parameter tuning process and,
consequently, the overall experiment.

In this regard, the search for an optimal set of hyper-parameters can be seen as an opti-
mization problem, called hyper-parameter optimization (HPO). Among the HPO methods,
some are based on metaheuristics, which are general frameworks used to obtain approxi-
mate solutions for optimization problems that often require significant computational time
to solve. These algorithms belong to the global random search algorithms, which have a
set of typical limitations such as scalability problems in high-dimensionality problems and
the lack of guarantee in finding the optimal value [3]. Even so, those approximate solutions
are usually acceptable sub-optimal solutions, meaning they are not the optimal one but are
still valid solutions. However, they are not necessarily close to the optimal solution, unlike
near-optimal solutions. Metaheuristics apply different criteria to explore the search space,
usually based on the behavior of living organisms to survive, resulting in the so-called
bioinspired algorithms. An example is the swarm intelligence (SI) algorithm, which adopts
the collective behavior of organized animal groups in search of survival [4]. In [5], SI
algorithms are presented as particularly useful for non-deterministic polynomial-time hard
problems where finding a global optimum becomes infeasible in a real-time scenario.

Several bioinspired algorithms can be found in the state of the art. Some examples
are ant colony optimization (ACO) [6], derived from the behavior of ant colonies and
their food-searching efficiency using pheromones; particle swarm optimization (PSO) [7],
originated by the collective behavior of animal groups; Aquila optimizer (AO) [8], based
on the four hunting methods used by Aquilas; pelican optimization algorithm (POA) [9],

Electronics 2024, 13, 4652 3 of 34

inspired by how pelicans gather their food; and artificial bee colony (ABC) [10] algorithm,
on which this work is based. This comes from the different roles performed by bees in a
hive foraging for the best food source based on their waggle dance.

The use of these algorithms presents some advantages over classical optimization
methods, such as the function to be optimized does not need to be differentiable. It is not
necessary to know the geometry of the objective function in advance, and bioinspired algo-
rithms tend to be more robust at optimizing multimodal functions by avoiding becoming
stuck in local minima.

The concept of convergence is an important point within optimization algorithms. It
indicates the process by which the algorithm approaches an optimal solution, depending on
how some error measure or distance measure between the solution found and the expected
one is reduced throughout iterations. Convergence can be classified by speed (sublinear,
linear, superlinear, and quadratic) or according to the number of iterations required to reach
the optimum (high convergence or low convergence) [11]. According to [11], SI algorithms
are difficult to evaluate in terms of performance and convergence, so a graph of the best
performance obtained throughout the iterations is usually presented. It should be noted
that the convergence of these algorithms can be premature if the swarm stops exploring too
soon and becomes stuck in local optima and can be global if the swarm converges to the
optimal solution or close to it, which is usually the result of a balance between exploration
(global search) and exploitation (local search). There are generic methods that help with the
acceleration of convergence, such as opposition-based learning [12], which reinforces the
exploration process by considering solutions opposite to the current candidates in order to
improve the probability of finding better solutions, or tabu search [13], which establishes a
tabu list to escape local optima.

In this paper, the ABC algorithm is formalized as parameterizer over an R-ELM
network’s hyper-parameters by incorporating three methods that adapt, strengthen, as
well as diversify its search process and its exploration and exploitation mechanisms, which
are common problems in global random search algorithms for large dimensions. The
first incorporates an adaptive mechanism based on the number of iterations during the
exploitation phases of ABC, which balances the search overall over the iterations. The
second modifies the opposition-based learning technique to strengthen exploitation in
promising areas and the latter keeps track of accesses to the search space elements in
order to avoid redundant calculations and escape from local optima. The performance of
these three methods was analyzed both independently and in combination, resulting in
a total of ten parameterizers, which were applied to two datasets with class imbalance,
by covering both binary and multiclass classification problems. At the same time, we
propose to use a stopping criterion for the parameterizers based on a percentage of the
cardinality of the discretized search space, comparing the results obtained with respect
to an exhaustive search. This is used as a ground truth for the objective functions and as
a contrast in execution times. For this, 100 complete executions (k-fold with k equal to 5,
with 20 repetitions for each fold) of the exhaustive grid were averaged to reduce the effect
of the stochastic behavior of the R-ELM on the metrics.

The rest of the paper has the following organization. Section 2 presents the related
works found in the state of the art. Section 3 provides the background that supports the
conducted research. Section 4 describes the applied methodology, namely, the adaptation
of metaheuristics as parameterizers, each method proposed, the base ABC parameterizer,
each method implementation to the ABC algorithm independently and in combination, the
definition of performance metrics and objective functions, and the information related to
the datasets used in this work. Section 5 details the results obtained during the experiments
as well as presents the discussions related to the work. Finally, Section 6 presents the
conclusions and future works.

Electronics 2024, 13, 4652 4 of 34

2. Related Works

This section was created based on a literature review using the Web of Science database.
The search was performed using the keywords: artificial bee colony, extreme learning
machine, opposition-based learning, and tabu search. The inclusion criteria for the reviewed
articles were based on the methodological relevance and practical applications of ABC-OBL,
ABC-OBL-Tabu search, and ABC-Tabu search in the context of ELM. Studies that did not
present significant advances or methodological innovations in the use of ABC and its
variants were excluded.

Wang et al. [14] present a method called SADEABC-ELM, which combines ELM
with optimizations using self-adaptive differential evolution (SADE) and ABC. Its goal
is to improve the performance of blood concentration analysis via Raman spectroscopy.
This approach focuses on optimizing the input and output weights, as well as the biases
of ELM. By carrying this out, it improves the convergence of the algorithm and avoids
sub-optimization.

The model introduced by Xu et al. [15] uses ABC to determine the best number of
hidden neurons in the ELM based on the loss function, mean square error, and symmetric
mean absolute percentage error. This is carried out to improve the prediction of annual GDP
based on CO2 emissions in the member countries of the Shanghai Cooperation Organization.
The combined ELM-ABC model addresses issues related to parameter dependence and the
limited prediction horizon of other traditional models, resulting in improved accuracy in
long-term GDP prediction.

In [16], ABC is utilized to tune parameters and hyper-parameters of the ELM. The
optimized parameters include connection weights between input and hidden layers, biases
and activation functions in hidden neurons, and the regularization parameter. This method
uses electricity price data from sources in Finland, Switzerland, and India. In combination
with wavelet decomposition techniques, it improves forecasting capabilities in various
electricity markets, particularly under high volatility conditions, leading to a substantial
reduction in prediction errors.

In the study of [17], a hybrid model called ABC-DE-ELM is introduced. This model
combines ABC with differential evolution to optimize the input weights and biases in an
ELM, addressing the instability caused by random initialization in ELM. The proposed
model improves the stability and accuracy in predictions for the context of traffic in
intelligent transportation systems in big data environments.

In [18], a new version of ELM called TSE-ELM is exposed, which uses the ABC algo-
rithm to optimize the input weights and biases of hidden neurons. It incorporates a hybrid
strategy called GLABC to improve the algorithm’s ability to explore the solution space.
This approach provides more precise tuning of ELM parameters, improved generalization
ability, and higher robustness to data variations. The approach uses the sigmoid function
for activation of hidden neurons and dynamically adjusts the weights and biases during
the optimization process using the Levy flight strategy.

In [19], the authors propose a hybrid model that includes an improved version of the
GPS-EO-ABC algorithm, combining empirical wavelet transform (EWT), ARIMA, and an
optimized ELM. The improved ABC algorithm, with good point sets (GPS) theory and elite
opposition-based learning (EO) strategy, optimizes both global and local search capabilities,
avoiding falling into suboptimal solutions. The hybrid model shows significant improve-
ment in prediction accuracy compared to individual models and other model combinations.
Furthermore, using EWT to decompose and denoise financial data significantly improves
the prediction quality, and implementing EO increases the exploration capability of the
solution space and helps avoid premature convergence. Other improvements include
the use of GPS to generate a well-distributed initial population and adaptive inertia to
automatically adjust the search step size during the iterative process.

In [20], a hybrid approach using ABC, ELM, ANFIS, and tabu search for early autism
detection is presented. Tabu search was used for feature selection, ABC for gene selection,
and ANFIS with ELM for classification. This integrated approach optimized the selection

Electronics 2024, 13, 4652 5 of 34

of relevant features and improved the system’s ability to model complex nonlinear relation-
ships in the data. The combination of these techniques resulted in improved accuracy and
speed in early autism detection.

In summary, most publications focus on creating new hybrid networks between the
metaheuristic and the model used to optimize the weights and biases. As for the number
of neurons, only [15] considers them in the optimization, while the rest of the publications
use a fixed number or simple grid selected based on previous uses in the state of the art,
arbitrarily or according to expert knowledge. Even so, no publication defines the selection
range of the parameters or hyper-parameters based on a criterion. Similarly, the stopping
criterion is not justified quantitatively based on some formula.

3. Background
3.1. Artificial Bee Colony

Artificial bee colony (ABC) [21] is a metaheuristic based on the behavior of honey bees
and their dance communication system, which started as an idea in [10], by representing the
food sources as solutions and their quality as the objective function. It works over iterations
by randomly generating solutions in the first run. Dances represent the coordinates and
quality of the food source. In order to perform global and local searches in the search space,
metaheuristic algorithms use exploration and exploitation criteria, respectively. The ABC
phases can be grouped as exploration phases (initialization and scout) and exploitation
phases (employed and onlooker).

The ABC methodology begins with the generation of a population randomly dis-
tributed throughout the search space and of a size equal to the food source parameter. The
approach utilizes three kind of bees that work in different phases:

xj
i = xj

min + δ · (xj
max − xj

min), (1)

such that xj
i corresponds to a new i-th food source in the j-th dimension; xj

min and xj
max corre-

spond to the minimum and maximum assignable value of the j-th dimension, respectively;
and δ is a random number in the range [0, 1].

In the bee phase, each employed bee searches the periphery of its food source for a
better location. Equation (2) is used to perform exploitation of the search space as a function
of some other neighbor. It contains the impact parameter (ϕ), which is assigned a random
value between −1 and 1 each time the equation is used.

vij = xij + ϕ(xij − xkj), (2)

such that i corresponds to the i-th food source, j corresponds to the dimension selected to
be modified, vij corresponds to the value of the i-th sample in the j-th dimension during the
next iteration, xij corresponds to the value of the i-th sample in the current j-th dimension,
ϕ is the random value previously explained, and xkj corresponds to the value of the j-th
dimension of a randomly selected k neighbor that must be different from i. Once an element
of the periphery has been exploited, the employed bee returns to the hive to report on the
quality and location of the food source based on the “waggle dance”, whereas the onlooker
bees evaluate the dances and select one of them to continue in the following phase.

In the onlooker bee phase, each dancej performed by the employed bees has a propor-
tional probability of selection calculated by dividing its f itnessj by the sum of the fitness,
selecting one of them with the roulette wheel selection to exploit its periphery based on
Equation (2).

Another form to calculate each probability is to normalize each probabilityj dividing
Fitnessj by the maximum fitness of the population [22,23]. Namely,

probabilityj = a + b ·
Fitnessj

MAX(Fitness)
, (3)

Electronics 2024, 13, 4652 6 of 34

where a is a minimum probability of selection for all food sources; b is the impact factor of
the normalized fitness with 1 = a+ b, so that the best food source has a selection probability
of 100% independent of the values assigned to a and b; Fitnessj represents the Fitness of the
j-th food source; and MAX(Fitness) is the actual maximum Fitness of all the population.
For example, if the values of a and b are assigned as 0.1 and 0.9, respectively, all food
sources have at least a 10% probability of selection independent from their fitness quality,
and the remaining 90% are determined according to their performance.

The bees then observe the dances one by one based on the following procedure: beei
compares the value of probabilityj with a random number r0 between the range [0, 1]. If
r0 ≤ probabilityj, beei will use the j-th solution to exploit its periphery based on Equation (2).
However, if r0 > probabilityj, another random value r1 is generated, comparing it with
probabilityj+1. This process is repeated until there is a random number rn ≤ probabilityj+n.
Then, the following beei+1 starts from probabilityj+n+1. In the event that a bee does not
select any of the remaining dances, this bee begins to observe again from probability1.

Finally, the scout bee phase occurs whenever a food source is exhausted due to
exploitation by employed or onlooker bees. The employed bee leaves the exhausted source
and locates itself in a random position based on Equation (1). This phase contributes to
the ABC exploration mechanism by reducing the cases where the algorithm becomes stuck
in local optima and by allowing the discovery of new areas throughout the course of the
algorithm’s iterations.

As mentioned above, global random search algorithms have a set of typical limitations.
In the case of ABC, its equations are often the targets of possible improvements to the
algorithm [24] because these are its mechanisms of exploration and exploitation. In [25],
the seminal ABC is described as a heuristic that converges slowly and struggles from the
start to find the optimal value, which indicates problems in balancing the exploitation
of promising areas and its ability to escape local optima. According to [26], the ABC
algorithm has problems in optimizing multimodal functions by affecting its convergence
rate. This suggests the need to implement modifications to the ABC algorithm or the
incorporation of generic methods that improve its performance and make it robust against
functions of unknown geometry, as occurs in parameterization. There are strategies that
help improve the speed of algorithm convergence by enhancing or balancing exploration
and exploitation mechanisms, such as methods with memory-based prohibitions and
opposition-based learning.

