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Abstract: Gait is one of the most extensively studied motor tasks using motion capture systems,
the gold standard for instrumental gait analysis. Various sensor-based solutions have been recently
proposed to evaluate gait parameters, typically providing lower accuracy but greater flexibility.
Validation procedures are crucial to assess the measurement accuracy of these solutions since residual
errors may arise from environmental, methodological, or processing factors. This study aims to
enhance validation by employing machine learning techniques to investigate the impact of such
errors on the overall assessment of gait profiles. Two datasets of gait trials, collected from healthy and
post-stroke subjects using a motion capture system and a 3D camera-based system, were considered.
The estimated gait profiles include spatiotemporal, asymmetry, and body center of mass parameters
to capture various normal and pathologic gait peculiarities. Machine learning models show the
equivalence and the high level of agreement and concordance between the measurement systems in
assessing gait profiles (accuracy: 98.7%). In addition, they demonstrate data interchangeability and
integrability despite residual errors identified by traditional statistical metrics. These findings suggest
that validation procedures can extend beyond strict measurement differences to comprehensively
assess gait performance.

Keywords: Azure Kinect; gait analysis; validation procedure; motion capture systems; machine
learning; remote monitoring; post-stroke

1. Introduction

Gait analysis provides valuable information for the early detection of alterations in
motor control and coordination that may increase the perceived risk of falls and injuries
for the individual [1,2]. Gait patterns are also extensively analyzed in clinical settings to
activate targeted treatments, such as rehabilitation protocols, aimed at mitigating these
risks through compensatory strategies that counteract mobility limitations associated
with functional decline (e.g., in elderly individuals), chronic and progressive diseases
(e.g., Parkinson’s disease), or acute events (e.g., stroke) [3–7].

The instrumental and quantitative characterization of gait patterns through func-
tional parameters enables monitoring changes over time in at-risk individuals, accelerating
decision-making in response to either deterioration due to functional decline or improve-
ments resulting from pharmacological and rehabilitation treatments [8–10]. Instrumental
gait analysis is commonly performed using motion capture systems (MOCAP), the gold
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standard for movement analysis in clinical settings. Although MOCAP systems provide
highly accurate estimates of functional gait parameters [11–13], they are unsuitable for
continuous monitoring of gait performance. Indeed, their use is generally restricted to
clinical and research environments due to high costs, the need for large dedicated spaces,
and the requirement for specialized technical staff [14].

In recent years, there has been growing interest in developing alternative technological
solutions that are low-cost, portable, and less invasive than MOCAP systems [15,16]. These
solutions employ various sensors and technologies to measure traditional gait parameters
comparable to those estimated by MOCAP systems. Although these alternatives may be
less accurate than gold-standard systems, they offer greater flexibility and portability. In
addition, they are more suitable for frequent monitoring of gait patterns, thereby enabling
earlier detection of deviations from habitual performance. The most common alternative
solutions for gait analysis involve wearable sensors, such as accelerometers and inertial
measurement units (IMU), and markerless camera-based approaches [17–21]. Wearable
sensors are widely used to analyze human motion in various frailty conditions, including
Parkinson’s disease [22,23], post-stroke conditions [24,25], multiple sclerosis [26], spinocere-
bellar ataxia [27], and older individuals [28,29]. Similarly, camera-based approaches are
effective in evaluating physiological and pathological alterations in mobility and walking
patterns [30–44].

These solutions are typically validated against gold-standard MOCAP systems to
demonstrate their ability to measure gait parameters accurately. This step is crucial for as-
sessing the performance of an instrument in comparison to a reference with well-established
accuracy. However, only a few of the proposed solutions have been validated against a
gold standard [45–47].

Traditional validation procedures involve comparing measurements from innovative
solutions, such as wearable sensors or camera-based systems, with those from a gold-
standard MOCAP system, which requires placing markers on the body according to
standardized biomechanical protocols. However, several factors can introduce intrinsic
residual errors in the estimated gait parameters, including differences in signal processing
algorithms, data sources (e.g., accelerations for wearables and movement trajectories for
camera-based systems), and marker positions compared to virtual skeletal models provided
by body-tracking algorithms. The question arises: Are these residual errors significant or
negligible when assessing normal or pathological gait patterns? Addressing this question
is crucial, especially considering that these measurement tools are not intended to replace
MOCAP systems. In contrast, they are generally designed to enable rapid and widespread
detection of gait alterations in settings where MOCAP systems are impractical, leaving
MOCAP systems to serve as in-depth diagnostic tools in clinical settings.

Building on this foundation, this study addresses the proposed question by exploiting
machine learning approaches to compare gait measurements from a traditional gold-
standard system (MOCAP) with those from a 3D camera-based system using the Microsoft
Azure Kinect (MAK) sensor. Through two datasets of gait trials, collected in sequence by
both systems from healthy and post-stroke subjects, we aim to demonstrate that residual
differences in estimated gait parameters, highlighted by traditional statistical metrics, may
be irrelevant for the overall assessment of gait profiles when analyzed through an enhanced
validation approach that incorporates machine learning techniques. Moreover, since the
gait trials were collected sequentially by MOCAP and MAK within a short time interval,
we did not expect significant differences in gait profiles due to this factor. Performance
analysis of several machine learning models applied to the two datasets of gait profiles
revealed consistent measurements from both systems in assessing normal and pathological
gait patterns. This result was observed despite non-simultaneous data acquisition and the
residual errors identified by statistical metrics, primarily caused by differences in signal
sources, data processing, and parameter estimation algorithms. Consequently, the lack of
data synchronization can be viewed as an added value of this study: while it might limit
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the direct comparison of individual measures, it did not affect the agreement between the
two systems in evaluating gait profiles.

In this field of investigation, this study offers several innovative and unique contri-
butions. Unlike traditional validation studies, which primarily rely on statistical methods
to compare gait parameters, this research integrates machine learning models into the
validation process of MAK. This approach enables a comprehensive assessment of gait
profiles, achieving performance comparable to the MOCAP system in evaluating normal
and pathological gait profiles. Differently from other validation studies, three relevant
aspects to characterizing gait profiles are combined: spatiotemporal, asymmetry, and
center-of-mass parameters. In addition, this study examines the interchangeability and
integrability of gait profiles captured sequentially by MOCAP and MAK systems, fur-
ther demonstrating the consistency and concordance of the measurements even under
more challenging conditions. Finally, by leveraging specific functions of machine learning
models, this study provides insights into the features contributing to the misclassification
of gait profiles. To our knowledge, no previous study has conducted such in-depth and
machine-learning-based validation comparing MAK and MOCAP systems.

