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Abstract: Fairness in peer review is of vital importance in academic activities. Current peer review
systems focus on matching suitable experts with proposals but often ignore the existence of outliers.
Previous research has shown that outlier scores in reviews could decrease the fairness of these
systems. Therefore, outlier detection in peer review systems is essential for maintaining fairness. In
this paper, we introduce a novel method that employs data-crossing analysis to detect outlier scores,
aiming to improve the reliability of peer review processes. We utilize a confidential dataset from a
review organization. Due to the inability to access ground truth scores, we systematically devise data-
driven deviations from an estimated ground truth through data-crossing analysis. These deviations
reveal inconsistencies and abnormal scoring behaviors of different reviewers. Subsequently, the
review process is strengthened by providing a structured mechanism to identify and mitigate biases.
Extensive experiments demonstrate its effectiveness in improving the accuracy and fairness of
academic assessments, contributing to the broader application of AI-driven methodologies to achieve
more reliable and equitable outcomes.

Keywords: anomaly detection; outlier detection; cross-match; data-driven; crowdsourcing

1. Introduction

According to the “2022 Annual Report” released by the NSFC [1], 536 reports re-
lated to research integrity were received during that year, and 533 cases were addressed.
Among these, actions were taken against 397 individuals and 6 affiliated institutions, in-
cluding issuing 82 public criticisms, revoking 74 funded projects, and canceling 112 project
applications.

Peer review, in which experts in the field critically examine and provide feedback on
scientific work—including proposals, research papers, personnel evaluations, and academic
manuscripts—forms the cornerstone of scientific advancement and has underpinned the
scientific enterprise for over three centuries [2]. Most academic peer-reviewed journals
rely heavily on high-quality peer review, which serves two primary purposes. First, peer
review acts as a filter to ensure that only research of substantial validity, significance, and
originality is published, especially in prestigious journals. Second, it plays a developmental
role by improving the quality of the manuscript. Peer reviewers contribute by offering
constructive feedback, identifying areas for improvement, and suggesting corrections for
errors, thereby preparing the manuscript for publication [3].

Despite the widespread use of peer review, research indicates that the process may not
always be reliable [4–6]. Ideally, reviewers should be entirely objective; however, personal
factors, such as differences in scoring criteria and individual biases, can lead to deviations
from the ground truth, compromising the fairness of peer review outcomes. For instance,
Kaatz et al. [7] highlighted the presence of gender bias in peer review, whereby reviewers
may evaluate submissions differently based on the author’s gender. Likewise, Iezzoni [8]
identified significant disability discrimination, with authors with disabilities facing higher
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rejection rates or stricter evaluation standards. Smith et al. [9] also demonstrated that
the peer review system tends to disadvantage authors from historically excluded groups,
perpetuating biases throughout the review process.

To address these issues, numerous researchers have sought to improve peer review
mechanisms from various angles. Linton [10] integrated the Black–Scholes model into a
peer review framework to evaluate proposal value, concluding that sometimes proposals
with the most divergent opinions among panelists should be selected, even if they did
not receive the highest average score. Gai et al. [11] proposed a framework that integrates
consensus and trust thresholds to enhance communication and collaboration, aiming to
foster consensus by building mutual understanding and trust; however, both approaches
lack empirical research validating their practical effectiveness. Cui et al. [12] developed a
knowledge tracing model based on a multi-relational Transformer, modeling interactions
between students and learning content in detail. This fine-grained approach provides valu-
able insights into analyzing reviewer behavior in peer review, offering a comprehensive
understanding of decision-making patterns and behaviors. Similarly, in social network
systems, Xu et al. [13] introduced the DMPS (dynamic modeling across propagation stages)
framework to dynamically model the multi-stage propagation characteristics of disinforma-
tion in online networks. This method demonstrates the value of analyzing dynamic features
across stages to improve consistency and reliability in evaluation systems. Likewise, Xu
et al. [14] proposed the TCA (temporal context-aware) approach to address sparse data
challenges by incorporating temporal and contextual factors, demonstrating the potential
of contextual modeling in complex systems. While these methods are not directly related
to peer review, their dynamic and context-aware principles may inspire new directions for
enhancing peer review processes. In addition, Squazzoni et al. [15] attempted to incorpo-
rate incentive programs, finding that material rewards tended to reduce the quality and
efficiency of peer review, as such incentives undermined reviewers’ ethical motivations.
Notably, the influence of individual reviewer assessments can significantly impact overall
review outcomes, particularly when a minority of reviewers deviate substantially from the
consensus, leading to considerable biases.

To overcome these challenges, automated evaluation methods have emerged as a
means to enhance consistency and fairness in the review process. Automated techniques
have already been successfully applied in fields like data management to handle com-
plex evaluations, reduce human bias, and improve consistency. For example, automated
anomaly detection has proven effective in encrypted traffic analysis by identifying irregu-
larities without human intervention, indicating its potential application in peer review [16].
In medical imaging, automated data classification techniques have demonstrated improved
diagnostic accuracy and efficiency, showing how automation can enhance complex decision-
making by reducing human error [17]. These examples suggest that integrating automation
into peer review could lead to more objective and consistent evaluations.

Traditional outlier detection methods, such as the median absolute deviation (MAD) [18]
and trimmed mean [19], fail to quantify the impact of outliers on the entire peer review system,
hindering further analysis of its dynamics. This paper introduces a novel data cross-matching
approach (DCASP), which not only detects outliers in the peer review process but also quanti-
fies their impact on collective consensus, offering new insights into the system’s dynamics.