3.2. Memory-Based Prohibitions

In general, evolutionary or swarm intelligence algorithms such as ABC have mech-
anisms that use previously generated solutions or information related to them, which
can lead to repetition of these solutions, which is detrimental to exploration and to the
computational efficiency when calculating the objective function impact on execution time.
One of the first proposals to regulate this situation was [13], where it introduces the concept
of tabu search. It comes to be a heuristic with a tabu list phase with a fixed size, where
recent movements are recorded only for a certain number of iterations. The objective of
this list is to avoid repeating solutions, aiming to escape local optima and encourage the
exploration of new areas in the search space.

In other metaheuristics, concepts related to banning already explored locations were
also applied. In [27], an adaptation of ABC is proposed to detect contours in grayscale
images and applies a criterion called “Banned resource” to mark abandoned food sources
and to use this information every time new solutions are generated by avoiding redundant
computation. The way to decide if a resource is banned is to allow five executions of the
same coordinate configuration, counted only in the scout bee phase, and then proceed to
ban it. In this case, the objective function is the value of a pixel in the image and is solved
with a direct query in memory, so the wasted computation is associated with the reiteration
of the use of previous information.

Electronics 2024, 13, 4652 7 of 34

In [28], a set of restrictions to the PSO algorithm is proposed. There is one restriction
called “Checking for already visited locations”, where a list is created by adding to it each
visited position in the search space. This list is described as a permanent marking of
the locations already visited, equivalent to a long-term memory mechanism. In the event
that a new solution has already been visited, it will be replaced by a random adjacent
neighbor that is not determined to be already visited. One aspect to consider is that each
element added to it increases the query time. In conclusion, these kinds of proposals can
reduce the amount of redundant computation when the objective function is evaluated with
input value combinations that have already been previously tested, implying stagnation in
convergence and wasted computation time.

3.3. Opposition-Based Learning

Opposition-based learning (OBL) [12] is a strategy in which a solution found and its
opposite solution compete to determine which one has a better performance. The opposite
solution is one whose coordinates are reflected within the search space concerning the
original solution, obtained according to Equation (4).

x̂j = LBj + UBj − xj, (4)

where x̂j corresponds to the spatial opposite of x for the j-th dimension, UBj corresponds
to the maximum value or upper bound of the j-th dimension, and xj corresponds to the
value of x in the j-th dimension. The distance between x and UB is equal to the distance
from LB to x̂, namely, x̂ is the reflection of x using the center of the search space (LB+UB)

2 as
the reference point. In the case of two dimensions, if we have a point x = (j1, j2), its spatial
opposite is given by x̂ = (LB1 + UB1 − j1, LB2 + UB2 − j2), which implies a reflection with
respect to the central point of the search space

(
LB1+UB1

2 , LB2+UB2
2

)
, see Figure 1a.

OBL can also be applied to a set of solutions where the performance of each solution
of the original set and the opposite set is evaluated by keeping only the best half of all the
solutions. In Figure 1b, an example of applying OBL to a set of six solutions in a 2D space
is observed, where the red dots are the original solutions, the blue dots are the opposite
solutions, and the dots with black centers are the selected solutions, by assuming that the
best solutions are located over the main diagonal.

OBL solutionOriginal solution

(a) OBL applied in a two
dimensional search space

OBL solution Best solutions Original solution

(b) OBL applied to a set of solutions

1

1

2

2 4

5

56

3

3

6

OBL solution Actual best solution Original solution

4

Uncalculated OBL solution

(c) Generation of solutions over it-
erations using COBL.

Figure 1. Different forms of OBL. The numbers next to the dots represent the iteration where a
solution was generated, and the unfilled dots represent uncalculated OBL solutions in COBL.

OBL can be considered an auxiliary exploration mechanism because it uses the center
of the search space as a reference. Consequently, the generated opposite solutions do not
take into consideration whether the original solution is based on exploitation or exploration
mechanisms. On the other hand, applying OBL to all solutions doubles the total number
of solutions generated and the execution time. These problems can be partially reduced

Electronics 2024, 13, 4652 8 of 34

by applying a conditional process in the application of OBL [26]. The way to apply it is
to evaluate whether the generated solution is better or not than the current one, and only
if it does not occur, the opposite solution is calculated, refer to Figure 1c. Because the
authors do not give it a distinctive name, we call it conditional OBL (COBL) to refer to its
conditional operation and differentiate it from the classic OBL in the rest of the paper.

Regarding neural networks, OBL, as well as ABC, offer an excellent alternative to
tackle the optimization process compared to exhaustive search methods. For instance,
unlike the ELM network, the regularized variant includes an additional parameter to be
optimized related to the neural network’s regularization. That difference can substantially
impact the duration of the optimization process, especially when we consider that the
search space grows exponentially when incorporating more hyper-parameters, combined
with a large search space. In this case, if we observe the incorporation of the regularization
parameter C and the large search space for the number of neurons in the hidden layer, where
the step size is equal to 1 and the upper limit as the number of samples of each dataset,
this problem offers the ideal conditions for the use of techniques such as memory-based
prohibitions, OBL, and ABC. Those techniques could significantly reduce optimization
process times with a minor impact on accuracy performance.

3.4. Regularized Extreme Learning Machine

The extreme learning machine (ELM) is a neural network marked by the use of a single
hidden layer with randomly initialized input weights and biases, removing the need to
adjust the weights of the hidden layer model iteratively [29,30]. As a result, the training
times are significantly reduced compared to gradient descent approaches that usually have
problems associated with local minima convergences or incorrect learning steps. It is part of
the random weights neural network family [31], as radial basis function [32], random vector
functional link [33], and feed-forward neural networks with random weights presented in
[34], all of these characterized by fast training times and good generalization performance.
Figure 2 provides a visual representation of the ELM algorithm, where Ñ is the number
of neurons in the hidden layer; X is the input data of n features and N samples; T is the
expected output with m classes; W and b correspond to the input weights and the hidden
layer bias, respectively, both of which are randomly generated; H(W, X, b) is the hidden
layer output of size N × Ñ; and β is the output weight.

The ELM training consists of the search for the least squares solution β̂̂β̂β of the linear
system given by the following equation:

Hβββ = T. (5)

In the case when H is a square matrix, the solution is unique, and it is given by
βββ = H−1T. However, this case rarely appears in practice because, usually, the number of
training samples N does not necessarily have to match with the number of neurons in the
hidden layer Ñ. According to [29], in the case when H is not a square matrix, one solution
is given by β̂̂β̂β = H†T, where H† is the Moore–Penrose pseudoinverse. This solution is
optimal because it minimizes the network’s error and norm weights [29]. This matrix is
usually computed via orthogonal projection, orthogonalization, iterative, or singular value
decomposition (SVD) methods [29]. In this work, the orthogonal projection computation
H† = (HT H)−1HT is used due to efficient time performance [30].

Electronics 2024, 13, 4652 9 of 34

Figure 2. Representation of the ELM model.

According to [35], although the original ELM is fast in the learning phase and shows
a good generalization performance, it has some drawbacks that should be addressed. In
a prior instance, the real data distribution is unknown due to the ELM’s training dataset
representing only a subset of the whole population. This empirical risk minimization
principle can lead to over-fitting models to the training data, reducing their ability to
generalize over unseen samples. Furthermore, the training approach of ELM directly
calculates the minimum norm least-squares solution that results in a loss of control over
how ELM is adjusted to the training data. To overcome these drawbacks, a balance between
the model complexity and the fit on training data is needed. The regularized extreme
learning machine (R-ELM) [35] is based on the structural risk minimization principle. In
order to achieve better generalization performance, it is essential to find the optimal balance
between empirical risk (the sum of error squares, denoted as ∥εεε∥2) and structural risk (the
sum of weight squares, denoted as ∥βββ∥2). These factors are essential in determining the
actual prediction risk in the cost function [35]. It can be represented in the following
expression:

min
(

1
2
∥βββ∥2 +

1
2

C∥Dεεε∥2
)

, (6)

where C is the trade-off coefficient, and D = diag(v) with v = (v1, v2, . . . , vN) represents
the weight factor vector of errors εεε. If D = I is the unit matrix, βββ can be calculated
as follows:

βββ =

(
I
C
+ HTH

)−1
HTT. (7)

Equation (7) is known as the unweighted regularized ELM. Note that this expression
is valid in the case where the number of samples is greater than the number of hidden
neurons. There are some variants of the ELM that are used under specific classification
problems, such as weighted [36] or semi-supervised ELMs [37]. In this case, we select
the regularized ELM since it is a simple network with sufficient good performance to test
heuristic-based algorithms for hyper-parameter tuning as the employed in this work.

Although the R-ELM model provides a better balance between model complexity
and fit to the training data compared to traditional ELM networks, the introduction of an
additional parameter, which may not seem significant at first glance, can exponentially
increase the hyper-parameter optimization process time. This process, both in ELM and in
neural networks in general, can require significant computational resources when using
exhaustive search algorithms. In this context, the use of a more efficient optimization
algorithm that can accelerate convergence to an optimal set of hyper-parameters is needed,
saving time, energy, and resource availability. In other words, we notice that the R-ELM has
two hyper-parameters (the number of hidden neurons and the regularization parameter).
These must be optimized in order to maximize the performance without computational
cost. This task is performed by exhaustive search in most researches or fixed arbitrarily.

Electronics 2024, 13, 4652 10 of 34

Nevertheless, as the number of samples increases, which is the last goal in the artificial intel-
ligence context for successful learning, the method based on brute force (exhaustive search)
is unfeasible, see Section 5.2. Solutions based on swarm intelligence (AB metaheuristics
and its improvements, previous sections) become relevant here.

4. Methodology

The main objective is to propose a parameterizer based on the ABC algorithm, which
is capable of obtaining a sub-optimal configuration of the hyper-parameters of an R-ELM
with a low error margin compared to the optimal value obtained in an exhaustive search.

To this end, we define and propose a set of methods that seek to improve the con-
vergence rate of obtaining results in the parameterizers. In Section 4.1, we establish the
necessary settings to implement a metaheuristic optimization algorithm as a parameterizer.
In Section 4.2, the proposed methods adaptive phi ABC, forbidden redundant indexes,
and opposition local-based learning are carefully presented. In Section 4.3, the base ABC,
OBL ABC, as well as three parameterizers that implement one of the proposed methods,
are presented. In Section 4.4, the ABC parameterizers that implement two or more of the
proposals are illustrated. Finally, in Section 4.5, the objective functions and performance
metrics used during this research are revealed.

4.1. Adaptation of Metaheuristics as Parameterizers

To carry out the parameterization from a metaheuristic optimization algorithm, it is
necessary to determine the following components according to the problem to be solved: ob-
jective function to be optimized, dimensionality of the problem, restrictions, and cardinality
of the search space.

The objective function to be optimized depends on the algorithm to be parameterized.
It has the dimensions of the problem as input values and some metric as the output value
to objectively measure the performance. In this work, it is applied to the (R-ELM) network
and the performance metrics accuracy and g-mean.

The dimensionality of the problem refers to the number of input variables in the
objective function of the problem to be parameterized. In the case of this work, each
dimension corresponds to a hyper-parameter in the R-ELM, which are the number of
hidden neurons and the regularization parameter C, together representing the search space.

The constraints are given by the different domains of each of the dimensions. In
general, four constraints can be identified for each dimension: the type of domain to which
the elements belong, their lower limit, their upper limit, and the step size between elements
of discretized domains. The search space refers to the set of all possible valid solutions to
be evaluated. Discretizing the search space allows for standardizing access to the elements
of each dimension. This is achieved by assigning the values incrementally in an array,
which implies defining a standardized step size for the elements of each domain. In the
case of an R-ELM, for the regularization parameter C, a restriction is established in the
domain in the range of 2[−25,25] with a step size of 1 in the exponent and for the number of
neurons corresponding to the interval [1, MaxNeu], with a step size of 1, where MaxNeu is
the rounded value of calculating 80% of the number of samples in the dataset worked.

The cardinality of the search space is given by all possible combinations of the valid
elements of each dimension. It is determined by the production of the cardinal of each
dimension, as presented in the following:

#Ω =
N

∏
i=1

#axis(i), (8)

where #axis(i) denotes the i-axis cardinality. Here, the cardinality #Ω for the parameteriza-
tion of the R-ELM is given by expression (9):

#ΩR−ELM = size(C) · size(NeuralNumber), (9)

Electronics 2024, 13, 4652 11 of 34

where #ΩR−ELM represents the number of different solutions when the R-ELM is parame-
terized in the classification of a dataset, size(C) is the number of elements in the dimension
generated by parameter C, and size(NeuralNumber) denotes the number of elements in
the dimension generated by the parameter NeuralNumber.

Finally, the stopping criterion is given by a number of executions of the objective
function equivalent to a percentage of the cardinality, defined in Equation (10),

Totaltravels : T =

⌈
P · #ΩR−ELM

N

⌉
, (10)

where P represents a percentage of #ΩR−ELM and N the number of agents in the population.
This implies that the total number of allowed executions of the objective function is divided
equally among the N individuals in the population. Using the percentage defined, the
relationship between the proximity of the best solution found to the optimal value and the
amount of time spent searching for it can be decided, which is essential in search spaces
with high cardinality.

4.2. Proposed Methods
4.2.1. Adaptive Phi ABC

Adaptive phi ABC (AP-ABC) is a modification of the ABC algorithm. The objective
of this method is to generate a balance between exploration and exploitation through the
execution of the algorithm, so that all solutions created in each iteration are affected globally
and equivalently. Part of the inspiration is based on [38], where a dynamic strategy based
on the number of iterations executed is proposed for the PSO algorithm to dynamically
change from exploitation to exploration.