To conclude, this paper is organized as follows. Section 2 examines the traditional
approaches for validating technology-based solutions to measure gait parameters. Section 3
outlines the methodological framework of this study. Section 4 presents the main results of
the proposed machine-learning-based validation. Section 5 discusses the key findings, and
Section 6 concludes with final remarks.

2. Related Works

Recent studies have explored sensor-based solutions for gait analysis, using statistical
metrics to validate their performance against gold-standard systems [48].

Focusing on wearable-based solutions, Jakob et al. [49] compared a minimal set of
gait parameters estimated from IMU signals using Bland–Altman plots with Limits of
Agreement (LoA), Intraclass Correlation Coefficient (ICC), Spearman’s correlation, and
the Mann–Whitney U Test to assess measurements consistency with a marker-based gold
standard system. In a similar approach, Mason et al. [17] proposed several metrics to
validate their wearable-based solution, including absolute differences, Root Mean Square
Error (RMSE), standard error measurement (SEM), Pearson’s correlation, ICC, and Bland–
Altman plots. Bland–Altman plots were also used in [50–53], often in combination with
correlation metrics such as ICC [50], Lin’s concordance correlation coefficient (CCC) [51],
and Pearson’s correlation [52]. In contrast, Desai et al. [54] employed only CCC and ICC to
assess the agreement between IMUs and the reference system.

The recent review by Strongman et al. [55] identified ICC, Pearson’s correlation, and
Bland–Altman plots as primary metrics for validating gait measurements derived from 3D
accelerations compared to the 3D marker trajectories captured by MOCAP systems. This
divergence in source signals inherently requires distinct signal processing techniques and
parameter estimation strategies, which may influence the final measurements.

Similar validation metrics emerge in studies involving camera-based solutions using
RGB or RGB-D devices combined with markerless body-tracking frameworks. While
RGB cameras are simple optical devices that capture two-dimensional color images and
videos (e.g., webcams), RGB-D (or RGB-Depth) cameras are more advanced sensors that
additionally provide a depth map indicating the actual distances from the camera. This
information enables the 3D reconstruction of the environment, fostering more complex
applications. For movement analysis, these cameras are typically paired with body-tracking
algorithms capable of detecting individuals, reconstructing virtual 3D skeletal body models,
and tracking real-time movements non-intrusively. In this field of investigation, Vilas-Boas
et al. [34] assessed the performance of camera-based solutions on kinematic and angular
parameters using Pearson’s correlation, concordance correlation, and Bland–Altman plots,
while Balta et al. [56] employed Mean Absolute Error (MAE), Mean Error (ME), Root Mean
Square Error (RMSE), ICC, and Spearman’s correlation on lower limb trajectories. Similar
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metrics were also used by Liang et al. [57], Dubois et al. [35], Latorre et al. [37], and Summa
et al. [58] to compare markerless and marker-based systems. Recently, Arizpe-Gómez
et al. [59] validated gait parameters from the Microsoft Azure Kinect using MAE and
Pearson’s correlation. In contrast, Kusuda et al. [60] assessed the agreement with a MOCAP
system using ICC and RMSE. For camera-based solutions, the signal sources are more
homogeneous (3D marker trajectories for MOCAP systems and 2D/3D joint trajectories
for markerless approaches). However, the different positioning and number of physical
markers and virtual joints in skeletal models may require ad-hoc parameter estimation
strategies and affect final measurements.

Limiting the comparison of measurements obtained from systems with such differing
characteristics to statistical methods may be overly simplistic and reductive in motion
analysis. Indeed, statistical methods aggregate data into summary metrics that can po-
tentially obscure the intricate dynamics of complex motor patterns. Furthermore, they
often rely on assumptions about data distribution that may not accurately represent move-
ment characteristics and may be influenced by the composition and variability of the
observed sample. Finally, the selection of specific metrics, tests, and statistical models can
significantly influence the results, making it challenging to compare validation studies.

Given their ability to extract insights from complex datasets, machine learning models
are primarily employed for regression and classification tasks. These include stratifying
patient groups and clinical scores, supporting long-term patient monitoring strategies,
distinguishing between physiological and pathological patterns, and tracking disease
progression. However, their application in sensor validation still needs to be improved [48].
In this context, the present study investigates the feasibility of using machine learning
approaches to enhance the validation of gait measurement solutions and address this
gap. Specifically, it examines how machine-learning models could complement traditional
statistical analyses by evaluating the significance of residual differences in assessing normal
and pathological gait profiles. Machine learning approaches offer significant advantages.
Unlike statistical methods, they can identify complex dependencies and dynamics within
the data, capturing nuanced movement profiles that might otherwise be overlooked. In
addition, they can exploit multiple features together, allowing for a more comprehensive
assessment of movement patterns than single aggregate measures. Finally, these models can
provide interpretable comparisons and valuable insights, enriching the validation process.
These peculiarities could extend the use of machine learning to enhance current validation
strategies, especially when comparing systems that exhibit substantial technological and
methodological differences.

3. Materials and Methods
3.1. Data Collection

The datasets used in this study derive from walking data previously collected during
the REHOME project [61]. Gait trials were conducted on a 10-m walkway in a hospital
laboratory and recorded using a standard marker-based MOCAP system (VICON, Oxford
Metrics Ltd., Oxford, UK) and a markerless solution based on the MAK sensor (Microsoft
Inc., Redmond, WA, USA), as described in some recent studies [43,44,62]. Although simul-
taneous acquisition is typical in validation studies, the gait trials were collected sequentially
to avoid potential interference between systems that rely on infrared technologies. Each
subject was recorded separately by MOCAP and MAK systems, with no overlap. This
approach was selected to demonstrate that the Azure Kinect can still provide gait profiles
consistent with those obtained by MOCAP. Therefore, the lack of synchronization can be
considered an additional positive factor in further validating the agreement between the
two systems. Furthermore, given the short duration of each gait trial, we did not expect
significant variations in gait patterns due to non-simultaneous acquisitions.

