Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System
Abstract
:1. Introduction
- We propose and study a novel NOMA-based FSO/THz dual-hop system and utilize both CR and EH for the first time to enhance system performance. For the first time, we utilize the transmitting relay R as both the SN in CR and the energy harvesting relay in EH. Additionally, we employ the PU in the CR model as the PB in the EH model. In this case, R utilizes the EH to harvest energy from the PB for replenishment, and subsequently transmits the message to the users after AS in the N antennas.
- Under such a working model, we exemplify three different working modes to suit actual usage. The three operating modes are: PU idle and EH working normally, PU and EH working normally at the same time, and PU very busy or faulty and unable to act as the PB.
- On the basis of these three modes of operation, we assume that there are two users in the system. The FSO link follows the Gamma–Gamma distribution, while the RF link follows the Rayleigh fading channel distribution. Finally, the closed-form expressions for the exact OP of each of the two users in the three different operating modes is obtained.
- In addition, we study and test the impact of the first-hop signal-to-noise ratio, the number of antennas, and the unused power distribution coefficients on the user OP performance in the system proposed in this paper.
2. System and Channel Models
2.1. SR Link (FSO/THz Link)
2.2. RU Link (RF Link)
3. Performance Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moon, H.J.; Chae, C.B.; Wong, K.K.; Alouini, M.S. Pointing-and-Acquisition for Optical Wireless in 6G: From Algorithms to Performance Evaluation. IEEE Commun. Mag. 2023, 62, 32–38. [Google Scholar] [CrossRef]
- Jeon, H.B.; Kim, S.M.; Moon, H.J.; Kwon, D.H.; Lee, J.W.; Chung, J.M.; Han, S.K.; Chae, C.B.; Alouini, M.S. Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 2023, 61, 116–121. [Google Scholar] [CrossRef]
- Chow, C.W. Recent Advances and Future Perspectives in Optical Wireless Communication, Free Space Optical Communication and Sensing for 6G. J. Light. Technol. 2024, 42, 3972–3980. [Google Scholar] [CrossRef]
- Soleimani-Nasab, E.; Uysal, M. Generalized performance analysis of mixed RF/FSO cooperative systems. IEEE Trans. Wirel. Commun. 2015, 15, 714–727. [Google Scholar] [CrossRef]
- Bag, B.; Das, A.; Ansari, I.S.; Prokeš, A.; Bose, C.; Chandra, A. Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics J. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Kim, I.I.; Korevaar, E.J. Availability of free-space optics (FSO) and hybrid FSO/RF systems. In Proceedings of the Optical Wireless Communications IV, SPIE, Denver, CO, USA, 21–22 August 2001; Volume 4530, pp. 84–95. [Google Scholar]
- Chaccour, C.; Soorki, M.N.; Saad, W.; Bennis, M.; Popovski, P.; Debbah, M. Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing. IEEE Commun. Surv. Tutorials 2022, 24, 967–993. [Google Scholar] [CrossRef]
- Cecconi, V.; Kumar, V.; Pasquazi, A.; Gongora, J.S.T.; Peccianti, M. Nonlinear field-control of terahertz waves in random media for spatiotemporal focusing. Open Res. Eur. 2023, 2, 32. [Google Scholar] [CrossRef]
- Fu, X.; Liang, Z.; Ding, X.; Yu, X.; Wang, Y. Image descattering and absorption compensation in underwater polarimetric imaging. Opt. Lasers Eng. 2020, 132, 106115. [Google Scholar] [CrossRef]
- Yang, J.; Han, P.; Li, X. Equilibrating the impact of fluid scattering attenuation on underwater optical imaging via adaptive parameter learning. Opt. Express 2024, 32, 23333–23346. [Google Scholar] [CrossRef]