In the case of our approach, it started favoring exploration, changing to exploitation
and changing to exploration again due to endowing the parameter ϕ seen in Equation (2)
with an adaptive feature. It is based on the percentage of the number of iterations elapsed
during the execution using a monotonically descending lineal function y = mx + b, with
y = ϕit, x = it, b = 1 and m = − 2

T , according to Equation (11).

ϕit =

{
1− 2·it

T , if it < T
2 ,

2·it
T − 1, otherwise .

(11)

thus, ϕit is a vector of size T that has mapped values in the range [0,1] starting in 1 when
it = 1, decreasing to 0 when it = T

2 , and increasing again to 1 when it = T. In order to
represent the possibility of moving towards or away from the previous solution based on
the selected neighbor, Equation (2) is replaced by Equation (12).

vij = xij + α · ϕit(xij − xik), (12)

where α is a random number belonging to the set {−1, 1}. For a better understanding, the
behavior of ϕit is seen in Figure 3. On average, ϕit is equal to 0.5, which is distributed in
such a way that in the first 25%, exploration is heavily encouraged, then further exploitation
is forced to occur in the middle 50% of runs, and finally, exploration is reinforced again in
the final 25%.

Electronics 2024, 13, 4652 12 of 34

1 2 3 T 2 T 1 T

1

0.2

0.4

0.6

0.8

0

2
T... ...

Iteration ()

V
al

u
e

Figure 3. Behavior of ϕit in the AP-ABC approach.

4.2.2. Forbidden Redundant Indexes

The forbidden redundant indexes (FRI) proposal aims to avoid possible redundant
calculations performed during the optimization process by marking all the positions already
explored in a multidimensional array of the same size and dimension as the total search
space. These forbidden redundant indexes allow for checking its availability each time a
new solution is created. The multidimensional array starts with "False" values. During the
algorithm, each time a solution is created, the combination of its indexes is checked in the
array. This improves computational efficiency by ensuring that each generated solution
is unique, avoiding wasting time executing the objective function on previously explored
configurations, effectively promoting exploration.

This criterion becomes stronger as the search space becomes more discrete, since it
can guarantee that each new solution generated is unique, enabling measurement of the
traveled percentage of the search space throughout the iterations of the algorithm. Similarly,
it is a mechanism that ensures escape from local optima by forcing the exploration of new
places when all its nearby area has already been marked. All this can be seen in Figure 4, a
1D example where it can be seen how the search space is marked throughout the iterations.
By a single travel for each iteration, this method establishes the cardinality of the problem
as the maximum possible value for the number of iterations of the parameterizers, because
at that moment, the entire search space will have already been explored.

it = 1

it = 2

it = 3

it = 4

Figure 4. Example of forbidden redundant indexes applied to a 1D search space. The dots represent
an available index in the search space, while the Xs represent forbidden indexes.

The detailed operation of FRI is presented in the Algorithm 1. For its implementation,
a binary array with a cardinality equal to that of the search space is initialized with zero
values. Then, each time the coordinates are assigned to calculate a solution, the array is
checked to see if it has already been marked. If not, it is marked with a 1 and a TRUE
is returned, which means that it is an unexplored configuration, proceeding to perform
the calculation of the objective function only in this case. On the contrary, if, at the time
of the query, it was already marked with a value of 1, a FALSE is returned, preventing
computation from being wasted in an already explored configuration.

In conclusion, for the application of this method in the hyper-optimization of the
R-ELM, it is guaranteed that each training performed during the search for the optimal
configuration is unique and the method remains constantly exploring the space of options.

Electronics 2024, 13, 4652 13 of 34

Algorithm 1 Forbidden Redundant Indexes

1: Inputs: Coordinates, FRI_Array
2: Output: TRUE or FALSE
3: valid← FRI_Array[Coordinates]
4: if valid == 0 then
5: FRI_Array[Coordinates]← 1
6: Return TRUE
7: else
8: Return FALSE
9: end if

4.2.3. Opposition Local-Based Learning

Opposition local-based learning (OLBL) is a modification of OBL focused on enhancing
exploitation. In standard OBL, to generate the opposite solution x̂j, where j represents the
j-th dimension, each coordinate of the candidate solution xj is reflected with respect to
the center of the search space of each dimension according to Equation (4). The problem
with the classical form of OBL is that it does not take into account whether the candidate
solution was generated based on exploration or exploitation mechanisms. This goes against
the exploitation mechanisms if the opposite solution is generated in an area far from the
current one, increasing the possibility of wasting computation in unpromising areas.

In the case of OLBL, the current solution i is used as a reference center to reflect the
candidate solution i + 1 and generate an opposite local solution based on Equation (13), namely,

x̌i+1
j = 2 · xi+1

j − γj · xi
j, (13)

where x̌i+1
j represents the opposite local solution, γj is a scaling parameter, xi

j represents

the current solution, and xi+1
j represents the candidate solution. This method continues

to use the concept of opposite-based learning but effectively enhances the exploitation
mechanisms by focusing the computation on the areas surrounding the reference solution.
In this way, OBL and OLBL complement each other, in the sense that OBL reinforces the
exploration mechanisms and OLBL reinforces the exploitation mechanisms.

It is worth noting that it is possible to generate solutions that go outside the edges.
One way to correct this is to relocate all the coordinates that go outside their allowed limits
to the nearest edge. To define the interval of values of γj that allow generating a valid
solution within the search space, it must be considered that LB < 2 · xi+1

j − γj · xi
j < UB,

by producing
2 · xi+1

j −UB

xi
j

< γj <
2 · xi+1

j − LB

xi
j

. (14)

As with OBL, this approach can be applied directly (OLBL) or conditionally (COLBL),
which allows for reducing unnecessary computation. A bi-dimensional example of OLBL
is shown in Figure 5a,b, which shows an example of the evolution process of a solution
using conditional OLBL (COLBL).

Electronics 2024, 13, 4652 14 of 34

OLBL solution

Reference solution

OBL solution

Candidate solution

(a) OLBL applied to a two dimensional
search space

2

5

7

7

3

4

2

4

3

1

6

6

OLBL solution

Uncalculated OLBL solution

Current Best solution

Candidate solution

5

1

(b) Evolution process of a solution using COLBL

Figure 5. Examples of OLBL. Each reference solution is the center of each gray circle, which, in its
radius, has each candidate solution represented with a red dot, and each opposite local solution is
identified with a blue dot. In the right figure, the numbers next to the dots represent the iteration
where a solution was generated.

It should be noted that OLBL is different from [39], where they use the centroid of
the population as a reference, or [40], where the best solution of the population is used
as a reference center. In the case of OLBL, the current solution of each agent is used
independently, such that their opposite local solutions are their own. This implies that the
best solution of each agent is not used due to depending on the metaheuristic; there may
be some mechanism of diversification of solutions to avoid stagnating in local optima, and
it could replace the best solution of an agent with a worst one, even if it is the best value
found so far.

The operation of COLBL is carefully presented below in Algorithm 2, which allows it
to be implemented as a stand-alone function whose input parameters are xi, xi+1, γ, LB,
and UB, while the output is the solution with the best fitness between xi, xi+1, and x̌i+1,
chosen according to the algorithm’s criteria. The algorithm starts by checking whether
f itness(xi+1) > f itness(xi). If TRUE, xi+1 is returned. Otherwise, the values of γ are
assigned, the opposite local solution x̌i+1 is obtained, and an empty list is initialized, to
which all the coordinates of x̌i+1 that fall outside the allowed limits are added. If all of
them are within the limits, it is checked whether x̌i+1 > f itness(xi), returning x̌i+1 if true
or f itness(xi) if false. On the other hand, if at least one coordinate of x̌i+1 is invalid, it is
corrected to its nearest limit and the query is made for x̌i+1 > f itness(xi), returning x̌i+1 if
true or xi if FALSE.

Electronics 2024, 13, 4652 15 of 34

Algorithm 2 Conditional Opposition Local-based Learning

1: Inputs: xi, xi+1, γ, LB and UB
2: Output: Best solution between xi, xi+1 and x̌i+1

3: if f itness(xi+1) > f itness(xi) then
4: Return xi+1

5: else
6: for k← 1 to j do
7: γk ← 1
8: end for
9: Get x̌i+1 with Equation (13)

10: valid← TRUE
11: invalid_dimensions← empty list
12: for k← 1 to j do
13: if x̌i+1

k < LBk or x̌i+1
k > UBk then

14: valid← FALSE
15: add k to invalid_dimensions
16: end if
17: end for
18: if valid then
19: if f itness(x̌i+1) > f itness(xi) then
20: Return x̌i+1

21: else
22: Return xi

23: end if
24: else
25: for each k in invalid_dimensions do
26: if x̌i+1

k < LBk then
27: x̌i+1

k ← LBk
28: else
29: x̌i+1

k ← UBk
30: end if
31: end for
32: if f itness(x̌i+1) > f itness(xi) then
33: Return x̌i+1

34: else
35: Return xi

36: end if
37: end if
38: end if

4.3. Baseline parameterizer Algorithms
4.3.1. Base ABC parameterizer

The parameterizer based on the base ABC does not have changes in the algorithm’s
structure itself, and the majority of its modifications are focused on the necessary ad-
justments to parameterize other algorithms, as described in Section 4.1. Furthermore,
Equation (2) does not consider the limits of the search space in generating solutions. Hence,
it is possible to generate a candidate solution vij that is outside the valid range. In this situa-
tion, the out of range coordinate is corrected to LBj if distance(vij, LBj) < distance(vij, UBj)
or UBj otherwise. In Figure 6, a diagram that includes the structure of the parameterizer
based on the base ABC is presented step by step.

Electronics 2024, 13, 4652 16 of 34

Employed bees phase

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i.

2. Evaluate x
j
i �tness, replace the old solu�on and set LC(i) = 0.

Set all the food source selec�on probabilitIes (FSSP) based on they

normalized �tness values.

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i.

2. Evaluate the �tness of all solu�ons.

Ini�al popula�on phase

For each Food Source(i):

1. Set a new �, select a random neighbor xik, and make a mutant solu�on vij.

2. Evaluate vij �tness, if is be�er than xij �tness, replace it, and set LC(i) = 0,

else, LC(i)++.

Ini�al parameters se�ng

Total popula�on: N.

Percentage: P.

Total itera�ons: T.

Food Sources: FS= N/2.

Itera�on count: it = 0.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

�: Random value between [-1,1].

r, �: Random values between [0,1].

Random solu�on: x
j
i = x

j
min + �(x

j
max - x

j
min)

Mutant solu�on: vij = xij + �(xij � xik)

Exit
true

it = T

false

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no

remaining dance to observe, set j=1.

2. Set a new �, select a random neighbor xik, and make a mutant solu�on vij .

3. Evaluate vij �tness, if is be�er than xij �tness, replace it, and set LC(i) = 0,

else, LC(i)++.

it ++

Figure 6. Algorithm diagram of the Base ABC Parameterizer approach.

4.3.2. Opposition-Based Learning ABC Parameterizer

Opposition-based learning ABC parameterizer (OBL ABC) is inspired by the base
ABC parameterizer with the inclusion of OBL. In the initialization phase, OBL is applied
to all the sets of solutions, selecting the best 50% of them, as shown in Figure 1b. In the
employed and onlooker bee phases, OBL is applied in each generated solution, selecting
the best one between the reference solution, candidate solution, and OBL solution. Finally,
in the scout bee phase, the selected solution is the best one between the candidate solution
and its OBL solution. The diagram of this approach is seen in Figure 7.

Employed bees phase

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i.

2. Get x�
j
i, evaluate both solu�ons' �tness, keep the be�er one, and replace

the old solu�on. Set LC(i) = 0.

Set all the food source selec�on probabilitIes (FSSP) based on they

normalized �tness values.

Exit
true

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i .

2. Apply OBL to all solu�ons, evaluate the �tness of all solu�ons, and keep

the best 50% of them.

Ini�al popula�on phase

For each Food Source(i):

1. Set a new �, select a random neighbor xik, and make a mutant solu�on vij .

2. Get v�ij, evaluate both solu�ons' �tness, and keep the be�er one, if is

be�er than xij �tness, replace it and set LC(i) = 0, else, LC(i)++.

Ini�al parameters se�ng

Total popula�on: N.

Percentage: P.

Total itera�ons: T.

Food Sources: FS= N/2.

Itera�on count: it = 0.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

�: Random value between [-1,1].

r, �: Random value between [0,1].

Random solu�on: x
j
i = x

j
min + �(x

j
max - x

j
min)

Mutant solu�on: vij = xij + �(xij 	 xik)

OBL solu�on : x�
j
i =LB

j
 + UB

j
 - x

j
i ; v�ij = LBj + UBj - vij

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no

remaining dance to observe, set j=1.

2. Set a new �, select a random neighbor xik, and make a mutant solu�on vij .

3. Get v�ij, evaluate both solu�ons' �tness and keep the be�er one, if is be�er

than xij �tness, replace it, and set LC(i) = 0, else, LC(i)++.

if it = T

false

it++

Figure 7. Algorithm diagram of the OBL ABC parameterizer approach.

4.3.3. Adaptive Phi ABC Parameterizer

Adaptive phi ABC parameterizer (AP-ABC) is the direct implementation of the one
proposed in Section 4.2.1 to the base ABC parameterizer. It acts exactly as the base ABC
parameterizer but using Equations (11) and (12) instead of Equation (2). For a better
understanding, the diagram of this approach is seen in Figure 8.

Electronics 2024, 13, 4652 17 of 34

Employed bees phase

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i.

2. Evaluate x
j
i �tness, replace the old solu�on, and set LC(i) = 0.

Set all the food source selec�on probabilitIes (FSSP) based on they

normalized �tness values.

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i.