For three-dimensional instrumental gait analysis with the MOCAP system, a configura-
tion of 27 spherical retro-reflective markers (size: 15 mm) was applied to each participant’s
body, following the modified Plug-In Gait model [63,64] (Figure 1a). In contrast, the MAK
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sensor provides a body-tracking algorithm that estimates a 3D skeletal model consisting of
32 virtual joints, which approximate specific anatomical reference points [65], thus mapping
human body movements in real-time. Since certain joints were not relevant to this study
(e.g., those of the face and hands), only 20 virtual joints from the MAK skeletal model were
considered (Figure 1b). The body-tracking algorithm and the device management libraries,
installed through the available SDKs, worked on a mini-PC with hardware specifications
satisfying the requirements for real-time performance. Therefore, body detection and
tracking were managed locally, with no data transfer to cloud platforms, thus avoiding
privacy and data security concerns.
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To comprehensively explore the measurement performance of the MAK system in
comparison with MOCAP, two groups of adult volunteers (aged ≥ 18 years) were involved:
healthy controls (HC) and post-stroke subjects (PS). Specifically, the HC group consisted
of 42 subjects (45% male, 55% female) with no history of injury in the previous year and
no musculoskeletal or neurological disorders affecting their walking ability. The PS group
included 35 subjects (55% male, 45% female) with unilateral hemiplegia (bilateral disability
was an exclusion criterion) who were able to walk 10 m without assistance. Statistical
differences in the composition of the two groups were irrelevant to the analysis, as the
primary objective was to compare the MOCAP and MAK systems in measuring gait pat-
terns independent of gender, height, weight, age, and physical condition. Each participant
performed the gait trials under the supervision of technical and clinical professionals after
a preliminary familiarization with the instrumentation and protocol instructions. Two
datasets of gait profiles were then created: one for MOCAP (DB_MOCAP) and one for
MAK (DB_MAK), each containing 42 gait profiles from healthy controls and 35 gait profiles
from post-stroke subjects.

3.2. Signal Processing and Gait Parameters Estimation

The two datasets consist of unique gait profiles obtained from gait trials collected
using MOCAP and MAK systems. While both systems recorded three-dimensional trajec-
tories for each gait trial related to physical markers and virtual joints, respectively, they
operated at different sampling rates: MOCAP at 100 Hz and MAK at 30 Hz. More im-
portantly, the physical markers (MOCAP) and virtual joints (MAK) differed in their body
positions, as shown in Figure 1a,b. These factors, combined with the non-simultaneous
acquisitions, ultimately affect the algorithms used to estimate gait parameters and may
result in measurement discrepancies.

Furthermore, to make the analysis of gait more comprehensive, this study incorpo-
rated three categories of parameters to create gait profiles: spatiotemporal parameters,
body center of mass (BCOM) parameters, and asymmetry parameters. The inclusion of
BCOM and asymmetry parameters aimed to capture abnormal body sways and gait lat-
erality, which are particularly prevalent in pathological populations. The resulting set of
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estimated gait parameters formed the unique gait profile (UGP) consisting of 18 features
that summarize each participant’s gait trial, as illustrated in Figure 2.
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For the MOCAP system, the spatiotemporal gait parameters were automatically com-
puted using Nexus (Version 1.8, VICON, Oxford Metrics Ltd., Oxford, UK) and Polygon
(Version 2.4, VICON, Oxford Metrics Ltd., Oxford, UK), which are standard software for
tracking and analyzing MOCAP raw data. This processing followed the manual definition
of gait events (specifically, right/left heel strike and toe-off) for steps performed near the
laboratory’s force plates [43,44]. Spatiotemporal parameters were estimated separately
for the left and right sides of the body and then averaged to be assembled into the UGP
alongside BCOM and asymmetry parameters. The BCOM position was automatically
calculated as the midpoint of the vector connecting the Anterior Superior Iliac Spine (ASIS)
markers to the Posterior Superior Iliac Spine (PSIS) markers.

For the MAK system, spatiotemporal parameters were estimated from ankle trajec-
tories, as these joints provide more accuracy and robustness compared to the feet [66,67].
Initial data preprocessing was performed in MATLAB© (2024a version) and included a
resampling procedure at 50 Hz to reduce jitter effects during acquisition and improve spa-
tial resolution. This was followed by low-pass filtering to attenuate high-frequency noise.
Then, a step segmentation procedure based on the depth component (i.e., the distance from
the MAK) of the left and right ankle joints was applied, enabling the extraction of both pri-
mary and derived spatiotemporal parameters. The step segmentation procedure involved
identifying stationary periods (stance phases) and in-motion periods (swing phases), as
described by Ferraris et al. and Cimolin et al. [43,44]. From the alternation of these periods,
the same spatiotemporal parameters and features were computed for the MOCAP system.
Unlike MOCAP, the BCOM position for MAK was estimated as the midpoint of the vector
connecting the hip joints.

Lateral and vertical BCOM sways within gait cycles were calculated to detect potential
abnormal imbalances during walking, which are common in individuals with pathological
gait patterns. Gait laterality information was preserved through the asymmetry parameters,
which were computed for all spatiotemporal parameters in both MOCAP and MAK, as
indicated by Equation (1) [68]:

ASYMP = |PLEFT − PRIGHT|/(0.5 ∗ (PLEFT + PRIGHT)) ∗ 100%, (1)

In the equation above, P represents one of the spatiotemporal parameters listed in
Table 1, with PLEFT and PRIGHT denoting the values estimated for the left and right sides,
respectively.

Since multiple gait cycles can be identified within the gait analysis area, the spatiotem-
poral and BCOM parameters were averaged across all detected gait cycles. In contrast, the
asymmetry parameters were calculated using the final values obtained for the left and right
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sides. Table 1 provides a detailed list of the gait parameters that form the UGP, along with
their definitions and units.

Table 1. List of gait parameters and categories included in the Unique Gait Profile (UGP).

Category Parameter Full Name Meaning Unit

SP
A

T
IO

TE
M

PO
R

A
L DS Double Support Time steady with both feet s

FOFF Foot OFF Stance phase (% of gait cycle) %
STEPL Step Length Length of one-foot step m

STRIDEL Stride Length Length of a complete gait cycle m
STRIDET Stride Time Duration of a complete gait cycle s

STEPT Step Time Duration of one-foot step s
WSPEED Walking Speed Ratio between stride length and stride time m/s

CAD Cadence Number of steps in a time unit step/min

A
SY

M
M

ET
R

Y

ASYMDS Double Support asymmetry Asymmetry between left and right double
support %

ASYMFOFF Foot OFF asymmetry Asymmetry between left and right stance
phases %

ASYMSTEPL Step Length asymmetry Asymmetry between left and right step
length %

ASYMSTRIDEL Stride Length asymmetry Asymmetry between left and right stride
length %

ASYMSTRIDET Stride Time asymmetry Asymmetry between left and right stride
time %

ASYMSTEPT Step Time asymmetry Asymmetry between left and right step time %

ASYMWSPEED Walking Speed asymmetry Asymmetry between left and right walking
speed %

ASYMCAD Cadence asymmetry Asymmetry between left and right cadence %

C
EN

TE
R

O
F

M
A

SS

BCOMML BCOM Lateral Sway Left-right BCOM sways within gait cycles mm

BCOMV BCOM Vertical Sway Up-down BCOM sways within gait cycles mm

3.3. MOCAP vs. MAK Systems: Traditional Validation Methods

This analysis aims to highlight the similarities and differences between the two systems
using the DB_MOCAP and DB_MAK datasets. It includes traditional validation metrics
and methods, treating the gait profiles of healthy controls and post-stroke individuals as
simple measurements without accounting for their normal or pathological origins. All data
analyses were performed using custom MATLAB© (version 2024a) scripts.