Data cross-matching is one such automated technique employed to identify and correct
inconsistencies between related records from different datasets. This method ensures data
completeness and accuracy by comparing and integrating records from various data sources.
In bibliometric analysis, data cross-matching is used to integrate documents from multiple
bibliographic sources, ensuring accurate citation links [20]. In astronomy, it is used to
match and identify the same celestial objects across different astronomical catalogs, thereby
enhancing data precision [21]. In clinical trials, an AI-based cross-matching system extracts
data from electronic health records and matches them with relevant trials, improving
patient selection accuracy [22].
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Spearman’s rank correlation coefficient is a well-established statistical tool used to
assess the relationship between two variables based on their ranks [23]. The data-crossing
analysis based on the extended Spearman’s rank correlation for peer review (DCASP)
method presented in this paper extends the application of the Spearman correlation coeffi-
cient to the peer review analysis. The DCASP method combines reviewers’ scoring and
ranking results to estimate the true value of each item using various analytical approaches.
By focusing on rankings rather than raw scores, the DCASP method aims to provide a
deeper understanding of the relationships within the ranked data, thereby enhancing dis-
cussions on individual and collective reviewer consensus while improving the transparency
and accuracy of peer reviews.

Through cross-matching the rating sequences of reviewers with the ground truth, the
DCASP method identifies outlier reviewers and conducts an in-depth analysis of their
rating data to determine the items contributing to their outlier status. Further analysis, such
as comparing correlation coefficients before and after the exclusion of specific proposals,
enables the assessment of the impact of individual proposals on overall scoring. This
approach helps identify the main proposals contributing to discrepancies between reviewer
scores and the ground truth, offering insights into the dynamics of peer review that can
help mitigate sources of bias.

This paper makes two primary contributions:

1. This paper proposes a data cross-matching approach based on the extended Spear-
man’s rank correlation for peer review (DCASP). The method not only identifies
outliers but also quantifies the degree to which individual reviewers deviate from
the collective consensus, laying a foundation for further analysis of fairness in peer
review. Ultimately, this contributes to enhancing the transparency and accountability
of scholarly assessments. The introduction of the data-crossing analysis based on the
extended Spearman’s rank correlation for peer review (DCASP) represents a signifi-
cant advancement in evaluating outliers among reviewers. The method quantifies the
extent of deviations from consensus among reviewers and establishes a foundation
for further analysis of fairness in peer review, contributing to greater transparency
and accountability in scholarly assessments.

2. The DCASP method further quantifies the impact of individual proposal ratings
on reviewers’ deviation from the collective consensus. This approach provides a
method for analyzing reviewer behavior patterns and offers valuable insights for
improving the peer review system. The DCASP method also assesses the impact of
individual proposals on the correlation between reviewer rankings and ground truth
rankings. By generating a weighted sequence where each proposal’s contribution
to reviewer deviation is quantified, this approach helps pinpoint proposals that
significantly influence outlier behavior, thereby enhancing our understanding of the
factors contributing to reviewer inconsistencies.

The remainder of this paper is organized as follows: Section 2 reviews existing litera-
ture on enhancing the fairness of peer review systems, focusing on strategies for reducing
biases and improving evaluation accuracy. Section 3 describes the DCASP methodology
in detail, including its conceptual foundation, three approaches for deriving estimated
ground truths, and methods for calculating reviewer outlier indices. Section 4 introduces
the experimental setup used to validate the DCASP method, along with an analysis and
summary of the experimental results. Section 5 concludes by summarizing the findings
and discussing broader implications.

2. Related Work

To date, significant efforts have been undertaken to enhance the fairness and accuracy
of peer review, which can be broadly categorized into two primary approaches:

1. Detecting Bias in Existing Peer Review Processes:
Zardi et al. [24] proposed an innovative method for anomaly detection in network
communities, integrating structural deviation analysis with attribute consistency
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checks. This dual approach significantly improves the accuracy and reliability of
anomaly detection. Kaatz et al. [7] conducted surveys and statistical analyses to
examine gender bias in peer review, finding that female authors often receive more
critical or unfair evaluations, indicating a correlation between reviewer gender and
review outcomes. Iezzoni [8] conducted an experiment using double-blind review,
submitting papers with and without disability-related information. By comparing
the evaluations, they identified explicit disability bias and recommended measures
to mitigate such biases in peer review. Stelmakh et al. [25] conducted an experiment
at ICML 2020 and EC 2021 by assigning submissions to reviewers who had cited
them. Their analysis revealed statistically significant differences in the behavior of
cited versus uncited reviewers, indicating the presence of citation bias. Smith et al.
[9] utilized a dataset comprising 312,740 biological sciences manuscripts across 31
studies to analyze peer review outcomes based on author demographics, revealing
that peer review may systematically disadvantage authors from historically excluded
groups by perpetuating biases throughout the review process.

2. Introducing Strategies and Mechanisms to Improve the Peer Review System:
Linton [10] applied the Black–Scholes model to the peer review process, using research
characteristics such as innovativeness, expected impact, and implementation diffi-
culty as input parameters. This approach quantifies the potential value of high-risk,
high-reward research, offering a novel perspective for assessment. Shayegan et al. [26]
introduced a collective anomaly detection method to identify fraudulent activities
within the Bitcoin network by detecting anomalies at the user level with a trimmed
K-means algorithm, thereby improving fraud detection. Fernández et al. [27] devel-
oped a group multi-objective optimization framework using multi-criteria ordinal
classification to handle imperfect information and maximize overall group satisfaction.
Applied to project portfolio optimization, this method demonstrated its effectiveness
in reconciling diverse objectives in group decision-making. Papadopoulos et al. [28]
investigated a peer review setting in which students had the freedom to select multi-
ple reviews, finding that providing choice positively influenced students’ attitudes,
suggesting that peer review deficiencies could be mitigated through self-review pro-
cesses. Hosseini and Horbach [29] examined the potential of large language models
(LLMs) in assisting with peer review writing and decision letter drafting, potentially
increasing productivity while addressing reviewer shortages. However, concerns
were raised regarding biases, data privacy, and review integrity due to the opaque
nature of LLM training data and algorithms. Ji and Ma [30] developed an enhanced
consensus model incorporating risk aversion strategies to optimize decision-making
in uncertain environments by considering experts’ risk preferences. Gai et al. [11]
proposed an advanced consensus-enhancing method for large groups, employing
a bidirectional feedback mechanism based on consensus and trust thresholds. This
hybrid feedback strategy aims to improve group cohesion while minimizing opinion
adjustment efforts.