2. Evaluate the �tness of all solu�ons.

Ini�al popula�on phase

For each Food Source(i):

1. Set a new α, select a random neighbor xik, and make a mutant solu�on vij.

2. Evaluate vij �tness, if is be�er than xij �tness, replace it, and set LC(i) = 0,

else, LC(i)++.

Ini�al parameters se�ng

Total popula�on: N.

Percentage: P.

Total itera�ons: T.

Food Sources: FS= N/2.

Itera�on count: it = 0.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

�(it): 1 - (2it/T) if it<T/2, else (2it/T) - 1.

α: Random value equal to -1 or 1.

r, �: Random values between [0,1].

Random solu�on: x
j
i = x

j
min + �(x

j
max - x

j
min)

Mutant solu�on: vij = xij + α�(it)(xij � xkj)

Exit
true

it = T

false

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no

remaining dance to observe, set j=1.

2. Set a new α, select a random neighbor xik, and make a mutant solu�on vij .

3. Evaluate vij �tness, if is be�er than xij �tness, replace it, and set LC(i) = 0,

else, LC(i)++.

it++

Figure 8. Algorithm diagram of the AP-ABC parameterizer approach.

4.3.4. Forbidden Redundant Indexes ABC Parameterizer

The forbidden redundant indexes ABC parameterizer (FABC) is the inclusion of the
FRI method on the Base ABC. Its operation is based on the principles presented in Section
4.2.2. Each time a candidate hyper-parameter configuration is generated, Algorithm 1
is called. If it returns FALSE, another hyper-parameter configuration is generated. This
process is iterative until it returns TRUE, at which point the hyper-parameter configuration
is marked as indicated by the algorithm and the objective function is calculated.

To avoid wasting time consecutively consulting highly explored sectors, the following
considerations should be taken into account during the search space exploitation phases
(employed and onlooker phases). Each time a new mutant solution is generated from
Equation (2), its status is checked from the array of forbidden positions. If it is available, the
evaluation of the new solution continues, and it is marked as visited. If it is not available,
Equation (2) is executed up to five times, modifying only the random component of the
formula. If it is not effective in finding an available solution, it is executed up to another
five times, also modifying the dimension and the chosen neighbor with new random values.
If it is also not effective, it implies that a large part of the periphery of the explored area is
already forbidden; so, using Equation (1), the bee becomes an explorer, locating itself in a
random position that is not forbidden. The diagram of this approach is seen in Figure 9.

Employed bees phase

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i un�l FI(x

j
i) = 0.

2. Evaluate x
j
i �tness, replace the old solu�on, and set LC(i) = 0.

Set all the food source selec�on probabilitIes (FSSP) based on they

normalized �tness values.

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i.

2. For all solu�ons mark FI(x
j
i) = 1 and evaluate they �tness.

Ini�al popula�on phase

For each Food Source(i):

1. Set �, select a random neighbor xik, and try to make a mutant solu�on vij

with FI(vij) = 0 up to �ve �mes. If all 5 tries fails, try 5 more �mes �mes

changing xkj with a di�erent dimension j in every one of them.

2. If one of vij ful�ll the requirements, mark FI(vij) = 1 and evaluate vij

�tness, if is be�er than xij �tness, replace it, and set LC(i) = 0, else, LC(i)++.

3. In the case that all 10 tries fails, make random solu�ons x
j
i un�l FI(x

j
i) = 0,

evaluate x
j
i �tness, replace the old solu�on, and set LC(i) = 0.

Ini�al parameters se�ng

Total popula�on: N.

Percentage: P.

Total itera�ons: T.

Food Sources: FS= N/2.

Itera�on count: it = 0.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

Forbidden Index: FI = zeros(dim1,…,dimn)

�: Random value between [-1,1].

r, �: Random values between [0,1].

Random solu�on: x
j
i = x

j
min + �(x

j
max - x

j
min)

Mutant solu�on: vij = xij + �(xij 	 xik)

Exit
true

it = T

false

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no

remaining dance to observe, set j=1.

2.Set �, select a random neighbor xik, and try to make a mutant solu�on vij

with FI(vij) = 0 up to �ve �mes. If all 5 tries fails, try 5 more �mes changing xik

with a di�erent dimension j in every one of them.

3. If one of vij ful�ll the requirements, mark FI(vij) = 1 and evaluate vij �tness,

if is be�er than xij �tness, replace it, and set LC(i) = 0, else, LC(i)++.

4. In the case that all 10 tries fails, make random solu�ons x
j
i un�l FI(x

j
i) = 0,

evaluate x
j
i �tness, replace the old solu�on, and set LC(i) = 0.

it++

Figure 9. Algorithm diagram of the FABC parameterizer approach.

4.3.5. Conditional Opposition Local-Based Learning ABC Parameterizer

The conditional opposition local-based learning ABC parameterizer (COLBL ABC)
is inspired by the base ABC parameterizer with the inclusion of COLBL presented in
Section 4.2.3. In the initialization phase and scout bee phase, (Exploration) acts as the OBL
ABC. In the case of the employed bee phase and onlooker bee phase (exploitation), COLBL
is applied as shown in Algorithm 2. The diagram of this approach is seen in Figure 10.

Electronics 2024, 13, 4652 18 of 34

Employed bees phase

Set all the food source selec�on probabilitIes (FSSP) based on they normalized

�tness values.

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i and apply OBL

to all solu�ons.

2. Evaluate the �tness of all solu�ons and keep the best 50% of them.

Ini�al popula�on phaseIni�al parameters se�ng

For each Food Source(i):

1. Set a new �, select a random neighbor xik, and make a mutant solu�on vij .

2.If vij fitness is be�er than xij �tness, replace it and set LC(i) = 0; else, apply OLBL to get v�ij.

3. If v�ij fitness is be�er than xij �tness, replace it and set LC(i) = 0; else, LC(i)++.

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i and apply OBL to get x�

j
i.

2. Evaluate both solu�ons' �tness, keep the be�er one, and replace the old solu�on. Set

LC(i) = 0.

Exit
true

it = T

false

Total itera�ons: T.

Itera�on count: it = 0.

r, 	: Random values between [0,1].

Percentage: P.

Total popula�on: N.

Food Sources: FS= N/2.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

�: Random value between [
1,1].

Random solu�on: x
j
i = x

j
min + 	(x

j
max
 x

j
min)

Mutant solu�on: vij = xij + α�(it)(xij
 xkj)

OBL solu�on : x�
j
i =LB

j
 + UB

j

 x

j
i

OLBL solu�on: v�ij = 2xij
 vij

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no remaining

dance to observe, set j=1.

2. Set a new �, select a random neighbor xik, and make a mutant solu�on vij .

3. If vij fitness is be�er than xij �tness, replace it, and set LC(i) = 0; else, apply OLBL to get v�ij.

4. If v�ij fitness is be�er than xij �tness, replace it, and set LC(i) = 0; else, LC(i)++.

it++

Figure 10. Algorithm diagram of the COLBL ABC parameterizer approach.

4.4. Mixed Parameterizer Algorithms

As mentioned, the ABC parameterizers that implement two or more of the proposals
are illustrated by exploiting the information given in Section 4.3.

4.4.1. Opposition-Based Learning Forbidden Redundant Indexes ABC Parameterizer

The opposition-based learning forbidden redundant indexes ABC parameterizer (OBL
FABC) integrates OBL, FRI, and ABC, considering that every time a new solution and its
opposite are generated, both are marked in the forbidden index, which implies that if a
generated solution is marked as visited, its opposite is also identified, being necessary to
consult only for the generated solution (not for its opposite). This parameterizer is created
to observe the effect of FRI on the OBL ABC parameterizer.

4.4.2. Adaptive Phi Forbidden Redundant Indexes ABC Parameterizer

The adaptive phi forbidden redundant indexes ABC parameterizer (AP-FABC) is the
implementation of FRI and AP at the same time. It acts as the FABC parameterizer, but
with the inclusion of the dynamic mechanism of ϕit following Equation (11).

4.4.3. Conditional Opposition Local-Based Learning Forbidden Redundant Indexes
ABC Parameterizer

The conditional opposition local-based learning forbidden redundant indexes ABC
parameterizer (COLBL FABC) integrates COLBL, FRI, and ABC. The following consider-
ation should be taken into account because OLBL is applied conditionally, affecting the
implementation of the proposed method in Section 4.2.2. During the scout bee phase, once
the new unvisited random solution has been created using Equation (1), a check is made
to see if the spatial inverse with respect to the axes is available. On the one hand, if the
opposite has already been visited previously, its fitness is not calculated and the created
random solution directly replaces the solution where the resources were exhausted. On the
other hand, if the opposite has not been visited before, its fitness is also calculated. The
new solution will be the one with the highest fitness between the newly created random
and its spatial opposite.

4.4.4. Conditional Opposition Local-Based Learning Adaptive Phi ABC Parameterizer

The conditional opposition local-based learning adaptive phi ABC parameterizer
(COLBL AP-ABC) is the application of the COLBL and AP methods simultaneously. In
general, its operation is the same as the COLBL ABC parameterizer, but with the inclusion
of the dynamic mechanism of ϕit following Equation (11).

4.4.5. Conditional Opposition Local-Based Learning Adaptive Phi Forbidden Redundant
Indexes ABC Parameterizer

The conditional opposition local-based learning adaptive phi forbidden redundant
indexes ABC parameterizer (COLBL AP-FABC) is equivalent to applying all the methods
proposed in Section 4.2 to the base ABC parameterizer. Its operation is similar to that of

Electronics 2024, 13, 4652 19 of 34

COLBL FABC, described in Section 4.4.3, but with the inclusion of the dynamic mechanism
of ϕit following Equation (11).

To conclude, the diagram of the COLBL AP-FABC parameterizer approach is seen in
Figure 11.

Employed bees phase

Set all the food source selec�on probabilitIes (FSSP) based on they normalized �tness values.

1. Start the ini�al popula�on by making non-repeated random solu�ons x
j
i and apply OBL to all solu�ons.

2. Evaluate the �tness of all solu�ons and keep the best 50% of them.

Ini�al popula�on phaseIni�al parameters se�ng

Exit
true

it = T

false

Total itera�ons: T.

Itera�on count: it = 0.

α: Random value equal to -1 or 1.

r, �: Random values between [0,1].

Percentage: P.

Total popula�on: N.

Food Sources: FS= N/2.

Limit: L = ceil(T/20).

Limit Count: LC(FS) = zeros(FS).

Forbidden Index: FI = zeros(dim1,…,dimn)

�(it): 1 - (2it/T) if it<T/2, else (2it/T) - 1.

Random solu�on: x
j
i = x

j
min + �(x

j
max - x

j
min)

Mutant solu�on: vij = xij + α�(it)(xij � xkj)

OBL solu�on : x�
j
i =LB

j
 + UB

j
 – x

j
i

OLBL solu�on: v�ij = 2xij – vij

Onlooker bees phase
Set j=1.

For each Food Source(i):

1. Set a new r, if r < FSSPj select dancej, else, j++ and try again. If there are no remaining dance to observe,

set j=1.

2. Set α, select a random neighbor xkj and try to make a mutant solu�on vij with FI(vij) = 0 up to �ve �mes. If

all 5 tries fails, try 5 more �mes changing xkj with a di	erent dimension j in every one of them.

3. If one of vij ful�ll the requirements, mark FI(vij) = 1, if vij fitness is be
er than xij �tness, replace it and set

LC(i) = 0; else, apply OLBL to get v�ij. If FI(v�ij) = 0 and v�ij fitness is be
er than xij �tness, replace it and set LC(i)

= 0; else, LC(i)++. Mark FI(v�ij) = 1 always.

4. In the case that FI(v �ij) = 1 and there are no remaining tries, make random solu�ons x
j
i un�l FI(x

j
i) = 0, keep

x
j
i as the new solu�on and set LC(i) = 0.

For each Food Source(i):

1. Set α, select a random neighbor xkj and try to make a mutant solu�on vij with FI(vij) = 0 up to �ve �mes. If

all 5 tries fails, try 5 more �mes changing xkj with a di	erent dimension j in every one of them.

2. If one of vij ful�ll the requirements, mark FI(vij) = 1, if vij fitness is be
er than xij �tness, replace it and set

LC(i) = 0; else, apply OLBL to get v �ij. If FI(v �ij) = 0 and v �ij fitness is be
er than xij �tness, replace it and set LC(i)

= 0; else, LC(i)++. Mark FI(v �ij) = 1 always.

3. In the case that FI(v�ij) = 1 and there are no remaining tries, make random solu�ons x
j
i un�l FI(x

j
i) = 0,

keep x
j
i as the new solu�on and set LC(i) = 0.

Scouts bees phase
For each Food Source(i) with LC(i) � L:

1. Make a random solu�on x
j
i un�l FI(x

j
i) = 0, mark FI(x

j
i) = 1, and apply OBL to get x�

j
i.

2. Set LC(i) = 0. If FI(x�
j
) = 0, mark it as 1, evaluate both solu�ons' �tness and keep the be
er one as the new

solu�on; else, keep x
j
i as the new solu�on.

it++

Figure 11. Algorithm diagram of the COLBL AP-FABC parameterizer approach.

4.5. Objective Functions and Performance Metrics

The proposed approaches require an objective function that represents the performance
of the R-ELM. In this case, we will maximize the metrics accuracy and g-mean. Accuracy
represents the percentage of correct classifications in general, and g-mean allows the model
to be evaluated more robustly when there is an imbalance in the dataset.

The expression Equation (15) represents the accuracy, where N is the number of
samples, ti denotes the real class of the sample i, and t̄i is the predicted class of the sample i
[41,42].