Firstly, the Kolmogorov–Smirnov test was applied to all parameters from both datasets
to assess the consistency of their data distributions and determine the suitability of para-
metric or non-parametric statistical tests. As the normality test revealed non-normal
distributions for all parameters (see Section 4.1), non-parametric tests and metrics were
selected for subsequent analysis phases.

Specifically, the Mann–Whitney U test for independent samples was employed to
identify statistical differences between the parameters obtained from MOCAP and MAK,
treating them as independent measurement systems. In addition, the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) were calculated to evaluate the accuracy of
the parameter estimates for both systems.

In parallel, Spearman’s correlation coefficient was applied to explore the relationship
between MOCAP and MAK parameters. This same coefficient was also used to examine
the correlation between each parameter and the participant groups, where the ‘1’ label was
assigned to healthy control gait profiles and the ‘0’ label to post-stroke gait profiles.

Finally, the Intraclass Correlation Coefficient (ICC) for absolute agreement and the
Concordance Correlation Coefficient (CCC) was used to assess the consistency, reliability,
and concordance between the measurements from the two systems. As discussed in
Section 2, these statistical metrics align with the standard statistical approaches commonly
used for validating the performance of two measurement systems.
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3.4. MOCAP vs. MAK Systems: Enhanced Validation by Machine Learning

This analysis aims to demonstrate that, although traditional validation metrics reveal
differences in measuring gait parameters, these discrepancies do not influence the overall
assessment of normal or pathological gait performance. A machine learning approach
using supervised classifiers was employed to support this hypothesis. The gait profiles of
healthy controls and post-stroke individuals from the DB_MOCAP and DB_MAK datasets
were analyzed separately, with labels assigned to each unique gait profile (UGP): ‘1’ for
healthy controls (42 UGPs) and ‘0’ for post-stroke individuals (35 UGPs).

The analysis was structured into three phases, as illustrated in Figure 3.
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In the first phase, various supervised classifiers were applied to the DB_MOCAP
dataset to identify the best model for distinguishing healthy control UGPs from post-stroke
UGPs. The UGPs in the DB_MOCAP were used as input to train the classifiers, using the
Leave-One-Out method for cross-validation. Two conditions were considered for training:
using the entire UGP (i.e., all parameters) or a subset of more significant parameters,
specifically those with an absolute value of Spearman’s correlation coefficient between
MOCAP and MAK greater than 0.7.

The following models, available in MATLAB Classification Learner Toolbox, were
considered in the first phase:

• Fine Tree: A decision tree model that splits the data into smaller subsets to maximize
separation between different classes, resulting in a deep tree structure where each split
corresponds to a dataset feature. The depth and granularity of the splits enable the
model to capture fine-grained patterns in the data.

• Linear Discriminant Analysis (LDA): A model that identifies a linear combination
of features that best separates two or more classes, using a decision boundary that
maximizes the separation between the classes while minimizing the variance within
each class.

• Naive Bayes (NB): A model that assumes the dataset features (or predictors) are
independent, given the class label. It estimates the likelihood of each feature for each
class and combines these probabilities with the prior probability of each class to make
predictions.

• Support Vector Machine (SVM): A model that finds the optimal decision boundary
(hyperplane) to best separate different classes in a dataset by maximizing the margin
between them. The margin is the distance between the closest data points (support
vectors) of different classes and the decision boundary, which enhances the model’s
generalization ability. SVMs can operate with linear (a straight hyperplane to separate
the classes) or non-linear kernels (transforming the data into a higher-dimensional
space where linear separation becomes possible).

• K-Nearest Neighbors (KNN): A model that classifies a data point based on the majority
class of its nearest neighbors in the feature space. The ‘K’ represents the number of



Electronics 2024, 13, 4739 9 of 20

neighbors from the training dataset considered to make the classification decision,
determined by the distance between the data points and other points in the training set.

• Boosted Trees (BOOST Tree): An ensemble learning method that combines the pre-
dictions of multiple decision trees to improve classification accuracy through a more
robust model. In practice, multiple weak learners (typically shallow decision trees)
are combined into strong learners. Each tree in the sequence is trained to correct the
errors of its predecessors, thereby improving the overall model’s performance.

In the second phase, the best model identified from the DB_MOCAP dataset was
applied to the DB_MAK dataset to compare performance and determine whether UGPs
derived from MAK data can be evaluated similarly to those from MOCAP data. Estimating
the posterior probabilities associated with each observation (UGP) from the two groups
(HC and PS) provided in-depth insight into the predictive capabilities of the trained models.
This procedure helped explain the origins of any misclassifications.

In the third phase, the performance of the best model trained on DB_MOCAP was
evaluated using DB_MAK as a testing set, and vice versa—i.e., the best model trained on
DB_MAK was evaluated using DB_MOCAP as a testing set—to verify their interchange-
ability, which is possible only if the measurements are similar and consistent. Following
this, the DB_MOCAP and DB_MAK datasets were combined into a new, double-sized
dataset to assess their integrability without compromising overall prediction performance.

4. Results
4.1. MOCAP vs. MAK Systems: Validation Using Statistical Methods

The Kolmogorov–Smirnov test indicated a non-normal distribution for all parameters
in both datasets, emphasizing the similarity and consistency of the measurements from
both systems. Table 2 presents the parameter values as medians and interquartile ranges
(first and third quartiles) according to non-parametric statistics. In addition, Spearman’s
correlation coefficients (ρ0 indicating the correlation between MOCAP and MAK; ρ1 in-
dicating the correlation within participant groups for MOCAP and MAK), along with
MAE, RMSE, ICC, and CCC, are reported to further support the evidence of measurement
consistency (Table 3).