Building on extensive prior research, this study introduces an innovative data-crossing
analysis methodology designed to address challenges in the peer review system and en-
hance both the accuracy and fairness of evaluations. The subsequent sections will elaborate
on the proposed methodology, the experimental setup, and the evidence supporting the
effectiveness and validity of our approach.

3. DCASP Method
3.1. Preliminary
3.1.1. Data Cross-Matching

In the context of anomaly detection within peer review systems, we employ data
cross-matching techniques, which are extensively utilized in fields such as astronomy.
Data cross-matching involves comparing and aligning records from different datasets
to ensure consistency and accuracy. This approach systematically identifies and resolves
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discrepancies by cross-referencing data points across multiple sources. By detecting outliers
and inconsistencies, cross-matching maintains data integrity, ensuring that the final dataset
is comprehensive and reliable [31].

3.1.2. Spearman’s Correlation Coefficient

Spearman’s rank correlation coefficient measures the monotonic relationship between
two variables. Unlike Pearson’s correlation, Spearman’s coefficient is based on ranks
rather than actual values, making it suitable for non-normally distributed datasets or those
containing outliers. The formula for Spearman’s coefficient is as follows:

rs = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
(1)

where di represents the difference between the ranks of the two variables for the i-th
observation, and n is the total number of observations. The coefficient rs ranges from −1 to
1, where rs = 1 indicates a perfect positive correlation, rs = −1 indicates a perfect negative
correlation, and rs = 0 indicates no correlation.

3.2. DCASP Method
3.2.1. Overview

In this section, we present the DCASP method for detecting outlier reviewers in peer
review systems. Traditional anomaly detection methods, such as the median absolute
deviation (MAD) [18], the trimmed mean [19], and the 1.5 IQR rule [32], primarily focus
on the values themselves and do not account for the significance of rankings. In the context
of peer review, relying solely on numerical scores to identify outliers is insufficient, or
even unreasonable, due to the inherent personal biases among reviewers. It is natural
for individual reviewers to assign different scores to the same proposal. Instead, our
approach differs from traditional outlier detection methods by emphasizing rankings
rather than raw scores. The core idea is that while individual scores may vary, the overall
ranking of proposals should remain relatively consistent. This approach also helps avoid
situations where some reviewers consistently give high or low scores to all proposals. If
the scores lack differentiation, our method can still effectively identify these outliers. We
begin by introducing three different ground truth computation methods to approximate
consensus rankings. We then discuss the rank computation process, including how we
handle ties. Subsequently, we describe our cross-matching-based outlier detection approach
using Spearman’s rank correlation coefficient. Finally, we introduce the computation of
outlier weights to identify specific proposals contributing to a reviewer’s deviation from
the consensus.

3.2.2. Ground Truth Computation

Reviewers exhibit diverse preferences, cognitive processes, and evaluative criteria,
making the establishment of an absolute ground truth challenging. To address this, we
experimented with various methodologies to derive a suitable estimated ground truth.
We employ three representative scoring methods to comprehensively analyze deviations
among reviewer outliers from different perspectives. These methodologies enhance our
understanding of consensus within peer review settings. Throughout this paper, the ground
truths derived from these strategies are referred to as Ground Truth 3, Ground Truth 2, and
Ground Truth 3.

Given the score matrix D, with m proposals and n reviewers, we compute the ground
truth score S̄ in the following three ways:

1. Ground Truth 1:
Ground Truth 1 approximates the ground truth by averaging the ratings for each
proposal after excluding the highest and lowest scores to reduce bias and mitigate the
influence of extreme values. For each proposal j, all reviewers Pi provide ratings Sij,
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where Sij is the rating given to proposal j by reviewer Pi, and n is the total number of
reviewers. The ratings are sorted in ascending order:

S(1)j ≤ S(2)j ≤ · · · ≤ S(n)j,

where S(1)j and S(n)j are the lowest and highest ratings, respectively. The lowest
and highest ratings are excluded, and the modified average score S̄j is computed
as follows:

S̄j =
1

n− 2

n−1

∑
k=2

S(k)j.

2. Ground Truth 2:
Ground Truth 2 uses a ranking point system in which each proposal is assigned points
based on its rank by each reviewer. Specifically, for each proposal j, the rank rij
assigned by reviewer Pi is determined, with the lowest-rated proposal receiving a
rank of 1, the next lowest a rank of 2, and so on. The total points for proposal j are
calculated as follows:

Tj =
n

∑
i=1

(n− rij + 1).

The normalized average score S̄j is then defined as follows:

S̄j =
Tj

n
.

3. Ground Truth 3:
Ground Truth 3 employs a recommendation voting mechanism that differentiates
proposals with equal votes based on their average scores. Specifically, for each
proposal j, the recommendation vote Vij is defined as follows:

Vij =

{
1 if Sij > 75,
0 otherwise.

The total recommendation votes for proposal j are then computed as follows:

Vj =
n

∑
i=1

Vij.

The average score for each proposal is calculated as follows:

S̄j =
1
n

n

∑
i=1

Sij.

3.2.3. Rank Computation

Given the ground truth scores S̄ obtained from the three methods of ground truth
calculation, we determine the rank of each proposal by sorting these scores, resulting in the
ground truth ranks, denoted as Rt. Similarly, by sorting the ratings in the raw peer review
data, we obtain the rankings assigned by each reviewer, denoted as Rr.