- Huang, L.; Liu, S.; Dai, P.; Li, M.; Chang, G.K.; Shi, Y.; Chen, X. Unified performance analysis of hybrid FSO/RF system with diversity combining. J. Light. Technol. 2020, 38, 6788–6800. [Google Scholar] [CrossRef]
- Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [Google Scholar] [CrossRef]
- Lv, L.; Wu, Q.; Li, Z.; Ding, Z.; Al-Dhahir, N.; Chen, J. Covert communication in intelligent reflecting surface-assisted NOMA systems: Design, analysis, and optimization. IEEE Trans. Wirel. Commun. 2021, 21, 1735–1750. [Google Scholar] [CrossRef]
- Najafi, M.; Jamali, V.; Diamantoulakis, P.D.; Karagiannidis, G.K.; Schober, R. Non-orthogonal multiple access for FSO backhauling. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Girdher, A.; Bansal, A.; Dubey, A. Energy Efficient NOMA for Mixed FSO-RF Communication System with IRS-Aided SLIPT. IEEE Trans. Veh. Technol. 2024, 73, 12873–12889. [Google Scholar] [CrossRef]
- Liu, R.; Yuan, J.; Wang, Z.; Wang, X.; Li, B.; Lu, J.; Wang, Y.; Wu, R.; Wei, Z.; Liu, H. Performance analysis of FSO/THz-RF dual-hop link based on NOMA. Opt. Commun. 2024, 557, 130332. [Google Scholar] [CrossRef]
- Jha, S.; Ahmad, S.; Abdeljaber, H.A.; Othman, N.A.; Nazeer, J.; Yadav, K.; Alkhayyat, A.H. Enabling Resilient Wireless Networks: OFDMA-Based Algorithm for Enhanced Survivability and Privacy in 6G IoT Environments. IEEE Trans. Consum. Electron. 2024, 70, 3810–3819. [Google Scholar] [CrossRef]
- Wang, B.; Liu, K.R. Advances in cognitive radio networks: A survey. IEEE J. Sel. Top. Signal Process. 2010, 5, 5–23. [Google Scholar] [CrossRef]
- Mondal, S.; Bhowal, A.; Kashyap, S.; Kshetrimayum, R.S.; Patra, M. Performance Analysis of a Mixed RF-FSO Aided Cognitive Radio Network. In Proceedings of the 2023 International Conference on Microwave, Optical, and Communication Engineering (ICMOCE), IEEE, Bhubaneswar, India, 26–28 May 2023; pp. 1–4. [Google Scholar]
- Erdogan, E. On the performance of cognitive underlay RF/FSO communication systems with limited feedback. Opt. Commun. 2019, 444, 87–92. [Google Scholar] [CrossRef]
- Chen, J.; Yang, L.; Wang, W.; Yang, H.C.; Liu, Y.; Hasna, M.O.; Alouini, M.S. A novel energy harvesting scheme for mixed FSO-RF relaying systems. IEEE Trans. Veh. Technol. 2019, 68, 8259–8263. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Kaddoum, G.; Karagiannidis, G.K. Ground-to-air FSO communications: When high data rate communication meets efficient energy harvesting with simple designs. Opt. Express 2019, 27, 34079–34092. [Google Scholar] [CrossRef]
- Labghough, S.; Ayoub, F.; El Bouanani, F.; Belkasmi, M.; Qaraqe, K.A. Mixed coded RF/FSO EH-based communication system subject to multiuser interference and residual hardware impairments. IEEE Access 2023, 11, 94822–94839. [Google Scholar] [CrossRef]
- Valiulahi, I.; Masouros, C.; Salem, A.; Liu, F. Antenna selection for energy-efficient dual-functional radar-communication systems. IEEE Wirel. Commun. Lett. 2022, 11, 741–745. [Google Scholar] [CrossRef]
- Sanayei, S.; Nosratinia, A. Antenna selection in MIMO systems. IEEE Commun. Mag. 2004, 42, 68–73. [Google Scholar] [CrossRef]
- Sudarshan, P.; Mehta, N.B.; Molisch, A.F.; Zhang, J. Channel statistics-based RF pre-processing with antenna selection. IEEE Trans. Wirel. Commun. 2006, 5, 3501–3511. [Google Scholar] [CrossRef]
- Moradi, H.; Refai, H.H.; LoPresti, P.G. Circular MIMO FSO nodes with transmit selection and receive generalized selection diversity. IEEE Trans. Veh. Technol. 2012, 61, 1174–1181. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey. IEEE Access 2020, 8, 113246–113261. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Q.; López-Benítez, M.; Chen, X.; Zhang, J. Performance analysis of dual-hop RF/FSO relaying systems with imperfect CSI. IEEE Trans. Veh. Technol. 2022, 71, 4965–4976. [Google Scholar] [CrossRef]