Accuracy =

√√√√ 1
N

N

∑
i=1

(ti − t̄i)2, (15)

Regarding the g-mean, it is calculated according to what is established in Equation (16),
where L corresponds to the number of classes, and βi to the accuracy of class i [41,42].

G-Mean = L
√

β1β2...βL, (16)

The results will be evaluated in terms of the maximum value achieved in the metrics,
and the percentage of proximity and of each approach to the best value achieved by
the exhaustive approach will be calculated. Similarly, the percentage of the time of the
approaches with respect to the exhaustive time will be calculated by indicating the standard
deviation of these.

To complement the previous metrics, the standard deviation is presented. It is a
statistical measure that measures how much the values of a set of data vary from their
arithmetic mean. It is calculated from the square root of the variance, which, in turn,
measures the dispersion of the data. The advantage of using the standard deviation is
that it is expressed in the same unit as the original values. For this reason, it is a standard
measure of dispersion and quantitative analysis. The equation of the standard deviation of
a population σ is given by Equation (17).

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2, (17)

where N corresponds to the total number of data in the population, xi are the individual
values in the population, and µ corresponds to the arithmetic mean of the population. In
this work, the average results will be presented according to the syntax mean± σ using the
standard deviation.

Electronics 2024, 13, 4652 20 of 34

5. Results and Discussions

In all experiments, the dataset has been normalized into the range [−1, 1] by following
recommendations of the ELM creator, and a stratified k-fold cross-validation was performed
to prevent overfitting, which allows having a proportion of each class in each fold equal
to that of the complete set, with k equal to 5. It should be noted that in order to obtain
representative results, each fold will be executed 20 times, making a total of 100 tests of
each type for each dataset. In each experiment, the results of two metrics were reported,
regardless of which one was used as the objective function.

The section is divided as follows. In Section 5.1, the datasets used during the investi-
gation are presented. In Section 5.2, the parameters with which the algorithms used were
configured are presented. In Section 5.3, the results obtained from the exhaustive tests are
presented. In Section 5.4, the convergence results obtained by the ABC parameterizers are
presented. In Section 5.5, the results as a function of time obtained by the ABC parameteriz-
ers and the exhaustive search are presented. In Section 5.6, a comparison in percentages
of the results obtained by the ABC parameterizers with respect to the exhaustive search is
presented as a function of performance and time. Finally, in Section 5.7, the analysis of the
ABC parameterizers is presented based on the concurrence of the locations visited and the
redundant computation that is performed.

5.1. Dataset Information

The datasets used in this work are presented below. The area of application of these is
health, with the objective of demonstrating the usefulness of the proposals in environments
where time is a valuable resource and performing a search in all combinations is infeasible.

5.1.1. Pima Indians Diabetes Database

Pima Indians Diabetes database, hereinafter referred to as the "Diabetes" dataset, is
originally from the National Institute of Diabetes and Digestive and Kidney Diseases [43].
The study population consist of individuals of Pima Indian heritage near Phoenix, Arizona,
who were selected due to the high incidence rates of diabetes. All patients are female and
aged 21 years or older. The goal is to diagnose whether a person has diabetes or not based
on various medical measurements. Diabetes was diagnosed according to the World Health
Organization criteria [43].

The database correspond to a binary imbalance classification task, composed by
768 instances, 8 features, and 1 binary output (class). Class 0 and 1 represent the diabetes
diagnosis, where class 0 indicates non-diabetic patients with 500 samples, and class 1
indicates diabetic patients with 268 samples. The following features are presented:

• Number of pregnancies per patient.
• Plasma glucose concentration at 2 h in an oral glucose tolerance test.
• Diastolic blood pressure (mm Hg).
• Triceps skin fold thickness (mm).
• 2-hour serum insulin (µU/mL).
• Body mass index (weight in kg / (height in m)2).
• Diabetes pedigree function (probability of diabetes based on family history).
• Age (in years).

5.1.2. UCI Cardiotocography

The UCI Cardiotocography database contains measurements of fetal heart rate (FHR) and
uterine contraction (UC) features from cardiotocograms, classified by expert obstetricians at the
University of Porto [44]. This dataset has two output labels: morphologic pattern (10 classes)
and fetal state (3 classes). In this work, the focus is on addressing the 3-class problem.

Therefore, the dataset corresponds to a multi-class imbalance classification task, com-
posed of 2126 instances, 21 features, and a 3-class output. Class N, S, and P indicate the
fetal state where N is normal with 1655 samples, S is suspect with 295 samples, and P is
pathologic with 176 samples. The following features are presented:

Electronics 2024, 13, 4652 21 of 34

• Baseline value, accelerations, and light, severe, and prolonged decelerations of FHR
(5).

• Uterine contractions (1).
• Fetal movements (1).
• Percentage of time with abnormal short-term variability (STV) and mean of STV (2).
• Percentage of time with abnormal long-term variability (LTV) and mean of LTV (2).
• Minimum and maximum frequency of signal (2).
• Number of zeros and peaks, width, mode, mean, median, variance, and tendency of

histogram (8).

5.2. Parameters

As can be seen from the diagrams in the previous section, the ABC-based parameteriz-
ers have a common set of parameters that were homogeneously assigned.

• N = 10.
• FoodSources : FS = N

2 = 5.
• Percentage : P = 0.05.
• C = 2[−25,25].
• NeuralNumber = [1, MaxNeurals].

• Totaltravels : T =
⌈

P·#ΩR−ELMDataset
N

⌉
.

• Limit : L =
⌈

T
20

⌉
.

Note that the variable MaxNeurals is obtained by calculating 80% of the total samples
of the dataset, being equal to 615 for the Diabetes Dataset and 1701 for the UCI Cardiotocog-
raphy 3-Class Dataset; the limit parameter (L), which defines the number of times an at-
tempt is made to improve a position in the employed and onlooker phases, is defined accord-
ing to the number of iterations to be performed; #ΩR−ELMDataset is the total size of the search
space of the used dataset; and the variable T allows for the guarantee of a path of at least 5%
of the total search space, generated by the space given by C and NeuralNumber. By solving
expression (9) for each dataset, it is obtained in Equations (18) and (19).

#ΩR−ELMDiabetes = 51 · 615 = 31365 (18)

#ΩR−ELMCardio = 51 · 1701 = 86751 (19)

where the result indicates that the total size of the search space when parameterizing the
R-ELM for Diabetes Dataset is 31,365 and UCI Cardiotocography 3-Class Dataset is 86,751
different combinations. The total iterations performed for the datasets are 157 for the
Diabetes dataset and 434 for the UCI Cardiotocography 3-Class dataset. As can be seen, the
difference in size of the search space is given by a factor of 2.7659.

5.3. Exhaustive Search Results

The exhaustive results are shown below in heatmaps that show the geometry of the
objective functions in both datasets. Figure 12 corresponds to the Diabetes dataset, where
the average of the best position of the accuracy metric is 0.7825± 0.02840 with Neural No.
= 507 and C = 22, while that of the g-mean is 0.7123± 0.03970 with Neural No. = 158 and
C = 24. The estimated average time (expressed in seconds) is 4492.5096± 33.3767. Figure 13
corresponds to the UCI Cardiotocography 3-Class dataset. The average of the best position of
the accuracy metric is 0.9222± 0.0104 with Neural No. = 1547 and C = 27, while that of g-mean
is 0.8429± 0.03250 with Neural No. = 1670 and C = 29. The estimated average time (expressed
in seconds) is 4492.5096± 33.3767.

Electronics 2024, 13, 4652 22 of 34

100 200 300 400 500 600

N° Neural

2
�25

2
�18

2
�10

2
�3

2
5

2
13

2
20

C

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

(a) Accuracy Heatmap

100 200 300 400 500 600

N° Neural

2
�25

2
�18

2
�10

2
�3

2
5

2
13

2
20

C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) G-mean Heatmap

Figure 12. Heatmap of the Exhaustive Search Diabetes Dataset.

200 400 600 800 1000 1200 1400 1600

N° Neural

2
�25

2
�18

2
�10

2
�3

2
5

2
13

2
20

C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

(a) Accuracy Heatmap

200 400 600 800 1000 1200 1400 1600

N° Neural

2
�25

2
�18

2
�10

2
�3

2
5

2
13

2
20

C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) G-mean Heatmap

Figure 13. Heatmap of the Exhaustive Search UCI Cardiotocography 3-Class Dataset.

Regarding the performance, the darker areas represent the best performances, while
the lighter ones the worst performances. It can be seen that the areas of the performance
metrics reach their superior results following an L form and that g-mean is more relaxed
than the accuracy in terms of the optimized zone, being overlapped at the same time. In all
cases, this happens when the parameter C value is over 2−10. Finally, there is a drop in the
performance in the upper right corner in all cases.

5.4. Parameterizer Convergence Performance Results

In the following, the results obtained from the tests carried out by the parameterizers
are shown. These are delimited at the top by the average of the best value of each iteration
of the exhaustive search (100 tests) and at the bottom by the convergence curve of the
random search, encapsulating the convergence curves of the parameterizers in the area
of improvement. For the random search, groups of random locations of the same size N of
the ABC parameterizers were evaluated, storing in each iteration the highest performance
in each metric of the study.

The number of iterations T is calculated for each dataset, as presented in
Section 5.2, corresponding to 157 iterations for the Diabetes dataset and 434 iterations
for the UCI Cardiotocography 3-Class Dataset. Figures 14 and 15 show the convergence
obtained by the ABC algorithms during the parameterization of the R-ELM for Diabetes
dataset and UCI Cardiotocography 3-Class Dataset, respectively. In each figure, there is a
black segmented line that represents the average of the best result found by the exhaustive
search for comparison purposes (analyzed below).

Electronics 2024, 13, 4652 23 of 34

0 20 40 60 80 100 120 140 160

N° Iteration

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.82

0.825

P
e
rf

o
rm

a
n
c
e

0.8273

Best Random Search: (157,0.8124)

Random Search

Base ABC

OBL ABC

AP-ABC

FABC

COLBL ABC

OBL FABC

AP-FABC

COLBL AP-ABC

COLBL FABC
COLBL AP-FABC

Exhaustive Search

Best Base ABC: (156,0.8141)

Best OBL ABC: (157,0.8166)

Best AP-ABC: (156,0.8138)

Best FABC: (153,0.814)

Best COLBL ABC: (157,0.8162)

Best OBL FABC: (152,0 8169)

Best AP-FABC: (147,0.8135)

Best COLBL AP-ABC: (157,0.8186)

Best COLBL FABC: (155,0.8181)

Best COLBL AP FABC: (148,0.8186)

(a) Objective Function: Accuracy

0 20 40 60 80 100 120 140 160

N° Iteration

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

P
e
rf

o
rm

a
n
c
e

0.7807

Best Random Search: (157,0.7599)

Random Search

Base ABC

OBL ABC

AP-ABC

FABC

COLBL ABC

OBL FABC

AP-FABC

COLBL AP-ABC

COLBL FABC

COLBL AP-FABC

Exhaustive Search

Best Base ABC: (156,0.7635)

Best OBL ABC: (157,0.7647)

Best AP-ABC: (156,0.7616)

Best FABC: (153,0.7604)

Best COLBL ABC: (154,0.7641)

Best OBL FABC: (156,0.7657)

Best AP-FABC: (156,0.7629)

Best COLBL AP-ABC: (156,0.7679)

Best COLBL FABC: (156,0.7682)

Best COLBL AP-FABC: (153,0.7691)

(b) Objective Function: G-Mean

Figure 14. Performance Results in Diabetes Dataset.

0 50 100 150 200 250 300 350 400 450

N° Iteration

0.915

0.92

0.925

0.93

0.935

0.94

P
e
rf

o
rm

a
n
c
e

0.9389

Base ABC

OBL ABC

AP ABC

FABC

COLBL ABC

OBL FABC

AP-FABC

COLBL AP-ABC

COLBL FABC

COLBL AP-FABC

Exhaust ve Search

Best Base ABC: (416,0.9369)

Best OBL ABC: (429,0.9375)

Best AP-ABC: (428,0.937)

Best FABC: (416,0.9371)

Best COLBL ABC: (434,0.9373)

Best OBL FABC: (420,0.9373)

Best AP-FABC: (434,0.9371)

Best COLBL AP-ABC: (428,0.9386)

Best COLBL FABC: (432,0.9366)

Best COLBL AP-FABC: (430,0.9381)

Best Random Search: (432,0.9347)

Random Search

(a) Objective Function: Accuracy

0 50 100 150 200 250 300 350 400 450

N° Iteration

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

P
e
rf

o
rm

a
n
c
e

0.897

Base ABC

OBL ABC

AP-ABC

FABC

COLBL ABC

OBL FABC

AP-FABC

COLBL AP-ABC

COLBL FABC

COLBL AP-FABC

Exhaustive Search

Best Random Search: (431,0.8901)

Random Search

Best Base ABC: (431,0.8901)

Best OBL ABC: (428,0 8914)

Best AP-ABC: (432,0.8895)

Best FABC: (433,0.8896)

Best COLBL ABC: (431,0.8929)

Best OBL FABC: (433,0.8908)

Best AP-FABC: (424,0.8901)

Best COLBL AP-ABC: (433,0.8942)

Best COLBL FABC: (431,0.8925)

Best COLBL AP-FABC: (431,0.8939)

(b) Objective Function: G-Mean

Figure 15. Performance Results in Cardiotocography 3-Class Dataset.