Handling ties during ranking is inevitable. For instance, if multiple proposals are
tied for a particular rank, assigning them the same rank can lead to inconsistencies in
subsequent rankings. To address this, we use an average ranking approach. Specifically, if
a subset T consisting of mT proposals is tied at rank r, each proposal in T is assigned a
rank calculated as follows:

R =
2r + mT − 1

2
(2)



Electronics 2024, 13, 4735 7 of 18

As illustrated in Figure 1, if two proposals are tied for first place, each is assigned a
rank of 1.5. This method ensures a balanced representation of each proposal’s standing
relative to others in cases of equivalence.

Figure 1. Example of ground truth rank computation.

3.2.4. Cross-Matching-Based Outlier Detection

In this section, we present the computation of the outlier index.
Outlier index computation
Given that peer review data consist of discrete ratings and rankings, we integrate

Spearman’s rank correlation coefficient into our cross-analysis approach. This allows us to
evaluate the correlation between reviewers’ ranking sequences and the estimated sequence
of underlying truths. Spearman’s rank correlation coefficient is particularly well-suited
for ordinal data, providing a robust means of assessing the alignment between reviewers’
assessments and established benchmarks.

The formula for Spearman’s correlation coefficient is given as follows:

ρi = 1−
6 ∑m

j=1 d′j
2

m(m2 − 1)
(3)

where

d′j = Rt
j − Rr

ij (4)

In this equation, ρi denotes the rank correlation coefficient for reviewer Pi, d′j represents
the difference between the ground truth rank Rt

j and the rank Rr
ij assigned by reviewer Pi

to proposal j, and m is the total number of proposals.
Once the estimated ground truth is established, reviewers are ranked based on their

scores in descending order. We compute the Spearman rank correlation coefficient between
each reviewer’s ranking and the three ground truth rankings using the cross-matching
method described earlier. The correlation coefficient ranges from −1 to 1, measuring
the alignment between each reviewer’s ranking and the ground truth. Specifically, the
Spearman correlation coefficient is calculated by comparing the ground truth ranking
sequence with each reviewer’s ranking sequence, which is derived directly from sorting
their scores in the original data.

Ranking reviewers solely by this coefficient may not adequately highlight differences
in deviations from the ground truth. To address this limitation, we introduce the outlier
index, which amplifies the discrepancies between reviewers and the ground truth based
on correlation coefficients. Given the diverse contexts of peer review, defining a universal
threshold for excessive deviation is challenging. Therefore, we implement a dynamic
thresholding approach that can be tailored to different scenarios. In this experiment,
we define the threshold interval to range from −0.5 to 0.9 with incremental steps of 0.1.
Starting at a threshold of −0.5, for each subsequent threshold value (i.e., −0.4, −0.3,
. . ., 0.9), reviewers with correlation coefficients at or below the current threshold are
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identified and recorded. For each of these reviewers, the outlier index is calculated using
the following formula:

Outlier Indexi =
∥Thres∥

∑
s=1

10
(s + 1)

· I(ρi ≥ Thress) (5)

where s represents the threshold step, ranging from 1 to the total number of steps (in
this case, 16). ρi is the Spearman correlation coefficient for reviewer i, and I(·) is the
indicator function, which is 1 if ρi is greater than or equal to the threshold Thress, and
0 otherwise. The outlier index is calculated by summing the weighted indicators across
all threshold steps for each reviewer. This dynamic calculation assigns greater weight to
reviewers with smaller correlation coefficients as the threshold increases. The stepwise
approach captures varying degrees of deviation from the ground truth, allowing for a
more detailed identification of outliers. By adjusting the threshold range and step size, the
method is adaptable to different peer review contexts, ensuring flexibility and robustness
in outlier detection.

Outlier Weight Computation
While our methodology successfully identifies reviewers with substantial deviations

from the ground truth, pinpointing the specific proposals causing these deviations remains
unresolved. To address this, we introduce the concept of proposal weights wij, which
quantifies the influence of each proposal j on reviewer Pi’s alignment with the ground truth.
The weight wij is based on the relative change in the correlation coefficient ρi before and
after the removal of proposal j.

After removing proposal j, we recalculate the ground truth rank using the same
method described earlier and compute the revised correlation coefficient ρ

−j
i . The weight

wij is then computed as follows:

wij =
ρ
−j
i
ρi

(6)

where we have the following:

• ρi: Original correlation coefficient for reviewer Pi.

• ρ
−j
i : Correlation coefficient for reviewer Pi after recalculating the ground truth and

removing proposal j.
• wij: Weight of proposal j for reviewer Pi.

The interpretation of wij depends on the sign of the original correlation coefficient ρi:

• When ρi > 0:

– wij > 1 ⇒ Removal of proposal j increases the correlation, suggesting that
the proposal’s original ranking was disproportionately influential and possibly
erroneous.

– wij < 1⇒ Removal of proposal j decreases the correlation, indicating the pro-
posal’s original ranking was reasonable and stabilizing.

• When ρi < 0:

– wij > 1⇒ Removal of proposal j decreases the correlation, suggesting that the
proposal’s original ranking was overly detrimental.

– wij < 1⇒ Removal of proposal j increases the correlation, indicating the pro-
posal’s original ranking was beneficial and contributed positively to the overall
assessment.

To improve consistency in weight interpretation and enhance clarity, particularly
for visualization purposes, we refine the calculation method by normalizing the weights
around zero as follows:
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w′ij = wij − 1 =
ρ
−j
i − ρi

|ρi|
(7)

The refined weight w′ij can be interpreted as follows:

• w′ij > 0: Removing proposal j increased the correlation, indicating that proposal j’s
original ranking negatively influenced the overall correlation.

• w′ij < 0: Removing proposal j had a stabilizing effect, implying that its original ranking
was more reasonable.

• |w′ij|: The magnitude of w′ij reflects the strength of the proposal’s impact on the
correlation.