- Garg, N.; Garg, R. Energy harvesting in IoT devices: A survey. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), IEEE, Palladam, India, 7–8 December 2017; pp. 127–131. [Google Scholar]
- Zeng, J.; Lv, T.; Lin, Z.; Liu, R.P.; Mei, J.; Ni, W.; Guo, Y.J. Achieving ultrareliable and low-latency communications in IoT by FD-SCMA. IEEE Internet Things J. 2019, 7, 363–378. [Google Scholar] [CrossRef]
- Singya, P.K.; Alouini, M.S. Performance of UAV-assisted multiuser terrestrial-satellite communication system over mixed FSO/RF channels. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 781–796. [Google Scholar] [CrossRef]
- Henniger, H.; Wilfert, O. An Introduction to Free-space Optical Communications. Radioengineering 2010, 19, 203–212. [Google Scholar]
- Yacoub, M.D. The α-μ Distribution: A Physical Fading Model for the Stacy Distribution. IEEE Trans. Veh. Technol. 2007, 56, 27–34. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Laser Beam Scintillation with Applications; SPIE Press: Cergy-Pontoise, France, 2001; Volume 99. [Google Scholar]
- Beals, R.; Szmigielski, J. Meijer G-functions: A gentle introduction. Not. AMS 2013, 60, 866–872. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, H.; Lei, H.; Pan, G.; Ding, Z.; Ni, Q. Outage analysis on wireless powered cooperative systems with spatially random relays and finite energy storage over Rayleigh fading channels. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), IEEE, Nanjing, China, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Zhang, L.; Zhang, J.; Hu, N.; Li, X.; Pan, G. Outage performance for NOMA-based FSO-RF systems with transmit antenna selection and nonlinear energy harvesting. IEEE Internet Things J. 2022, 10, 6491–6506. [Google Scholar] [CrossRef]
- Zhang, J.l.; Pan, G.f.; Xie, Y.y. Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters. Front. Inf. Technol. Electron. Eng. 2017, 18, 246–252. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Wang, X.; Lu, J.; Wang, Y.; Zhuo, Y.; Wu, R.; Wei, Z.; Liu, H. Performance Analysis of Soft-Switching FSO/THz-RF Dual-Hop AF-NOMA Link Based on Cognitive Radio. Photonics 2023, 10, 1086. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Parameter | Value | |
---|---|---|
FSO Link | Wavelength | |
Link length | ||
Visibility | ||
Weak turbulence | ||
Moderate turbulence | ||
Small pointing errors | , , | |
, | ||
Large pointing errors | , , | |
, | ||
THz Link | Frequency | |
Link length | ||
Antenna gain | ||
Weak turbulence | , | |
Small turbulence | , | |
RF Link | Power Allocation Coefficient (PAC) | , , |
Saturation threshold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Liu, R.; Wang, Y.; Wang, Z.; Liu, H. Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System. Electronics 2024, 13, 4656. https://doi.org/10.3390/electronics13234656
Lu J, Liu R, Wang Y, Wang Z, Liu H. Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System. Electronics. 2024; 13(23):4656. https://doi.org/10.3390/electronics13234656
Chicago/Turabian StyleLu, Jingwei, Rongpeng Liu, Yawei Wang, Ziyang Wang, and Hongzhan Liu. 2024. "Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System" Electronics 13, no. 23: 4656. https://doi.org/10.3390/electronics13234656
APA StyleLu, J., Liu, R., Wang, Y., Wang, Z., & Liu, H. (2024). Performance Study of FSO/THz Dual-Hop System Based on Cognitive Radio and Energy Harvesting System. Electronics, 13(23), 4656. https://doi.org/10.3390/electronics13234656