In Figure 14a, it can be observed how when optimizing the accuracy, the ABC param-
eterizers are clearly grouped into three levels of convergence (see Section 3). The lowest
group is given by the base ABC, AP-ABC, FABC, and AP-FABC. The middle group is
made up of COLBL ABC, OBL FABC, and OBL ABC. Consequently, the highest group is
formed by COLBL AP-ABC, COLBL FABC, and the method that incorporates all the COLBL
AP-FABC modifications. Although these two best methods reach the same optimum value,
COLBL AP-FABC reaches it on average 8 iterations earlier. In Figure 14b, the convergence

Electronics 2024, 13, 4652 24 of 34

of the ABC parameterizers can be seen in the case of optimizing the g-mean metric. The
methods are not presented grouped; it is worth noting that, again, the COLBL AP-FABC
algorithm exposes a higher convergence rate, followed by two other parameterizers that
make use of the proposed COLBL AP-ABC and OBL FABC methods.

In Figure 15a,b, the ABC parameterizers are very grouped, all converging to a value
very close to the best found by the exhaustive search, highlighting among the parameteriz-
ers the COLBL AP-ABC and COLBL AP-FABC with a clear greater convergence. Unlike
the previous test, COLBL FABC considerably decreases its convergence when optimizing
accuracy, which may imply inconsistency in its performance. Regarding The random search,
it is possible to observe that its convergence was considerably reduced in this test; this
may be due to the increase in the total search space, where the application of exploration
techniques alone is insufficient, and heuristic exploitation criteria are necessary. Because
the system performance given by the random search method is the worst and the goal of
the paper is experimentation into ABC approaches, we excluded these results in the rest of
the paper.

5.5. Parameterizers Times Results

Below are the results obtained during the parameterization of the R-ELM during
the tests described in Sections 5.3 and 5.4 as a function of the time invested. Each box-
plot includes a zoom area to correctly appreciate the differences between the ABC meth-
ods. The hardware and software specifications used are presented in Table 1. The codes
were developed in MATLAB R2017B, programming them from scratch and without us-
ing specific MATLAB functions, so they can be implemented in other environments with
minimal adaptations.

Table 1. Specifications of the system used during testing.

Component Specification

Processor AMD Ryzen 7 5800H 3.20–4.40 GHz

RAM 32 GB DDR4 3200 MHz (16 × 2)

Disk SSD NVME Samsung 980 Pro 2 TB

Operating System Windows 11 Home

Code development software MATLAB R2017B

Figures 16 and 17 show boxplots as a function of the time (expressed in seconds) taken
by the ABC and exhaustive search parameterizers when parameterizing the R-ELM in the
Diabetes Dataset and the UCI Cardiotocography 3-Class Dataset.

Electronics 2024, 13, 4652 25 of 34

B
as

e
A
B
C
 A

cc
ur

ac
y

B
as

e
A
B
C
 G

-M
ea

n

O
B
L
A
B
C
 A

cc
ur

ac
y

O
B
L
A
B
C
 G

-M
ea

n

A
P-

A
B
C
 A

cc
ur

ac
y

A
P-

A
B
C
 G

-M
ea

n

FA
B
C
 A

cc
ur

ac
y

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
B
C
 G

-M
ea

n

O
B
L
FA

B
C
 A

cc
ur

ac
y

O
B
L
FA

B
C
 G

-M
ea

n

A
P-

FA
B
C
 A

cc
ur

ac
y

A
P-

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
P-

A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

A
B
C
 G

-M
ea

n

C
O
LB

L
FA

B
C
 A

cc
ur

ac
y

C
O
LB

L
FA

B
C
 G

-M
ea

n

C
O
LB

L
A
P-

FA
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

FA
B
C
 G

-M
ea

n

Ex
ha

us
tiv

e
S
ea

rc
h

Method

0

50

100

150

200

250

300

S
e
c
o
n
d
s

B
as

e
A
B
C
 A

cc
ur

ac
y

B
as

e
A
B
C
 G

-M
ea

n

O
B
L
A
B
C
 A

cc
ur

ac
y

O
B
L
A
B
C
 G

-M
ea

n

A
P-

A
B
C
 A

cc
ur

ac
y

A
P-

A
B
C
 G

-M
ea

n

FA
B
C
 A

cc
ur

ac
y

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
B
C
 G

-M
ea

n

O
B
L
FA

B
C
 A

cc
ur

ac
y

O
B
L
FA

B
C
 G

-M
ea

n

A
P-

FA
B
C
 A

cc
ur

ac
y

A
P-

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
P-

A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

A
B
C
 G

-M
ea

n

C
O
LB

L
FA

B
C
 A

cc
ur

ac
y

C
O
LB

L
FA

B
C
 G

-M
ea

n

C
O
LB

L
A
P-

FA
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

FA
B
C
 G

-M
ea

n

15

20

25

30

35

40

Zoom Area Zoom Area

Figure 16. Times of ABC parameterizers and exhaustive search in Diabetes dataset.

B
as

e
A
B
C
 A

cc
ur

ac
y

B
as

e
A
B
C
 G

-M
ea

n

O
B
L
A
B
C
 A

cc
ur

ac
y

O
B
L
A
B
C
 G

-M
ea

n

A
P-

A
B
C
 A

cc
ur

ac
y

A
P-

A
B
C
 G

-M
ea

n

FA
B
C
 A

cc
ur

ac
y

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
B
C
 G

-M
ea

n

O
B
L
FA

B
C
 A

cc
ur

ac
y

O
B
L
FA

B
C
 G

-M
ea

n

A
P-

FA
B
C
 A

cc
ur

ac
y

A
P-

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
P-

A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

A
B
C
 G

-M
ea

n

C
O
LB

L
FA

B
C
 A

cc
ur

ac
y

C
O
LB

L
FA

B
C
 G

-M
ea

n

C
O
LB

L
A
P-

FA
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

FA
B
C
 G

-M
ea

n

Ex
ha

us
tiv

e
S
ea

rc
h

Method

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
e
c
o
n
d
s

B
as

e
A
B
C
 A

cc
ur

ac
y

B
as

e
A
B
C
 G

-M
ea

n

O
B
L
A
B
C
 A

cc
ur

ac
y

O
B
L
A
B
C
 G

-M
ea

n

A
P-

A
B
C
 A

cc
ur

ac
y

A
P-

A
B
C
 G

-M
ea

n

FA
B
C
 A

cc
ur

ac
y

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
B
C
 G

-M
ea

n

O
B
L
FA

B
C
 A

cc
ur

ac
y

O
B
L
FA

B
C
 G

-M
ea

n

A
P-

FA
B
C
 A

cc
ur

ac
y

A
P-

FA
B
C
 G

-M
ea

n

C
O
LB

L
A
P-

A
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

A
B
C
 G

-M
ea

n

C
O
LB

L
FA

B
C
 A

cc
ur

ac
y

C
O
LB

L
FA

B
C
 G

-M
ea

n

C
O
LB

L
A
P-

FA
B
C
 A

cc
ur

ac
y

C
O
LB

L
A
P-

FA
B
C
 G

-M
ea

n

200

300

400

500

600

700

800

900

Zoom Area Zoom Area

Figure 17. Times of ABC parameterizers and Exhaustive Search in UCI Cardiotocography 3-Class Dataset.

In Figure 16, the times invested by the different parameterizers when optimizing the
R-ELM for the Diabetes dataset are presented. It can be observed how the ABC methods
are distributed in two groups, which is due to whether or not they use one of the OBL
variants. Regarding the methods that do not implement OBL variants, they have similar
time behaviors. Among the methods that implement OBL variant techniques, those that
include COLBL have a shorter time due to their conditional implementation, which, in
turn, produces a greater dispersion in the results. A decrease in execution time can be seen
in all methods where FRI are included, and it can also be observed that the results tend
to be closer to the average, allowing us to affirm that the aforementioned proposal makes
the results more consistent. It is necessary to highlight the time difference that the ABC
parameterizers have with respect to the exhaustive search, which will be discussed in more
detail in Section 5.6.

Electronics 2024, 13, 4652 26 of 34

In Figure 17, the times taken by the different parameterizers to optimize the R-ELM for
the UCI Cardiotocography 3-Class dataset are presented. The two groups can be observed
again based on the use or non-use of OBL-based techniques. In this case, the times of the
OBL-based techniques are not the highest, being surpassed by the COLBL-based methods.
This may be due to the location of the optimal regions of the search space in this dataset,
where the value of the neural number is high and adds complexity to the network training
process. It is necessary to highlight the COLBL AP-FABC parameterizer that implements
the three proposals and has the best average time and the lowest dispersion of all the ABC
parameterizers based on COLBL.

5.6. Percentage Relative to Exhaustive Search Results

In Table 2, we present the results of performance and time invested (expressed in
seconds) by the ABC parameterizers presented in Sections 5.4 and 5.5 as a percentage of
the results obtained by the exhaustive search.

Regarding performance (for accuracy as well as g-mean), it is possible to observe that
all the ABC parameterizers obtain a performance of over 98%; therefore, it is possible to
affirm that all the ABC parameterizers manage to effectively optimize, to a greater or lesser
extent, the R-ELM for the datasets studied.

In terms of the time, the ABC parameterizers use between 5% and 16.6% of the time
spent by the exhaustive search in general for both databases. The differences between
the methods in this metric are given by the presence of OBL, whether it is conditional or
not, the different number of scout bee calls, the focus on R-ELM executions with different
number of hidden neurons, and finally, although to a lesser extent, the complexity of the
algorithm of each proposal. Although COLBL AP-FABC has three implemented proposals,
its time is below the average of the rest of the OBL-based algorithms, which could mean
that the complexity of the proposals is negligible with respect to the total execution time of
the neural network. It is necessary to take into account that FRI forces the parameterizers
to always explore new locations. Consequently, as the local optimum zones are explored,
the algorithm acquires a greater probability of locating itself in new zones. It can reduce
premature convergence (a recurring problem in the base ABC algorithm), in addition to gen-
erating a greater balance between exploitation and exploration, by allowing a convergence
towards the global optimum of the search space.

Table 2. Percentage relative to exhaustive search results.

Method

Percentage Relative to Exhaustive Search

Diabetes Dataset UCI Cardiotocography 3-Class Dataset

Accuracy
Performance

Accuracy
Time

G-Mean
Performance

G-Mean
Time

Accuracy
Performance

Accuracy
Time

G-Mean
Performance

G-Mean
Time

Base ABC 98.4044% 5.7097% 97.7997% 5.7120% 99.7870% 6.1155% 99.2308% 6.1856%

OBL ABC 98.7066% 11.3936% 97.9506% 11.2541% 99.8509% 10.4003% 99.3757% 10.1814%

AP-ABC 98.3682% 5.7206% 97.5535% 5.6868% 99.7976% 6.0642% 99.1639% 6.0525%

FABC 98.3924% 5.6694% 97.3998% 5.6094% 99.8083% 5.6627% 99.1750% 5.7498%

COLBL ABC 98.6583% 10.8063% 97.8737% 10.7166% 99.8296% 15.3204% 99.5429% 14.2724%

OBL FABC 98.7429% 12.6844% 98.0786% 11.0936% 99.8296% 10.0494% 99.3088% 9.8366%

AP-FABC 98.3319% 6.3221% 97.7200% 5.6049% 99.8083% 5.6727% 99.2308% 5.5666%

COLBL AP-ABC 98.9484% 9.8242% 98.3604% 9.9635% 99.9680% 10.2865% 99.6878% 11.2390%

COLBL FABC 98.8879% 9.3610% 98.3989% 9.6350% 99.7550% 15.2427% 99.4983% 16.5556%

COLBL AP-FABC 98.9484% 9.6062% 98.5142% 9.7821% 99.9148% 10.1014% 99.6544% 10.3833%

5.7. Visit Parameterizers Results

Below are the results obtained from the average count of visits made by the ABC
parameterizers over the search space for both datasets. For each of the methods, the
average counts of positions not visited, visited only once, visited between two and five
times, visited between six and nine times, and visited ten or more times are considered.

Electronics 2024, 13, 4652 27 of 34

Furthermore, a column of the total average visits and how many of those average visits are
unique are included.

In order to visually support the analysis, different cloud points are presented. These
results allow us to appreciate how the proposed methods affect the behavior of the
parameterizers when traversing the search space and subjectively evaluate consistency,
dispersion, and focus in the areas with optimal values. These are obtained from the sum
of the 100 tests performed on each dataset with the same configuration as the rest of the
experiments. A thresholding is applied for better visualization.

In Tables 3 and 4, the average results of the visits made on the search space of the
ABC parameterizers optimizing accuracy and g-mean in the Diabetes dataset are presented,
respectively, while Tables 5 and 6 are the same but for the UCI Cardiotocography 3-Class
Dataset. It is observed that those parameterizers that include FRI have all their visits
unique, those with OBL have twice as many visits, those with COLBL have slightly less
than twice as many, and those with AP distribute their visits slightly towards a greater
number of repetitions.