This refined method of calculating proposal weights ensures that the influence of each
proposal’s removal is quantified in a way that is both intuitive and visually interpretable,
offering clearer insights into how individual proposals affect the overall evaluation process.
The pseudocode for the proposal weighting algorithm is shown in Algorithm 1.

Algorithm 1 DCASP algorithm.

Input:
D: Score matrix from data
m: The number of proposals
n: The number of reviewers
str: Strategy to estimate the ground truth
k: Output the first k outlier reviewer numbers

Output:
X: Sequence of reviewer numbers in the top k of the outlier index
Y: Ranking of weights for each proposal by reviewers in X

1: M, M
′ ← ∅ ▷ Initialize the set used to store the sorted results

2: S̄← Groundtruth(D, str, m, n) ▷ Ground truth scores are obtained according to the
ground truth strategy

3: Rt, Rr ← Rank(D, S̄, m, n) ▷ Get the ground truth rank Rt and reviewer rank Rr

4: ρ← Crossmatching(Rt, Rr) ▷ Obtain correlation coefficient ρ using the cross-matching
method

5: P← Compute Outlier Index using ρ by Equation (5)
6: O← Sort P in descending order
7: X ← Select(k, O) ▷ Get the top k reviewer numbers as needed
8: for each reviewer Pi in X do
9: for each proposal j in 1 . . . m do

10: D
′ ← Delete(D, j) ▷ Getting the scoring data after deleting the proposal j

11: S̄
′ ← Groundtruth(D

′
, str, m− 1, n) ▷ Get the average rating after deleting

proposal j
12: Rt′ , Rr′ ← Rank(D

′
, S̄
′
, m− 1, n) ▷ Get ground truth rank Rt′ and reviewer rank

Rr′ after deleting proposal j
13: ρ− ← Crossmatching(Rt′ , Rr′) ▷ Calculate new correlation coefficient ρ− after

deletion
14: Wij ← Compute Outlier Weight using ρ, ρ− by Equation (7)
15: end for
16: end for
17: for each reviewer Pi in X do
18: Yi ← Sort Wi∗ in descending order
19: end for
20: return X, Y
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4. Experiment

In this section, we present a series of confirmatory and exploratory experiments con-
ducted to validate the methodology outlined previously. This comprehensive experimental
approach not only confirms the robustness of our methodology but also enhances our
understanding of its applicability in various evaluative contexts. In this experiment, the
threshold increment was set at 0.1, which often results in cases where multiple reviewers
share the same outlier index. In such instances, we prioritize reviewers with lower ordinal
numbers for ranking.

4.1. Dataset

In our experimental data, we obtained confidential peer review ratings from a review
organization, collected via a standardized review process, to validate the accuracy and
applicability of our method. Table 1 presents an example of the reviewers’ ratings, where
Ri represents the i-th reviewer, and Oj represents the j-th proposal. All reviewers provided
ratings on a percentage scale for each proposal. Each group of data is independent, rep-
resenting a set of proposals evaluated by a corresponding set of reviewers, with both the
number of proposals and the number of reviewers varying across different groups. In the
experiments, we used two groups of data: Group one involved ratings from non-trusted
reviewers obtained from a review organization, used for validation to compare the effec-
tiveness of our method with MAD and trimmed mean. Group two utilized original data to
demonstrate the accuracy of our method and support further analysis.

Table 1. Example data.

O1 O2 O3 O4 O5 O6 O7 O8

R1 90 88 87 73 92 77 89 78
R2 70 85 79 80 72 84 67 75
R3 89 90 93 85 79 85 72 92
R4 86 80 73 75 90 88 78 70
R5 85 88 95 80 82 94 90 84

4.2. Baselines

We applied two conditional methods—MAD and trimmed mean—to identify anoma-
lous reviewer scores for each proposal.

In the MAD method, we first calculate the median Mj of reviewer scores Sij for each
proposal. The absolute deviation DM

ij from the median is given by the following:

DM
ij = |Sij −Mj| (8)

The MAD for each proposal, denoted as MADj, is then calculated as the median of
these deviations:

MADj = median(DM
ij ) (9)

Scores are considered outliers if their deviation from the median exceeds a threshold
of three times the MAD:

DM
ij > 3×MADj (10)

In the trimmed mean approach, we first sort the reviewer scores Sij for each proposal
in ascending order and then remove the highest and lowest scores. The trimmed mean of
the remaining n− 2 scores is denoted as S̃j. The deviations from the trimmed mean are
calculated as follows:

DT
ij = |Sij − S̃j| (11)
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The average of these deviations, denoted as D̃j, is then calculated as follows:

D̃j =
1

n− 2

n−1

∑
i=2

DT
ij (12)

A score is considered an outlier if its deviation exceeds three times the trimmed mean
of the deviations:

DT
ij > 3× D̃j (13)

In both methods, the threshold factor was consistently set to three to reduce the
influence of extreme scores, ensuring a reliable and robust measure of variability and
central tendency. We then aggregated the outliers identified across all proposals and
ranked them by frequency of occurrence, selecting the top three reviewers with the highest
frequencies as the overall outliers. For the DCASP method, we used Ground Truth 3,
deemed more reasonable, to identify outliers.

4.3. Quantitative Analysis of Group One

We adopt the proposed method and two baselines i.e., MAD and trimmed mean
on collected review data from a private peer review platform. To give a quantitative
performance of the proposed method, we also collect the outlier rank of reviews with the
help of the review organization (e.g., Rank(R1) < Rank(R2) means that reviewer R1 is
more like an outlier than R2 and might be firstly outputted in the algorithm). The review
scores are shown in Table 2.