Table 2. Median with first and third quartiles for all parameters.

Parameter MOCAP
Median [1st–3rd Quartiles]

MAK
Median [1st–3rd Quartiles]

DS 0.233 [0.179–0.402] 0.270 [0.194–0.493]
FOFF 61.059 [59.285–64.692] 61.967 [59.507–68.524]

STEPL 0.612 [0.386–0.698] 0.604 [0.390–0.706]
STRIDEL 1.241 [0.766–1.399] 1.148 [0.757–1.371]
STRIDET 1.107 [1.023–1.462] 1.120 [1.050–1.460]

STEPT 0.548 [0.505–0.740] 0.560 [0.525–0.721]
WSPEED 1.107 [0.571–1.394] 1.043 [0.607–1.262]

CAD 108.449 [82.157–117.290] 107.151 [82.218–114.317]
ASYMDS 5.479 [2.565–10.534] 5.128 [1.512–12.871]

ASYMFOFF 4.958 [2.067–10.775] 2.358 [1.311–4.994] *
ASYMSTEPL 6.557 [2.352–11.925] 5.975 [2.459–13.804]

ASYMSTRIDEL 1.670 [0.596–3.288] 2.420 [1.162–4.321] *
ASYMSTRIDET 2.522 [1.359–3.908] 0.987 [0.338–2.430] *
ASYMSTEPT 6.360 [1.730–15.437] 4.959 [1.971–13.533]

ASYMWSPEED 2.323 [1.203–3.813] 2.223 [1.012–3.738]
ASYMCAD 2.522 [1.359–3.908] 0.987 [0.338–2.43] *
BCOMML 50.378 [38.031–87.047] 49.179 [42.281–66.122]
BCOMV 38.808 [24.219–48.124] 34.414 [29.222–43.989]

* The symbol indicates parameters with significant statistical differences (p < 0.05) between MOCAP and MAK,
according to the Mann–Whitney U Test.
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Table 3. Correlation, errors, agreement, and concordance metrics between MOCAP and MAK.

Parameter
ρ0

(MOCAP vs.
MAK)

ρ1
(MOCAP vs.

Groups)

ρ1
(MAK vs.
Groups)

MAE RMSE ICC CCC
[Range]

DS 0.979 * −0.663 * −0.685 * 0.052 0.070 0.976 * 0.976 [0.962–0.985]
FOFF 0.892 * −0.685 * −0.781 * 2.126 3.234 0.861 * 0.861 [0.795–0.907]

STEPL 0.982 * 0.867 * 0.859 * 0.026 0.035 0.982 * 0.982 [0.971–0.988]
STRIDEL 0.983 * 0.869 * 0.846 * 0.053 0.075 0.978 * 0.978 [0.967–0.986]
STRIDET 0.988 * −0.707 * −0.704 * 0.050 0.074 0.983 * 0.983 [0.975–0.988]

STEPT 0.983 * −0.723 * −0.675 * 0.033 0.041 0.980 * 0.980 [0.969–0.987]
WSPEED 0.982 * 0.889 * 0.873 * 0.073 0.113 0.970 * 0.970 [0.955–0.980]

CAD 0.981 * 0.801 * 0.775 * 3.875 5.470 0.972 * 0.972 [0.958–0.981]
ASYMDS −0.015 0.223 0.347 8.652 12.034 −0.015 −0.014 [−0.213–0.187]

ASYMFOFF 0.462 −0.588 * −0.333 5.831 9.100 0.172 0.246 [0.132–0.353]
ASYMSTEPL 0.820 * −0.374 * −0.438 * 7.528 12.123 0.799 * 0.796 [0.707–0.861]

ASYMSTRIDEL 0.117 −0.215 −0.031 2.201 2.907 0.072 0.104 [−0.097–0.296]
ASYMSTRIDET 0.073 0.004 0.125 2.229 2.834 −0.038 0.058 [−0.120–0.233]
ASYMSTEPT 0.840 * −0.606 * −0.581 * 6.736 10.329 0.728 * 0.729 [0.640–0.800]

ASYMWSPEED 0.055 −0.350 0.070 2.404 3.272 0.061 0.055 [−0.170–0.273]
ASYMCAD 0.073 0.004 0.125 2.229 2.834 −0.038 0.058 [−0.120–0.233]
BCOMML 0.882 * −0.792 * −0.647 * 14.160 17.914 0.792 * 0.791 [0.721–0.846]
BCOMV 0.787 * 0.573 * 0.237 7.289 8.878 0.777 * 0.774 [0.671–0.848]

* The symbol indicates parameters with significant Spearman’s correlation (p < 0.05) and significant ICC agreement
(p < 0.05) between the systems.

As expected, Table 2 highlights deviations in all measurements, although significant
differences are observed only for four asymmetry parameters. This outcome is not un-
usual, as asymmetry parameters are derived from primary spatiotemporal measurements,
and thus, they can be influenced by the propagation of measurement errors for the rea-
sons previously mentioned. Furthermore, while spatiotemporal parameters, such as step
length and step time, generally exhibit consistent distributions across multiple trials, slight
variations may occur in other parameters due to natural fluctuations in motor control.
These fluctuations are more evident in subtle gait cycle variables and derived parameters,
such as asymmetry measures. This phenomenon is observable not only in pathological
subjects but also in healthy controls [69,70]. Nevertheless, the results suggest that the
MAK system can effectively measure all the gait parameters considered, showing good
agreement with those measured by MOCAP despite differences in biomechanical models,
parameter estimation algorithms, and the expected slight variations in gait patterns during
subsequent recordings.

These considerations are further supported by the results presented in Table 3. Re-
garding the ICC, almost all spatiotemporal parameters, except for the FOFF parameter,
show correlation values greater than 0.9, indicating excellent agreement between the two
systems. A good agreement is observed regarding the FOFF and BCOM parameters, with
values ranging from 0.75 to 0.9. In contrast, asymmetry parameters show the weakest
results: only ASYMSTEPL and ASYMSTEPT exhibit good agreement, while the others show
unrelated values. This trend is consistent with the results for CCC and Spearman’s correla-
tion coefficient (ρ0). Both MOCAP and MAK demonstrate similar outcomes in terms of the
correlation between parameters and participant groups, with the magnitude and direction
of the monotonic relationship aligning for significant parameters. The correlation values
range from moderate (|ρ1| > 0.3) to very strong (|ρ1| > 0.7) for both MOCAP and MAK.