Table 3. Diabetes Dataset Visit Results Optimizing Accuracy.

parameterizer
Number of Visits

Zero One Two to Five Six to Nine Ten or More Total Travels Unique Travels

Base ABC 30085.08± 33.7437 1065.08± 42.4354 204.12± 13.4842 8.41± 3.0587 2.31± 1.3536 1660.20± 4.2664 1279.92± 33.7437

OBL ABC 28905.80± 61.7658 1988.74± 72.3011 443.62± 26.5854 20.12± 6.1616 6.72± 3.7121 3323.76± 9.4164 2459.20± 61.7658

AP-ABC 30150.64± 27.6181 967.94± 32.0904 231.37± 11.7882 12.02± 3.0251 3.03± 1.7259 1664.00± 4.7119 1214.36± 27.6181

FABC 29707.09± 4.7314 1657.91± 4.7314 0.0± 0.0 0.0± 0.0 0.0± 0.0 1657.91± 4.7314 1657.91± 4.7314

COLBL ABC 29236.88± 73.4249 1673.60± 85.4938 407.07± 23.8870 33.07± 5.7441 14.38± 3.6119 3177.49± 20.5050 2128.12± 73.4248

OBL FABC 28044.17± 9.5145 3320.72± 9.6044 0.0± 0.0 0.0± 0.0 0.0± 0.0 3320.94± 9.4343 3320.94± 9.4343

AP-FABC 29706.61± 4.7840 1658.39± 4.7840 0.0± 0.0 0.0± 0.0 0.0± 0.0 1658.39± 4.7840 1658.39± 4.7840

COLBL AP-ABC 29442.06± 64.5935 1389.55± 66.0473 477.35± 22.7673 36.24± 5.5816 19.80± 3.7118 3179.65± 16.3530 1922.94± 64.5935

COLBL FABC 28198.98± 20.8830 3166.02± 20.8830 0.0± 0.0 0.0± 0.0 0.0± 0.0 3166.02± 20.8830 3166.02± 20.8830

COLBL AP-FABC 28189.94± 18.3863 3175.06± 18.3863 0.0± 0.0 0.0± 0.0 0.0± 0.0 3175.06± 18.3863 3175.06± 18.3863

Table 4. Diabetes Dataset Visit Results Optimizing G-Mean.

parameterizer
Number of Visits

Zero One Two to Five Six to Nine Ten or More Total Travels Unique Travels

Base ABC 30106.49± 31.9227 1044.00± 37.0242 202.32± 12.0007 9.27± 2.6585 2.92± 1.5679 1653.39± 4.4606 1258.51± 31.9227

OBL ABC 28937.92± 70.5413 1951.64± 85.1947 446.80± 28.5048 21.90± 6.5219 6.74± 3.5693 3313.22± 10.2529 2427.08± 70.5413

AP-ABC 30168.93± 35.9883 948.65± 39.5113 231.80± 12.8055 11.92± 3.3505 3.70± 1.9358 1656.56± 5.0738 1196.07± 35.9883

FABC 29713.11± 4.5923 1651.89± 4.5923 0.0± 0.0 0.0± 0.0 0.0± 0.0 1651.89± 4.5923 1651.89± 4.5923

COLBL ABC 29292.39± 87.6145 1624.88± 99.1406 398.71± 24.2501 33.89± 5.5448 15.13± 3.8498 3140.58± 21.6138 2072.61± 87.6145

OBL FABC 28053.63± 8.2016 3311.26± 8.2617 0.0± 0.0 0.0± 0.0 0.0± 0.0 3311.48± 8.1532 3311.48± 8.1532

AP-FABC 29712.68± 4.4333 1652.32± 4.4333 0.0± 0.0 0.0± 0.0 0.0± 0.0 1652.32± 4.4333 1652.32± 4.4333

COLBL AP-ABC 29505.34± 67.8397 1331.76± 68.3087 469.74± 23.0255 36.90± 5.9671 21.26± 4.7623 3144.62± 20.8911 1859.66± 67.8397

COLBL FABC 28235.78± 22.1074 3129.22± 22.1074 0.0± 0.0 0.0± 0.0 0.0± 0.0 3129.22± 22.1074 3129.22± 22.1074

COLBL AP-FABC 28225.90± 22.1389 3139.10± 22.1389 0.0± 0.0 0.0± 0.0 0.0± 0.0 3139.10± 22.1389 3139.10± 22.1389

Table 5. ABC Methods optimizing Accuracy in UCI Cardiotocography 3-Class Dataset.

parameterizer
Number of Visits

Zero One Two to Five Six to Nine Ten or More Total Travels Unique Travels

Base ABC 83875.82± 95.4838 2291.85± 96.3087 511.34± 24.3266 49.31± 7.0949 22.68± 4.9785 4437.51± 4.4823 2875.18± 95.4838

OBL ABC 81042.23± 157.7937 4489.12± 159.4795 1073.59± 53.3597 99.26± 14.6216 46.80± 9.2594 8890.16± 8.9609 5708.77± 157.7937

AP-ABC 84108.70± 75.6688 1975.96± 70.7841 584.03± 25.7024 55.20± 7.3113 27.11± 4.4174 4439.59± 4.816 2642.30± 75.6688

FABC 82313.01± 4.4027 4437.99± 4.4027 0.0± 0.0 0.0± 0.0 0.0± 0.0 4437.99± 4.4027 4437.99± 4.4027

COLBL ABC 81978.26± 181.1018 3577.42± 174.7433 1001.28± 45.8912 104.14± 12.5762 80.90± 8.3066 8645.72± 20.6143 4772.74± 181.1018

OBL FABC 77861.02± 7.5035 8889.98± 7.5035 0.0± 0.0 0.0± 0.0 0.0± 0.0 8889.98± 7.5035 8889.98± 7.5035

AP-FABC 82312.91± 4.8702 4438.09± 4.8702 0.0± 0.0 0.0± 0.0 0.0± 0.0 4438.09± 4.8702 4438.09± 4.8702

COLBL AP-ABC 82636.49± 141.1983 2821.45± 112.4287 1052.93± 62.8198 140.73± 12.3140 99.40± 9.3980 8647.08± 21.5668 4114.51± 141.1983

COLBL FABC 78123.96± 22.8017 8627.53± 22.8017 0.0± 0.0 0.0± 0.0 0.0± 0.0 8627.53± 22.8017 8627.53± 22.8017

COLBL AP-FABC 78121.76± 21.8272 8629.24± 21.8272 0.0± 0.0 0.0± 0.0 0.0± 0.0 8629.24± 21.8272 8629.24± 21.8272

Electronics 2024, 13, 4652 28 of 34

Table 6. ABC Methods optimizing G-Mean in UCI Cardiotocography 3-Class Dataset.

parameterizer
Number of Visits

Zero One Two to Five Six to Nine Ten or More Total Travels Unique Travels

Base ABC 83820.14± 104.1866 2345.43± 100.4503 520.07± 26.2829 44.83± 7.0210 20.53± 4.5957 4430.90± 4.3935 2930.86± 104.1866

OBL ABC 80961.16± 176.7830 4545.86± 166.6301 1107.16± 58.7072 95.52± 12.9961 41.30± 8.2993 8880.06± 7.3551 5789.84± 176.7830

AP-ABC 84051.50± 89.0159 2028.52± 82.4429 593.69± 30.8220 51.86± 7.6145 25.43± 4.0358 4432.63± 4.2251 2699.50± 89.0159

FABC 82319.26± 4.4916 4431.74± 4.4916 0.0± 0.0 0.0± 0.0 0.0± 0.0 4431.74± 4.4916 4431.74± 4.4916

COLBL ABC 81942.60± 228.0671 3578.07± 221.4293 1051.65± 51.3818 104.70± 10.4083 73.98± 9.8483 8610.73± 21.0880 4808.40± 228.0671

OBL FABC 77869.80± 8.6293 8881.20± 8.6293 0.0± 0.0 0.0± 0.0 0.0± 0.0 8881.20± 8.6293 8881.20± 8.6293

AP-FABC 82319.95± 4.1715 4431.05± 4.1715 0.0± 0.0 0.0± 0.0 0.0± 0.0 4431.05± 4.1715 4431.05± 4.1715

COLBL AP-ABC 82604.68± 156.1923 2827.05± 127.1223 1082.95± 61.2376 142.01± 14.4421 94.31± 9.4534 8610.68± 21.8039 4146.32± 156.1923

COLBL FABC 78151.50± 21.2510 8599.50± 21.2510 0.0± 0.0 0.0± 0.0 0.0± 0.0 8599.50± 21.2510 8599.50± 21.2510

COLBL AP-FABC 78152.01± 24.3992 8598.99± 24.3992 0.0± 0.0 0.0± 0.0 0.0± 0.0 8598.99± 24.3992 8598.99± 24.3992

In order to confirm the previous inferences, Figures 18 and 19, the point clouds gener-
ated by the path taken by the ABC parameterizers optimizing the accuracy and g-mean
metrics in the Diabetes dataset are depicted, while Figures 20 and 21 show the same informa-
tion but for the UCI Cardiotocography 3-Class Dataset. To aid in visual inspection, the heat
maps on the right correspond to the inclusion of the FRI method with respect to those on
the left. In general, all parameterizers have a clear focus on the area with the highest perfor-
mance seen in the exhaustive search in Section 5.3, in both metrics and in both databases. In
other words, all methods are properly implemented and show their utility in terms of time
and performance.

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(a) Base ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(b) FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(c) OBL ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(d) OBL FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(e) AP-ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(f) AP-FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(g) COLBL ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(h) COLBL FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(i) COLBL AP-ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(j) COLBL AP-FABC

Figure 18. Proposed algorithm point cloud accuracy results in Diabetes dataset.

Electronics 2024, 13, 4652 29 of 34

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(a) Base ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(b) FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(c) OBL ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(d) OBL FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(e) AP-ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(f) AP-FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(g) COLBL ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(h) COLBL FABC

100 200 300 400 500 600
2
�25
2
�13
2
0

2
13
2
25

C

(i) COLBL AP-ABC
100 200 300 400 500 600

2
�25
2
�13
2
0

2
13
2
25

C

(j) COLBL AP-FABC

Figure 19. Proposed algorithm point cloud g-mean results in Diabetes dataset.

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(a) Base ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(b) FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(c) OBL ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(d) OBL FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(e) AP-ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(f) AP-FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(g) COLBL ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(h) COLBL FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(i) COLBL AP-ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(j) COLBL AP-FABC

Figure 20. Proposed algorithm point cloud accuracy results in UCI Cardiotocography
3-Class Dataset.

Electronics 2024, 13, 4652 30 of 34

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(a) Base ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(b) FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(c) OBL ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(d) OBL FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(e) AP-ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(f) AP-FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(g) COLBL ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(h) COLBL FABC

200 400 600 800 1000 1200 1400 1600
2
�25
2
�13
2
0

2
13
2
25

C

(i) COLBL AP-ABC
200 400 600 800 1000 1200 1400 1600

2
�25
2
�13
2
0

2
13
2
25

C

(j) COLBL AP-FABC

Figure 21. Proposed algorithm point cloud g-mean results in UCI Cardiotocography
3-Class Dataset.

Looking at the same time, in Tables 3–6 and Figures 18–21, it is observed that the
specific impact of each proposed method on the parameterizers is the following:

• OBL (OBL ABC): The number of executions increases to just over double, with the
standard deviation increasing in a similar range for each number of visits. The
distribution of visits remains similar to that with base ABC. The visual analysis
shows a mirror effect across the main diagonal, indicating wasted computation in
unpromising areas.

• AP (AP-ABC): The number of executions is maintained. The standard deviation
decreases initially but increases as the number of visits increases. The distribution of
visits moves slightly to the right. In the heat maps, it can be observed that the central
focus is blurred with respect to base ABC.

• FRI (FABC): The number of executions is maintained. Each visit is unique, greatly
decreasing the standard deviation. Heat maps show a more uniform behavior than
the ABC base.

• COLBL (COLBL ABC): The number of executions increases to just under double.
Looking at the number of visits, the standard deviation increases to more than double
initially but decreases as the number of repetitions of visits increases. The distribution
of visits shifts largely to the right, implying a greater repetition of solutions. The
heat maps suggest that these repetitions are focused on the areas with the highest
performance, eliminating the mirror effect of the OBL.

• OBL and FRI (OBL FABC): All visits are unique. The standard deviation is twice that
of FABC. Visually, the mirror effect of OBL is maintained but softened.

• AP and FRI (AP-FABC): All visits are unique. The standard deviation is similar to
FABC. As for qualitative analysis, FRI smooths the result.

• AP and COLBL (COLBL AP-ABC): Standard deviation slightly more than twice that of
AP-ABC. Hit counts are distributed across a larger number of repeats. The inclusion
of AP causes the local scan radius of OLBL to start out maximally expanded, then
contract and expand again, creating a visual effect of increased scanning with small,
more granular areas being exploited.

• COLBL and FRI (COLBL FABC): All visits are unique. The standard deviation is
approximately five times that of FABC. Visually, FRI smooths out the result.

Electronics 2024, 13, 4652 31 of 34

• COLBL and AP and FRI (COLBL AP-FABC): The standard deviation is reduced with
respect to COLBL AP-ABC and the hit count is unique. When compared with COLBL
FABC in Figure 20, it can be seen that AP disperses the focus from 300 to 400 neurons
and from 1600 neurons onward, producing an almost perfect focus in the area of greatest
performance with respect to the exhaustive search. A similar effect is seen in Figure 21
from 1400 neurons onward.

6. Conclusions and Future Works

This paper presents the modifications required to use a metaheuristic algorithm as a
parameterizer, a set of novel methods to balance the exploration and exploitation of the
search space and the implementation of these methods on the ABC algorithm to obtain
different parameterizer configurations, where these are exploited to the hyper-parameter
optimization problem of R-ELM on two datasets related to the health area. The usefulness
of the proposals in this area can be highlighted where time can play an important role
with respect to the sacrifice of a small part of the performance, especially in applications
of machine learning techniques, where most of the time is invested in the optimization
process of the model for its later use.