Table 2. Scoring by group one of proposal reviewers.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

R1 85 84 66 74 70 94 94 76 94 87 85
R2 92 65 66 94 74 72 90 76 73 74 78
R3 63 80 81 72 79 89 86 74 92 73 67
R4 70 88 73 89 82 94 94 92 80 66 74
R5 94 96 71 94 88 80 80 86 83 82 74
R6 92 95 84 80 95 81 78 66 87 74 73
R7 79 82 80 81 90 76 78 81 71 72 73
R8 81 89 62 76 86 73 91 69 78 73 73
R9 91 90 74 94 93 74 74 63 86 66 66
R10 74 74 84 90 90 86 80 72 86 82 82
R11 80 79 76 86 69 94 74 73 87 74 83
R12 97 96 90 94 88 80 94 86 94 72 72
R13 89 84 87 80 89 78 80 74 55 74 74
R14 74 72 83 78 88 76 74 74 74 74 73
R15 67 89 79 86 84 73 94 73 73 74 74
R16 92 80 74 90 70 74 65 86 73 74 53
R17 86 92 80 86 84 70 71 66 62 53 74

We use the rank-based score DCG@k as the evaluation metric, which is calculated via
the following equation:

DCG@k =
k

∑
i=1

2reli − 1
log2(i + 1)

(14)

In practice, we take into consideration the fact that the number of outlier reviews is
small among the reviewers. Therefore, we use DCG@1, DCG@2, DCG@3 as the metrics.
The quantitative analysis results of the proposed methods along with the two baselines are
shown in Table 3. DCASP achieves the highest values in DCG@1, DCG@2, and DCG@3,
indicating its superior effectiveness in identifying highly relevant outliers.
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Table 3. Comparison of MAD, trimmed mean, and DCASP methods.

Method MAD Trimmed Mean DCASP

DCG@1 0 1 3

DCG@2 0.631 1 3.631

DCG@3 2.131 1 3.631

4.4. Results and Analysis of the Group Two

Group two is presented in Table 4.

Table 4. Scores from group two of proposal reviewers.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13

R1 57 73 84 63 88 82 56 83 85 75 86 63 62
R2 88 84 87 87 81 82 90 89 85 86 87 91 82
R3 80 82 72 83 71 80 74 90 72 84 70 92 74
R4 79 92 66 62 68 55 64 60 71 70 61 68 71
R5 76 51 82 67 71 59 78 48 54 71 46 49 52
R6 62 60 75 60 55 53 70 55 62 70 62 77 77
R7 73 72 88 73 65 69 85 74 72 68 73 84 69
R8 87 74 77 72 73 74 79 72 73 73 74 72 74
R9 77 78 79 80 71 72 73 72 74 80 78 77 73
R10 88 78 90 80 84 92 90 88 82 86 86 93 92
R11 70 69 64 60 77 70 72 71 75 78 79 73 70
R12 80 70 88 72 76 82 72 70 88 90 70 85 86
R13 86 73 83 71 73 87 83 72 80 79 70 72 82
R14 85 65 85 75 85 70 75 71 72 80 61 90 82
R15 84 85 79 72 70 69 88 86 71 69 72 82 76

• Ground Truth 1: [5.0, 7.0, 6.0, 10.0, 3.0, 1.0, 2.0, 8.0, 4.0, 9.0, 11.0, 12.0, 13.0]
• Ground Truth 2: [2.5, 9.0, 1.0, 12.5, 12.5, 11.0, 4.0, 8.0, 7.0, 5.0, 10.0, 2.5, 6.0]
• Ground Truth 3: [2.0, 10.0, 1.0, 12.0, 8.0, 7.0, 5.0, 11.0, 9.0, 3.0, 13.0, 4.0, 6.0]

In the subsequent sections, we will analyze one or two reviewers who exhibit the
highest outlier index across the three ground truths. This analysis aims to validate the
accuracy of DCASP.

As illustrated in Figure 2, using Ground Truth 1, the reviewer rankings are as follows:
[6, 9, 3, 2, 4, 14, 7, 10, 11, 12, 15, 1, 8, 5, 13]. Reviewer nos. 6 and 9 are identified as the most
significant outliers. Reviewer no. 6’s rankings of proposals exhibit notable deviations; for
instance, Proposal no. 6 is ranked first by Ground Truth 1 but thirteenth by Reviewer no. 6.
Similarly, Proposal nos. 12 and 13, ranked twelfth and thirteenth by Ground Truth 1, are
both ranked first by Reviewer no. 6. Reviewer no. 9 also shows a substantial divergence in
rankings, particularly for Proposal nos. 4, 5, 6, 7, 10, and 11, with his rankings differing
significantly from those of Ground Truth 1. These discrepancies between the rankings by
Reviewers nos. 6 and 9 and Ground Truth 1 suggest that variations in personal preferences
alone cannot account for the observed gaps. Consequently, it is reasonable to classify them
as the most significant outliers in the context of Ground Truth 1.

The data reveal that the outlier index values range broadly from 2.775 to 33.807.
Notably, certain reviewers, such as Reviewer no. 5, exhibit significantly higher outlier
indices, suggesting their evaluations deviate markedly from the collective scoring norm.
Conversely, multiple reviewers sharing the same outlier index, such as Reviewer nos. 9, 10,
and 11, each with a value of 10.974, might indicate a similar scoring criterion or behavioral
pattern among them. Reviewer no. 14, possessing the lowest outlier index, appears to
align most closely with the consensus, potentially indicating the highest consistency with
the collective evaluations. This variation in indices underscores the effectiveness of the
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outlier recommendation algorithm in distinguishing among reviewers, enhancing our
understanding of individual and collective scoring behaviors within this dataset.