These findings suggest strong agreement and consistency between the two systems in
measuring gait parameters, with particularly robust relationships for spatiotemporal and
BCOM parameters. In contrast, the relationship for asymmetry parameters is weaker. How-
ever, it is important to emphasize that asymmetry parameters are more informative when
assessing post-stroke gait profiles, as healthy controls typically do not exhibit laterality.
This factor may have influenced the overall results of the asymmetry correlations.
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4.2. MOCAP vs. MAK Systems: Validation Using Machine Learning

In the first phase, the DB_MOCAP dataset was used as input for the supervised
classifiers, considering both the entire UGP (i.e., all gait parameters) and a subset of 12 gait
parameters with significant correlation (|ρ0| > 0.7) as shown in Table 3. Accuracy was used
as the metric to evaluate model performance, along with the number of errors in assessing
healthy control (HC) and post-stroke (PS) UGPs. The results are presented in Table 4.

Table 4. Models’ accuracy and number of errors using DB_MOCAP.

All Parameters 12 Parameters

Model Accuracy (%) # Errors
(HC Group)

# Errors
(PS Group) Accuracy (%) # Errors

(HC Group)
# Errors

(PS Group)

Fine Tree 97.4% 0 2 97.4% 0 2
LDA 97.4% 0 2 97.4% 0 2
NB 97.4% 0 2 97.4% 0 2

SVM (Linear) 98.7% 0 1 98.7% 0 1
SVM (Quadratic) 96.1% 0 3 96.1% 0 3

KNN (K = 3) 96.1% 0 3 97.4% 0 2
BOOST Tree 97.4% 0 2 94.8% 2 2

The results indicate that the SVM model with a linear kernel is the most effective
for accurately assessing the gait profiles of healthy controls and post-stroke individuals
using the DB_MOCAP dataset as input. The optimality of the linear kernel suggests that
gait profiles are inherently separable by a linear boundary (hyperplane) in their original
mathematical space. This separability may be partially lost when they are reprojected into
a higher-dimensional space (quadratic kernel). As a secondary benefit, computations with
the linear kernel are more efficient than with a quadratic kernel due to its lower complexity.
Moreover, the model performance remains consistent even when the parameter set is
reduced to those showing the strongest correlations (|ρ0|) between MOCAP and MAK.
Other models also maintain consistent performance after reducing the parameter set, except
for KNN, which shows improved accuracy, and BOOST Tree, which shows a decline in
performance. Notably, errors predominantly occur in post-stroke UGPs, with a minimum
of one and a maximum of three errors, suggesting that some gait profiles of post-stroke
individuals were misclassified as healthy controls. However, this is consistent with the
fact that PS UGPs represent post-stroke individuals with varying degrees of disability and
levels of functional recovery.

In the second phase of the analysis, the SVM model with a linear kernel was trained
on the DB_MAK dataset. The results are presented in Table 5. In addition to the number of
classification errors for the HC and PS groups, the specific indexes (IDs) of the misclassified
records are provided for further comparison.

Table 5. Accuracy of SVM models, errors, and misclassification IDs for HC and PS groups.

All Parameters 12 Parameters

Dataset Accuracy (%) # Errors
(HC Group)

# Errors
(PS Group) Accuracy (%) # Errors

(HC Group)
# Errors

(PS Group)

DB_MOCAP 98.7% 0 1 (ID: 64) 98.7% 0 1 (ID: 64)
DB_MAK 98.7% 0 1 (ID: 64) 98.7% 0 1 (ID: 64)

The results indicate that the SVM models achieved identical performance when trained
on DB_MAK and DB_MOCAP datasets, confirming that the differences in the estimated
parameters from the MAK system do not affect the assessment of the overall gait profiles of
healthy controls and post-stroke individuals. Moreover, the accuracy is high, with only a
single misclassification involving the same post-stroke individual (ID 64) in both datasets.
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Furthermore, applying the MATLAB ‘fitPosterior’ function to the SVM-trained model
allows one to determine the posterior probabilities for each observation, providing deeper
insights into the model’s predictions and enhancing the interpretability of its outcomes.
Based on the Platt scaling procedure [71], the model’s decision scores are converted into
probabilistic values, helping to understand the confidence in correct predictions and iden-
tify the sources of misclassifications. This analysis also enables the assessment of the
overall probability of correctly predicting observations from both the HC and PS groups,
considering the trained models in both conditions (using all UGP parameters and only a
subset). The results of this analysis are presented in Table 6.

Table 6. Prediction performance of trained models (average probability and standard deviation) for
HC and PS groups.

All Parameters 12 Parameters

Dataset HC
Probability

PS
Probability

HC
Probability

PS
Probability

DB_MOCAP 0.974 ± 0.07 0.966 ± 0.16 0.986 ± 0.03 0.963 ± 0.17
DB_MAK 0.970 ± 0.07 0.964 ± 0.16 0.952 ± 0.08 0.946 ± 0.17

The results indicate that the trained SVM models exhibit similar probabilities in
correctly predicting healthy control and post-stroke observations, especially when using all
the UGP parameters. The probability is higher for the HC group (42 UGPs), with a small
standard deviation, while performance slightly decreases for the PS group (35 UGPs). When
using a subset of parameters (12-parameter condition), the SVM models show different
trends for the HC group, with an improvement in probability for DB_MOCAP and a
decline for DB_MAK. Conversely, performance decreases for the PS group across both
datasets. However, it is important to note that the results for the PS group also include the
probability associated with the misclassified observation (ID 64). A detailed exploration of
the prediction probabilities for this UGP reveals that it was predicted as a healthy control
with a probability of 0.945 (only 0.055 as post-stroke) for DB_MOCAP and 0.978 (only 0.022
as post-stroke) for DB_MAK. This element has obviously contributed to a reduction in the
overall model’s prediction accuracy for the PS group. After excluding this misclassified
observation, the mean probabilities and standard deviations for the PS group improved, as
shown in Table 7.

Table 7. Prediction performance of trained models (average probability and standard deviation) for
HC and PS groups without ID 64.

All Parameters 12 Parameters

Dataset HC
Probability

PS
Probability

HC
Probability

PS
Probability

DB_MOCAP 0.974 ± 0.07 0.993 ± 0.02 0.986 ± 0.03 0.991 ± 0.04
DB_MAK 0.970 ± 0.07 0.991 ± 0.02 0.952 ± 0.08 0.972 ± 0.07

Moreover, the analysis of the prediction probability associated with the misclassified
observation (ID 64) suggests that its UGP may be more similar to those of healthy individu-
als than post-stroke individuals. A closer examination of the UGP parameters supports this
hypothesis. Figure 4 displays the UGP parameters of the misclassified observation (black
circles) in comparison to the UGP parameters of the HC group (light blue circles) and the
PS group (red circles).