The methods implemented in the ABC algorithm generate different parameterizer
configurations, where some are more focused on exploitation, on exploration, or balanced.
For the integrated methods (for instance COLBL AP-FABC), the three proposed methods
provide an excellent balance between exploitation and exploration of the search space.
This is achieved due to the synergy of the particularities of each of these methods. First,
the proposed AP method blurs the areas where solutions are generated, granting greater
generality and balance to the search process through iterations. Second, OLBL solves
the mirror effect problem of OBL, which implies wasting computation in non-promising
areas by centralizing the computation in promising areas. Finally, the proposed FRI
method prevents redundant computation in already explored configurations, reducing
the probability of falling into premature convergence and increasing the probability of
converging to the global optimum. However, depending on the space to be optimized,
there is a risk of excessive memory usage.

Each ABC parameterizer meets its objective of parameterizing the R-ELM, although
some have a higher convergence than others. In general, all the algorithms achieve at
least 98% of the performance found by the exhaustive search and in approximately 5% to
16.6% of their invested time, depending on whether they use OBL-based techniques or
not, respectively. The COLBL AP-FABC parameterizer can be highlighted, which has the
implementation of the three proposals and its performance (the best on average). The
exhaustive search shows an upper bound in the area of improvement in convergence, while
the random search represents a lower bound. Future work could address the comparison
of this best-performing parameterizer with other heuristics (with and/or without the
proposals) or other known state-of-the-art alternatives, such as Bayesian optimization.

Another future work consists of using ABC parameterizers during parameter opti-
mization in other known applications, such as more complex neural networks, digital
image filters, and support vector machines, among others. The adaptations presented in
Section 4.1 can be used to apply metaheuristics to the aforementioned methods, where
the function to be optimized is not differentiable, nor of known geometry, and in the case
an exhaustive search may tend to become infeasible as the dimensionality of the search
space grows. Based on the above, a possible improvement to be implemented in future
research is to improve the exploitation capacity in higher dimensionality applications. This
was proposed by the original author in [45], a feature that allows for generating diverse
solutions and reducing the stagnation of the method.

Although it has been shown that the three proposed methods together have excellent
synergy, achieving an average performance of 99.26% (the best of all) in 9.97% of the time
in the exhaustive search, future work remains to address the individual weaknesses of
each one. In the case of the AP method, it could be improved by changing the geometry

Electronics 2024, 13, 4652 32 of 34

of its mapping or by setting its minimum value to a value above zero to avoid a period of
iterations where the obtaining of equal solutions is repeated. It is essential in deterministic
objective functions. In the case of the OLBL technique, it greatly improves the exploitation
process at the cost of an additional computational cost. Then, it would be interesting
to reduce the generation of opposite local solutions in a way other than a conditional
application, in addition to presenting a similar drawback to that of AP. In the case of the FRI
method, it has the problem of needing to discretize the search space in order to strengthen
the exploration mechanisms. Consequently, it is essential to propose an improvement
that allows for working in continuous dimensions so that the parameterizer can generate
solutions without equidistant values.

Author Contributions: Conceptualization, P.V.-I. and A.E.P.; methodology, P.V.-I. and A.E.P.; soft-
ware, P.V.-I. and A.P; validation, P.V.-I. and A.E.P.; formal analysis, P.V.-I., A.E.P., and J.F.-C.; in-
vestigation, P.V.-I., A.E.P., J.F.-C., and P.G.; resources, P.V and A.E.P.; data curation, P.V and A.P;
writing—original draft preparation, P.V.-I., A.E.P., J.F.-C., and P.G.; writing—review and editing,
A.E.P., D.Z.-B., R.A.-G., and D.L.; visualization, P.V.-I., A.E.P., and D.Z.-B.; supervision, D.Z.-B., D.L.,
and P.G.; project administration, P.V.-I., A.E.P., D.Z.-B., and D.L.; funding acquisition, D.Z.-B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: A.E.P. gratefully acknowledges the financial support provided by ANID-Subdi-
rección de Capital Humano/Doctorado Nacional/2024-21242342. J.F.-C. acknowledges the financial
support of 2023 Doctoral Scholarship of Facultad de Ingeniería Universidad Católica del Maule.
R.A.-G. gratefully acknowledges the financial support provided by ANID-Subdirección de Capital
Humano/Doctorado Nacional/2024-21241043.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,

415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061.
2. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: a new learning scheme of feedforward neural networks. In

Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary,
25–29 July 2004; Volume 2, pp. 985–990.

3. Zabinsky, Z.B. Random Search Algorithms. Technical Report, Department of Industrial and Systems Engineering, University of
Washington, Seattle, WA, USA, 2009.

4. Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards a New Bionics; Springer:
Berlin/Heidelberg, Germany , 1993; pp. 703–712.

5. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In Nature-Inspired Computing and Optimization: Theory and
Applications; Springer International Publishing: Cham, Switzerland, 2017; Volume 10, pp. 475–494.

6. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph. D. Thesis. Politecnico di Milano, Milan, Italy, 1992.
7. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November –1 December 1995; Volume 4, pp. 1942–1948.
8. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: a novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250.
9. Trojovskỳ, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications.

Sensors 2022, 22, 855.
10. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report, Technical Report-tr06; Erciyes

University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.
11. Liu, H.; Abraham, A.; Snášel, V. Convergence analysis of swarm algorithm. In Proceedings of the 2009 World Congress on Nature

& Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 1714–1719.
12. Tizhoosh, H.R. Opposition-based learning: a new scheme for machine intelligence. In Proceedings of the International Conference

on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005, Volume 1, pp. 695–701;

13. Glover, F. Tabu search—part I. ORSA J. Comput. 1989, 1, 190–206.

https://doi.org/10.1016/j.neucom.2020.07.061

Electronics 2024, 13, 4652 33 of 34

14. Wang, Q.; Song, S.; Li, L.; Wen, D.; Shan, P.; Li, Z.; Fu, Y. An extreme learning machine optimized by differential evolution and
artificial bee colony for predicting the concentration of whole blood with Fourier Transform Raman spectroscopy. Spectrochim.
Acta Part Mol. Biomol. Spectrosc. 2023, 292, 122423.

15. Xu, X.; Rogers, R.A.; Estrada, M.A.R. A novel prediction model: ELM-ABC for annual GDP in the case of SCO countries. Comput.
Econ. 2023, 62, 1545–1566.

16. Udaiyakumar, S.; Victoire, T.A.A. Week Ahead Electricity Price Forecasting Using Artificial Bee Colony Optimized Extreme
Learning Machine with Wavelet Decomposition. Teh. Vjesn. 2021, 28, 556–567.

17. Yang, Y.; Duan, Z. An effective co-evolutionary algorithm based on artificial bee colony and differential evolution for time series
predicting optimization. Complex Intell. Syst. 2020, 6, 299–308.

18. Xiao, J.; Zhou, J.; Li, C.; Xiao, H.; Zhang, W.; Zhu, W. Multi-fault classification based on the two-stage evolutionary extreme
learning machine and improved artificial bee colony algorithm. Proc. Inst. Mech. Eng. Part J. Mech. Eng. Sci. 2014, 228, 1797–1807.

19. He, Y.; Li. J.M.; Ruan, S.; Zhao, S. A Hybrid Model for Financial Time Series Forecasting: Integration of EWT, ARIMA with The
Improved ABC Optimized ELM. IEEE Access 2020, 8, 84500–84515.

20. Pushpa, M.; Sornamageswari, M. Early stage autism detection using ANFIS and extreme learning machine algorithm. J. Intell.
Fuzzy Syst. 2023, 45, 4371–4382.

21. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471.

22. Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. Stat. Mech. Its Appl. 2012, 391, 2193–2196.
23. Cuevas-Jiménez, E.V.; Oliva-Navarro, D.A.; Díaz-Cortés, M.A.; Osuna-Enciso, J.V. Optimización: Algoritmos Programados con

MATLAB; Alpha Editorial: Bogota, Colombia, 2016.
24. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: artificial bee colony (ABC) algorithm and

applications. Artif. Intell. Rev. 2014, 42, 21–57.
25. Zhao, J.; Lv, L.; Sun, H. Artificial bee colony using opposition-based learning. In Proceedings of the Genetic and Evolutionary

Computing: Proceeding of the Eighth International Conference on Genetic and Evolutionary Computing, Nanchang, China,
18–20 October 2014; Springer: Berlin/Heidelberg, Germany , 2015; pp. 3–10.

26. Sharma, T.K.; Gupta, P. Opposition learning based phases in artificial bee colony. Int. J. Syst. Assur. Eng. Manag. 2018, 9, 262–273.
27. Yigitbasi, E.D.; Baykan, N.A. Edge detection using artificial bee colony algorithm (ABC). Int. J. Inf. Electron. Eng. 2013, 3, 634.
28. Gonzalez, P.; Iglesias, P.; Silva, E. Restricted particle swarm optimization meta-heuristic method. In Proceedings of the 2023 42nd

IEEE International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile, 23–26 October 2023; pp. 1–5.
29. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

https://doi.org/10.1016/j.neucom.2005.12.126.
30. Deng, C.; Huang, G.; Xu, J.; Tang, J. Extreme learning machines: new trends and applications. Sci. China Inf. Sci. 2015, 58, 1–16.

https://doi.org/10.1007/s11432-014-5269-3.
31. Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287.

https://doi.org/10.1016/j.neucom.2017.08.040.
32. Broomhead, D.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Technical Report;

Royal Signals and Radar Establishment Malvern: Worcestershire, UK, 1988.
33. Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net.

Neurocomputing 1994, 6, 163–180. Backpropagation, Part IV, https://doi.org/10.1016/0925-2312(94)90053-1.
34. Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P. Feed forward neural networks with random weights. In Proceedings of the

International Conference on Pattern Recognition, The Hague, the Netherlands, 30 August–3 September 1992; IEEE Computer
Society Press: Los Alamitos, CA, USA, 1992; pp. 389-395.

35. Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the 2009 IEEE Symposium on
Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 389–395.

36. Zong, W.; Huang, G.B.; Chen, Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242.
https://doi.org/10.1016/j.neucom.2012.08.010.

37. Huang, G.; Song, S.; Gupta, J.N.D.; Wu, C. Semi-Supervised and Unsupervised Extreme Learning Machines. IEEE Trans. Cybern.
2014, 44, 2405–2417. https://doi.org/10.1109/TCYB.2014.2307349.

38. Ye, W.; Feng, W.; Fan, S. A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl. Soft Comput.
2017, 61, 832–843.

39. Rahnamayan, S.; Jesuthasan, J.; Bourennani, F.; Salehinejad, H.; Naterer, G.F. Computing opposition by involving entire
population. In Proceedings of the 2014 IEEE congress on evolutionary computation (CEC), Beijing, China, 6–11 July 2014;
pp. 1800–1807.

40. Yang, S. Enhanced opposition-based differential evolution using dynamic optimum for function optimization. DEStech Trans.
Eng. Technol. Res. 2017, 2, 308–315.

41. Zabala-Blanco, D.; Hernández-García, R.; Barrientos, R.J. SoftVein-WELM: A Weighted Extreme Learning Machine Model for Soft
Biometrics on Palm Vein Images. Electronics 2023, 12, 3608.

42. Zhang, X.; Qin, L. An Improved Extreme Learning Machine for Imbalanced Data Classification. IEEE Access 2022, 10, 8634–8642.
https://doi.org/10.1109/ACCESS.2022.3142724.

https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1007/s11432-014-5269-3
https://doi.org/10.1016/j.neucom.2017.08.040
https://doi.org/10.1016/0925-2312(94)90053-1
https://doi.org/10.1016/j.neucom.2012.08.010
https://doi.org/10.1109/TCYB.2014.2307349
https://doi.org/10.1109/ACCESS.2022.3142724

Electronics 2024, 13, 4652 34 of 34

43. Smith, J.W.; Everhart, J.E.; Dickson, W.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset of
diabetes mellitus. In Proceedings of the the Annual Symposium on Computer Application in Medical Care, San Diego, CA, USA,
30 October–3 November 2021; American Medical Informatics Association: Washington, DC, USA, 1988; p. 261.

44. Ayres-de Campos, D.; Bernardes, J.; Garrido, A.; Marques-de Sa, J.; Pereira-Leite, L. SisPorto 2.0: a program for automated
analysis of cardiotocograms. J. -Matern.-Fetal Med. 2000, 9, 311–318.

45. Akay, B.; Karaboga, D. A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 2012, 192, 120–142.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Background
	Artificial Bee Colony
	Memory-Based Prohibitions
	Opposition-Based Learning
	Regularized Extreme Learning Machine

	Methodology
	Adaptation of Metaheuristics as Parameterizers
	Proposed Methods
	Adaptive Phi ABC
	Forbidden Redundant Indexes
	Opposition Local-Based Learning

	Baseline parameterizer Algorithms
	Base ABC parameterizer
	Opposition-Based Learning ABC Parameterizer
	Adaptive Phi ABC Parameterizer
	Forbidden Redundant Indexes ABC Parameterizer
	Conditional Opposition Local-Based Learning ABC Parameterizer

	Mixed Parameterizer Algorithms
	Opposition-Based Learning Forbidden Redundant Indexes ABC Parameterizer
	Adaptive Phi Forbidden Redundant Indexes ABC Parameterizer
	Conditional Opposition Local-Based Learning Forbidden Redundant IndexesABC Parameterizer
	Conditional Opposition Local-Based Learning Adaptive Phi ABC Parameterizer
	Conditional Opposition Local-Based Learning Adaptive Phi Forbidden Redundant Indexes ABC Parameterizer

	Objective Functions and Performance Metrics

	Results and Discussions
	Dataset Information
	Pima Indians Diabetes Database
	UCI Cardiotocography

	Parameters
	Exhaustive Search Results
	Parameterizer Convergence Performance Results
	Parameterizers Times Results
	Percentage Relative to Exhaustive Search Results
	Visit Parameterizers Results

	Conclusions and Future Works
	References