As illustrated in Figure 3, the weighting of proposals for Reviewer no. 6, derived from
Ground Truth 1, is sequenced as [6, 12, 13, 5, 11, 8, 9, 1, 2, 3, 4, 7, 10]. Focusing on Proposal
nos. 6 and 12, we examine the impact of their removal on the correlation coefficients.
Initially, the raw correlation coefficient stands at −0.506. Upon removal of Proposal no.
6, the reordered ground truths are [4.0, 6.0, 5.0, 9.0, 2.0, 1.0, 7.0, 3.0, 8.0, 10.0, 11.0, 12.0],
and the reviewer’s reordered ratings are [7.0, 9.5, 3.0, 9.5, 11.5, 4.5, 11.5, 7.0, 4.5, 7.0, 1.5,
1.5]. This results in a new correlation coefficient of −0.369 and a calculated weight of 0.270.
Similarly, after removing Proposal no. 12, the ground truths are reordered to [5.0, 7.0, 6.0,
10.0, 3.0, 1.0, 2.0, 8.0, 4.0, 9.0, 11.0, 12.0], and the reviewer rankings to [6.0, 8.5, 2.0, 8.5,
10.5, 12.0, 3.5, 10.5, 6.0, 3.5, 6.0, 1.0], with a correlation coefficient of −0.372 and a weight
of 0.265. These calculated weights align with the outcomes estimated by the algorithm,
confirming the accuracy of our method in assessing the influence of individual proposals
on the correlation metrics.
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Figure 2. Reviewer outlier index graph generated based on Ground Truth 1.
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Figure 3. Weights calculated by Reviewer no. 6 based on Ground Truth 1.
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The graphical representation illustrates a pronounced fluctuation in the weights as-
signed to the proposals, ranging from −0.400 for Proposal no. 9 to +0.265 for Proposal nos.
6 and 12. This variability suggests a notable inconsistency in the reviewer’s evaluations of
different proposals relative to the estimated ground truths. Such fluctuations underscore
the likelihood of personal biases influencing the reviewer’s assessments. This observation
corroborates the previously determined outlier status of this reviewer, affirming that the
evaluations deviate significantly from the collective norm. To enhance fairness in peer re-
view, Proposal nos. 6, 12, and 13 may share certain common characteristics, while Reviewer
no. 6’s understanding of this domain significantly deviates from that of other reviewers.
Targeted training or reassigning this reviewer away from similar proposals could mitigate
such inconsistencies.

As depicted in Figure 4a,b, focusing on Ground Truth 2, Reviewer nos. 1 and 11 are
identified as the most significant outliers. Reviewer no. 1’s rankings of proposals are [12.0,
8.0, 4.0, 9.5, 1.0, 6.0, 13.0, 5.0, 3.0, 7.0, 2.0, 9.5, 11.0], and Reviewer no. 11’s are [11.0, 4.5, 9.0,
10.0, 4.5, 4.5, 4.5, 7.0, 1.0, 8.0, 2.0, 9.0, 11.0, 12.0, 13.0, 3.0, 9.0, 6.0, 7.0, 4.0, 2.0, 1.0, 5.0, 9.0]. For
Reviewer no. 1, the rankings for Proposal nos. 1, 5, 7, and 11 show significant deviations
from their respective ground truths, highlighting a stark divergence in evaluation criteria.
Similarly, for Reviewer no. 11, Proposal nos. 1, 3, 5, and 11 also display considerable
misalignments from the ground truths. These findings illustrate the pronounced outlier
behavior of these reviewers and validate the use of these ground truths in identifying
deviations in reviewer assessments.
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Figure 4. Reviewer outlier index graphs based on different ground truths. (a) Reviewer outlier index
graph based on Ground Truth 2. (b) Reviewer outlier index graph based on Ground Truth 3.

Similar to the observations from Ground Truth 2, Ground Truth 3 identifies Reviewer
nos. 1 and 11 as exhibiting the highest degree of outlier behavior. Specifically, for Reviewer
no. 1, the proposals markedly divergent from the ground truths remain consistent with
those previously noted, underscoring a persistent deviation in his assessments. In contrast,
for Reviewer no. 14, notable deviations are observed in the evaluations of Proposal nos.
1, 3, and 11, indicating significant discrepancies from the ground truths. These findings
reaffirm the appropriateness of the algorithm’s classification of Reviewer nos. 1 and 11
as the most significant outliers. The consistency of these results across different ground
truths supports the robustness of the outlier detection methodology and underscores its
effectiveness in identifying reviewers whose evaluations consistently deviate from the
established consensus.

Compared to Ground Truth 1, we observe a significant reduction in the maximum
outlier index when utilizing Ground Truth 2, indicative of a tendency towards tighter
clustering among reviewers. With the implementation of Ground Truth 3, the outlier
index not only decreases further but also demonstrates a more uniform distribution across
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reviewers. Notably, the mean outlier index calculated from Ground Truth 1 is higher than
those derived from Ground Truths 2 and 3. This suggests that reviewer evaluations under
Ground Truths 2 and 3 are more consistent with the collective consensus compared to
those under Ground Truth 1. However, a higher mean outlier index in Ground Truth 1,
while reflecting greater variability among reviewers, may facilitate a clearer differentiation
of outlier degrees among them. This condition suggests that while Ground Truths 2
and 3 provide a more consolidated view of reviewer consensus, they may obscure the
identification of extreme deviations that are critical to understanding reviewer biases and
the overall reliability of the peer review process.

An examination of the outlier reviewer recommendation plots derived from each
ground truth reveals significant similarities between the rankings provided by Ground
Truths 2 and 3, while both differ markedly from those determined by Ground Truth 1.
Ground truths serve as quantitative representations of the collective consensus, and the
observed discrepancies suggest that Ground Truth 1 encapsulates a distinct quantification
of this consensus compared to the other two ground truths. Furthermore, across all three
ground truths, Reviewer no. 5 consistently exhibits a lower outlier index, indicating that
his evaluations align closely with the collective consensus, irrespective of the measurement
perspective. Conversely, Reviewer no. 11 maintains a consistent outlier index across all
ground truth conditions, positioned within the medium range. This consistency highlights
that while Reviewer no. 11’s evaluations do not represent extreme deviations, they consis-
tently diverge to some extent from the collective consensus. These insights underscore the
nuanced differences in how each ground truth captures reviewer biases and the overall
dynamics within the peer review process.