When compared to HC and PS groups, the position of UGP parameters (ID 64) reveals
that the subject’s gait performance aligns more closely with healthy patterns than with
post-stroke patterns. All spatiotemporal parameters, as well as BCOM parameters, fall
within the region associated with the HC group. This trend is also observed in some
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asymmetry parameters, except for ASYMCAD and ASYMWSPEED, which, however, were
less relevant for the model’s prediction (|ρ0| < 0.1).
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The final phase evaluated the cross-prediction capabilities of the two datasets to
complete the performance analysis of MOCAP and MAK data using machine learning. The
performance of the SVM model trained on DB_MOCAP (using all UGP parameters) was
assessed by testing it on DB_MAK to evaluate how well the MOCAP dataset generalizes
to MAK data. Similarly, the performance of the SVM model trained on DB_MAK was
evaluated by testing it on DB_MOCAP for the same purpose. Finally, the two datasets were
merged, and the prediction capabilities were evaluated on this new combined dataset, as in
data augmentation approaches. The results are presented in Table 8.

Table 8. Accuracy of the SVM linear models in the cross-prediction phase.

Cross-Prediction Case Accuracy (%) # Errors
HC Group

# Errors
PS Group

SVM Training on DB_MOCAP; Testing on DB_MAK 97.4% 0 2 (ID: 61, 64)
SVM Training on DB_MAK; Testing on DB_MOCAP 96.1% 1 (ID: 6) 2 (ID: 61, 64)
SVM Training and Validation on DB_MOCAP and
DB_MAK merge dataset 98.7% 0 2 (ID: 64, 141)

This analysis leads to several specific considerations. In the first case (SVM trained on
DB_MOCAP and tested on DB_MAK), a new misclassification of a post-stroke subject (ID
61) was identified, in addition to ID 64. Despite the differences in measurements, the SVM
model trained on MOCAP data still effectively predicts gait profiles from MAK data.

In the second case (SVM trained on DB_MAK and tested on DB_MOCAP), a new
misclassification was observed in the healthy group (ID 6). This misclassification likely
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involves a healthy subject positioned near the decision boundaries created by the SVM
model trained on DB_MAK. As for post-stroke subject ID 64, who exhibits a profile similar
to the HC group, the misclassified healthy subject (ID 6) might have a gait profile closer to
the PS group for specific UGP parameters. Nevertheless, despite measurement differences,
the SVM model trained on MAK data continues to predict nearly all gait profiles from the
MOCAP data accurately.

Finally, in the third case, the SVM model trained on the combined dataset (i.e., 84 UGPs
for healthy controls and 70 UGPs for the PS group) achieved the same accuracy as when
trained on the individual datasets (see Table 5). The two misclassifications (ID 64 and
ID 141) correspond to the same post-stroke subject measured with MOCAP (ID 64) and
MAK (ID 141). This result suggests that merging the two datasets, effectively doubling the
available data size, does not compromise prediction capabilities. This is because the data
collected with both systems (MOCAP and MAK) show irrelevant differences in estimated
gait measurements, which makes the data interchangeable and integrable, allowing for the
creation of high-performing machine learning models with strong predictive accuracies.

All findings derived from the analysis confirm that data from the MAK system enable
the prediction of both normal and pathological gait profiles with an accuracy comparable
to that of the MOCAP system despite the measurement differences highlighted by tradi-
tional validation metrics. This supports our initial hypothesis and answers the research
question. Furthermore, the results emphasize the potential of machine learning approaches
in supporting the validation of alternative movement analysis solutions and enhancing
the understanding and interpretation of each gait profile. This makes machine learning a
valuable tool for evaluating gait improvements or deterioration, particularly for monitoring
and rehabilitation purposes.

5. Discussion

Gait analysis is a powerful and consolidated method for extracting information about
walking patterns in both normal and pathological conditions. While MOCAP systems
are considered the gold standard for instrumented gait analysis, their use is typically
confined to clinical and research settings. As a result, several more practical and low-
cost alternatives have been proposed in recent years to enable their widespread use in
every day and unsupervised environments. However, despite their greater portability and
reduced invasiveness, these alternatives generally exhibit lower accuracy than MOCAP
systems. Analyzing the performance of these solutions in measuring gait features is
therefore crucial before adopting them as tools for monitoring gait changes outside clinical
contexts. Validation procedures, which involve comparing gait parameters from MOCAP
systems and from new technologies, typically rely on statistical analysis and metrics.
However, this approach may be influenced by intrinsic differences between the two systems,
such as signal sources, data processing, non-simultaneous recording, biomechanical models,
and parameter estimation algorithms. As a result, the performance of new technologies is
often underestimated, even when differences in measurements could be insignificant for
assessing overall gait patterns.

To the best of our knowledge, machine learning models, which are primarily used
for classification and severity staging, have rarely been employed in the validation of
new technologies to overcome the direct comparison of gait measurements. Therefore,
this study aims to address this gap by thoroughly exploring the potential of integrating a
machine learning approach into the validation process, demonstrating the equivalence of
parameters estimated from MOCAP and MAK data despite their differences, and moving
beyond traditional validation procedures that rely solely on statistical metrics.

To support our hypothesis, the first stage of the study involved using traditional
statistical metrics to compare two datasets of unique gait profiles (UGPs) recorded by the
MOCAP and MAK systems. Each dataset includes UGPs corresponding to both healthy
and post-stroke individuals. Each UGP consists of spatiotemporal, asymmetry, and body
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center of mass parameters that characterize the peculiarities of the walking pattern of
each subject.

The analysis of medians and quartiles for both datasets revealed many similarities
between gait measurements: although differences are observed in nearly all estimated
parameters, only a few show significant discrepancies. MAE and RMSE indicate lower
errors for all spatiotemporal and BCOM parameters. In contrast, asymmetry parameters
exhibit maximum errors of approximately 12.1%. This behavior was expected, as asymme-
try parameters are derived from spatiotemporal parameters and may propagate estimation
errors, especially in non-simultaneous recordings.