Figure 5a,b present the weighting analysis for Reviewer no. 11, detailing the sequence
in which proposals influence the overall correlation coefficients based on Ground Truths
2 and 3. The sequence derived from Ground Truth 2 is [3, 5, 11, 1, 9, 7, 12, 8, 10, 2, 4, 6,
13], with an initial correlation coefficient of −0.055. In contrast, the sequence from Ground
Truth 3 is [11, 3, 1, 5, 9, 8, 7, 12, 10, 2, 4, 13, 6], with an initial correlation coefficient of
−0.099. Taking Proposal no. 3 as an example, upon its removal, the reordered ratings by
Reviewer no. 11 are [9.0, 11.0, 12.0, 3.0, 9.0, 6.0, 7.0, 4.0, 2.0, 1.0, 5.0, 9.0]. Correspondingly,
the Ground Truth 2 sequence adjusts to [1.5, 8.0, 11.5, 11.5, 10.0, 3.0, 7.0, 6.0, 4.0, 9.0, 1.5,
5.0], resulting in a revised relevance coefficient of 0.124 and a calculated weight of 3.232.
Similarly, with the removal of Proposal no. 3 under Ground Truth 3, the new sequence
becomes [1.0, 9.0, 11.0, 7.0, 6.0, 4.0, 10.0, 8.0, 2.0, 12.0, 3.0, 5.0], leading to a revised correlation
coefficient of 0.070 and a derived weight of 1.708. These outcomes confirm the accuracy
of the weighting algorithm, as the derived weights align with the anticipated changes
in correlation coefficients following the removal of influential proposals. This analysis
demonstrates the effectiveness of the algorithm in quantifying the impact of individual
proposals on the overall evaluation consistency of reviewers.
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Figure 5. Comparison of weights calculated by Reviewer no. 11. (a) Weights calculated by Reviewer
no. 11 based on Ground Truth 2. (b) Weights calculated by Reviewer no. 11 based on Ground Truth 3.
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The weight analysis graphs for Reviewer no. 11, based on both Ground Truth 2 and
Ground Truth 3, effectively illustrate the volatility of the weights associated with this
reviewer’s evaluations. These visual representations reveal significant fluctuations in the
weights assigned to different proposals, indicating that Reviewer no. 11’s evaluations
deviate considerably from the collective consensus. Such variability suggests that his
assessments are influenced by factors distinct from those guiding the majority of reviewers,
emphasizing his role as a significant outlier in the peer review process.

Figure 6 presents the weight analysis plot for Reviewer no. 11 based on Ground Truth
1, enabling direct comparison with those derived from Ground Truths 2 and 3. The analysis
reveals that the plots for Ground Truths 2 and 3 are markedly similar, whereas the plot based
on Ground Truth 1 diverges significantly from the other two. This variance can be attributed
to the distinct methodologies underlying each ground truth, which inherently produce
different outcomes. Ground Truth 1 emphasizes the score itself, incorporating a method that
excludes the highest and lowest scores to minimize error. However, given the variability in
scoring habits and standards among reviewers, the rankings derived from Ground Truth 1
tend to reflect an amalgamation of individual reviewer biases; it represents an average that
integrates all personal factors of the reviewers. In contrast, Ground Truth 2 focuses more
on the ordinal ranking of proposals. While large discrepancies in scores may exist, these do
not necessarily translate into substantial differences in rankings, potentially obscuring true
variance among scores. Ground Truth 3 builds on the framework of Ground Truth 2 by
introducing a recommendation voting mechanism, which not only emphasizes the impact
of scores but also aims to establish a more uniform standard among reviewers, mitigating
the influence of personal biases. Thus, Ground Truth 3 is essentially an enhancement of
Ground Truth 2, making the similarity between the results from these two reasonable.
The fundamental difference in the approach of Ground Truth 1 explains the disparity
in outcomes when compared to Ground Truths 2 and 3. This analysis underscores the
importance of considering the specific methodologies of ground truths to understand their
impact on the evaluation of reviewers in peer review systems.
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Figure 6. Weights calculated by Reviewer no. 11 based on Ground Truth 1.

Proposal no. 11 consistently receives high weights across all three ground truths,
indicating that Reviewer no. 11’s perspective on this proposal significantly diverges from
others. To enhance fairness in peer review, it would be beneficial to investigate the reasons
behind this divergence and consider follow-up measures, such as targeted training.

Despite the distinct philosophical underpinnings and approaches to quantifying col-
lective consensus inherent in the three ground truths, a consistent observation emerges
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regarding Proposal nos. 7 and 8. Across all ground truths, these proposals consistently
receive weights close to zero, indicating a minimal impact on the outlier index of Reviewer
no. 11. This uniformity suggests that regardless of the methodological differences, these
proposals do not significantly alter the reviewer’s deviation from the collective consensus.
This finding highlights the potential stability of certain evaluations across varied evaluative
frameworks and underscores the value of analyzing multiple ground truths to gain a
comprehensive understanding of the factors influencing reviewer assessments.

5. Conclusions

In conclusion, the DCASP method has been validated through empirical testing on
two distinct datasets, demonstrating its efficacy in enhancing the integrity and fairness of
peer review systems. The proposed data-crossing analysis method effectively identifies and
mitigates the influence of outlier scores, contributing to a more rigorous and equitable eval-
uation process. By revealing deviations from the estimated ground truth, the methodology
successfully detects abnormal scoring behaviors and irrational patterns, thereby ensuring
a higher degree of accuracy and fairness in assessments. These findings highlight the
robustness and reliability of the DCASP approach in addressing the inherent subjectivity
and biases of individual reviewers, ultimately leading to the improvement of academic
evaluation processes. This advancement holds promise for fostering a more trustworthy
and balanced peer review environment, benefiting both reviewers and authors within the
academic community.
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