Continuing with the analysis, the correlation values confirmed previous findings,
revealing lower performance for asymmetry parameters, both between MOCAP and MAK
data and between systems and participant groups. Spearman’s correlation values between
systems (|ρ0|) exceed 0.75 for all spatiotemporal and BCOM parameters (Table 3), while
correlations with participant groups (|ρ1|) are slightly lower for both systems. In addi-
tion, ICC and CCC further validate the strong agreement and concordance between gait
measurements from both systems. These validation results, based on traditional statistical
metrics, align with findings from other studies comparing MOCAP and MAK systems,
which report higher correlations than previous Kinect models [72,73]. Other studies have
also documented strong correlations for spatiotemporal [74] and BCOM parameters [43,44].
However, exceptions have been noted for short temporal phases of gait cycles (such as
foot off, double support, and swing time), particularly at higher speeds [34,75]. It is im-
portant to remember the challenges in comparing results across studies due to different
protocols and target populations. Nevertheless, the findings of this study demonstrate that
MAK-based systems can measure gait parameters with accuracy comparable to MOCAP
systems despite differences in biomechanical models, data sources, processing methods,
and parameter estimation algorithms.

In the second stage, a machine learning approach was integrated into the validation
process to demonstrate that residual measurement differences do not impede the accurate
assessment of normal and pathological gait profiles, reinforcing the findings from tradi-
tional statistical metrics. Various machine learning models were applied to the MOCAP
dataset to identify the most effective model for gait profile assessments, achieving an accu-
racy of 98.7%. The analysis determined that the SVM with a linear kernel was the optimal
model for MOCAP data, whether using all the UGP parameters or a selected subset. In
both cases, only one post-stroke gait profile was misclassified (ID 64), with its parameters
showing closer similarity to healthy control gait profiles, as illustrated in Figure 4. An
SVM model with the same configuration was then applied to the MAK dataset (DB_MAK),
achieving the same accuracy (98.7%) and misclassification rate (i.e., the same post-stroke
gait profile). These findings confirm that residual measurement differences between the
two systems are insignificant when assessing overall gait profiles. In addition, the analysis
of posterior probabilities supports this conclusion, demonstrating a probability exceeding
95% of correctly assessing healthy control and post-stroke gait profiles for both systems
(Table 7).

The final analysis demonstrated the interchangeability of the datasets, achieving
accuracy exceeding 96%, and confirmed their integrability, enabling the effective doubling
of the dataset size without compromising prediction performance (accuracy: 98.7%). These
findings once again underscore the substantial agreement between the two systems in
terms of overall predictive capability, enhancing the validity of the measurements and
providing new and innovative insights into the assessment of normal and pathological
gait profiles.

Despite the promising and encouraging findings, this study is not without limitations.
The primary limitation is the relatively small size of the datasets, which could affect the
generalizability of the results. Nevertheless, this study demonstrates that integrating a
machine learning approach into the traditional validation process is highly effective for
assessing overall normal and pathological walking patterns. Moreover, this methodology
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has the potential to enable remote monitoring of gait changes and the timely detection
of deviations from typical walking behaviors. Low-impact and easily deployable tools,
such as camera-based solutions, could facilitate such applications in scenarios where
traditional MOCAP systems are impractical. Furthermore, this approach supports the
widespread detection of gait disorders, which can then be investigated in depth in clinical
settings through diagnostic instrumented gait analysis using MOCAP systems to precisely
quantify any detected abnormalities. Additionally, the use of machine learning posterior
probabilities provides valuable insights into misclassified gait profiles, allowing a deeper
understanding of individual parameters. This capability could also be a straightforward
and synthetic metric for tracking gait improvements or deteriorations over time.

Secondly, we decided to include asymmetry parameters in the investigated UGP
for the completeness of the gait analysis. However, in this study, these parameters were
not particularly relevant for predicting normal and post-stroke gait profiles in both the
MOCAP and MAK systems. This result could be due to the relatively lower number of post-
stroke gait profiles (35 UGPs) compared to healthy control gait profiles (44 UGPs), where
laterality in walking is less pronounced. Although some parameters (such as ASYMSTEPL
and ASYMSTEPT) show strong correlations between the systems, it will be necessary to
expand the analysis of asymmetry metrics to a larger sample, including other pathological
gait profiles. The lower reliability of other parameters suggests caution in the interpretation
and application of asymmetry parameters derived from non-simultaneous acquisitions
in clinical practice. Nevertheless, information about asymmetry could provide valuable
insights for a more in-depth analysis of pathological gaits, which is why these parameters
were considered in this study.

Moreover, this study explored only two configurations of parameters for training
machine learning models. Specifically, the 12-parameter configuration was defined by
selecting the most correlated parameters between the MOCAP and MAK systems. A
more in-depth investigation of the most relevant configurations for machine learning
models, using custom feature selection techniques and fine-tuning model parameters,
could improve the results and help correctly resolve misclassified gait profiles. Finally, the
machine learning models used in this study were trained on balanced datasets and binary
classification problems, which simplified the training process. This decision allowed us
to focus clearly on integrating ML models in the validation process rather than tackling
more classical challenges that involve multiple subgroups or data stratification. However,
exploring more complex scenarios (e.g., multiclass prediction or imbalanced data) would
further enhance the relevance of the proposed approach. In the future, we intend to
investigate more challenging case studies, such as including additional pathological gait
profiles or clinical severity scales in the analysis, thus thoroughly exploring the potential
and providing further insights into using machine learning models for validating motion
analysis systems.

6. Conclusions

This study contributes to advancing the validation of innovative and non-invasive
solutions based on MAK and other RGB-D sensors in comparison to MOCAP systems,
which are considered the gold standard for medical applications. This study highlights
the potential of integrating machine learning models into the validation process, moving
beyond simple measurement comparisons, especially in assessing overall gait profiles. This
methodological approach could provide clinicians with a highly practical, applicable, and
interpretable tool for preventive and rehabilitative care.

The findings of this study support the initial hypothesis of enhancing traditional vali-
dation methods by using machine learning models to assess the significance or irrelevance
of residual measurement errors arising from heterogeneous biomechanical models, signal
sources, parameter estimation algorithms, and other potential intrinsic factors.

In conclusion, while this study highlights the potential and innovation of the proposed
approach, the generalizability of the findings will be addressed and further improved in
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future research. This will be achieved by adopting simultaneous data collection, expanding
the sample size and profile diversity (e.g., including additional pathological gait profiles
and severity scales), and applying advanced feature selection and fine-tuning techniques
to consolidate and enhance the current results. These efforts will enable the full realiza-
tion of the impact of Microsoft Azure Kinect in assessing both normal and pathological
gait patterns.
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