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Abstract: The prediction of fire growth is crucial for effective firefighting and rescue operations.
Recent advancements in vision-based techniques using RGB vision and infrared (IR) thermal imaging
data, coupled with artificial intelligence and deep learning techniques, have shown promising
solutions to be applied in the detection of fire and the prediction of its behavior. This study introduces
the use of Convolutional Long Short-term Memory (ConvLSTM) network models for predicting room
fire growth by analyzing spatiotemporal IR thermal imaging data acquired from full-scale room fire
tests. Our findings revealed that SwinLSTM, an enhanced version of ConvLSTM combined with
transformers (a deep learning architecture based on a new mechanism called multi-head attention)
for computer vision purposes, can be used for the prediction of room fire flashover occurrence.
Notably, transformer-based ConvLSTM deep learning models, such as SwinLSTM, demonstrate
superior prediction capability, which suggests a new vision-based smart solution for future fire
growth prediction tasks. The main focus of this work is to perform a feasibility study on the use of a
pure vision-based deep learning model for analysis of future video data to anticipate behavior of fire
growth in room fire incidents.

Keywords: convolutional long short-term memory; ConvLSTM; deep convolutional neural network;
smart firefighting; thermal infrared image analysis; vision-based flashover prediction

1. Introduction

On average, 40,000 fire incidents occurred annually in Canada from 2010 to 2015 [1].
Of these fire incidents, around 19,000 fires were structural fires, including room fires in
residential, industrial, and institutional buildings [1]. This means that, in Canada alone,
approximately 50 room fires occur every day. Room fires grow fast mainly because of a high
amount of petroleum-based fuels (e.g., modern upholstered furniture, carpets, curtains,
and plastics in appliances) [2]. In general, room fires are usually more dangerous than fire
incidents in open spaces because of the rapid smoke and heat propagation that result in
untenable conditions, endangering the occupants in the building. One particularly deadly
fire growth phenomenon that usually occurs in room fire incidents is called flashover,
when all of the contents in the room ignite simultaneously [3,4]. The ability to detect and
predict flashover has been of great importance for fire safety researchers and fire brigades
to save the lives of occupants and firefighters. In general, looking at vision-based real-
time detection and prediction of flashover is a challenging task [5]. However, significant
attempts have been made utilizing various ideas and techniques to detect and predict
flashover in-room fire tests. For a list of recent vision-based flashover detection techniques,
refer to [2].

Historically, research on fire-growth prediction and detection has relied on data collected
from temperature sensors, heat flux gauges, and heat release rate (HRR) calculations [6,7].
However, the practicality of implementing these data collection methods from research labs
into actual fire ground is limited, as they require multiple fire-resistant sensors readily installed
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in specific room locations [8,9]. Advances in computer vision, imaging technology, and artifi-
cial intelligence (AI) have led researchers to explore vision-based methods using thermal
infrared (IR) and RGB cameras in processing smoke and fire image data as alternatives to
point measurement sensors [2,10–14]. AI has played a pivotal role in analyzing the image
data of smoke and flame, providing faster analysis and less manual data processing.

From recent advancements in AI, Deep Convolutional Neural Networks (DCNNs)
have shown great promise in computer vision tasks [15–17]. Although DCNNs are pow-
erful at finding patterns in spatial data (in applications such as fire and smoke image
classification, detection, and segmentation), they fall short in analyzing spatiotemporal
data (i.e., videos of fire growth). This limitation has led to the research and development of
predictive AI models that aim to forecast future events using time series and sequential
data [18]. Techniques like Recurrent Neural Networks (RNNs) have been used to ana-
lyze temporal data, but they struggle with long-term dependencies and forget previous
information that is crucial for making future predictions [19].

To mitigate this limitation, Long Short-Term Memory (LSTM) networks were intro-
duced. LSTM presented a significant improvement in capturing temporal relationships in
data [20]. Among these models, the convolutional LSTM (ConvLSTM) model combines
the spatial data analysis strengths of DCNNs with the temporal prediction capabilities of
LSTM, offering a robust solution for predicting future events in spatiotemporal higher-
dimensional data, such as video data [21]. Nowadays, AI methods leverage the ability
of Transformers, a class of deep learning models that have fundamentally changed the
landscape of natural language processing (NLP) and have increasingly been applied to
various tasks in computer vision, audio processing, and beyond [22]. Transformers use
a mechanism called “self-attention” to process input data in parallel, making it highly
efficient and scalable compared to previous models like RNNs, LSTMs and DCNNs.

For computer vision applications, such as image classification, object detection, and
semantic segmentation, the Transformer’s ability to capture global dependencies across
the entire image allows a more nuanced understanding and extraction of the features
that exist in the image. Unlike DCNNs, which primarily focus on local features through
convolutional filters, Transformers consider the full context of the image, enabling the
model to make more informed predictions based on the global structure and relationships
between different image regions [22]. This global perspective is particularly beneficial
for tasks requiring detailed scene understanding and object interactions, illustrating the
Transformers’ potential to redefine approaches in computer vision. For instance, the
prediction of the next frame from the current frame of video data requires both global and
local understanding of the image contents and features.

There are plenty of ConvLSTM models that have been introduced to the literature using
attention mechanism, such as [23–25]. We selected one of the most recent attention-based
models, SwinLSTM for this study. We investigated the predictive capabilities of using LSTM
models in predicting flashover in room fire incidents. Both ConvLSTM and SwinLSTM
models were trained using our recorded thermal IR vision data from actual room fire tests
for the task of flashover prediction. SwinLSTM [26] is an advanced combinatorial model
that utilizes Swin Transformer blocks. Like ConvLSTM, SwinLSTM benefits from the power
of DCNN and LSTM, while Swin Transformer blocks improve the prediction performance
of the model considerably. The innovative approach of the self-attention mechanism of
SwinLSTM with both enhanced global and local feature extraction and memorization drove
the model to efficiently process high-dimensional video data collected from room fire tests
with higher accuracy than previous models. Our experimental results of the SwinLSTM
showcased the potential of the model to revolutionize fire incident prediction, offering
insights that can lead to improved safety for firefighters and occupants. In the application
for actual room fire flashover prediction, the compared performance of a ConvLSTM and
SwinLSTM revealed the better prediction capability of the SwinLSTM.
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2. Recurrent Neural Networks

Recurrent Neural Networks (RNNS) are developed to predict events in spatiotemporal
data. In this section, we first look at the general idea of the ConvLSTM model, which is
one RNN model and how convolutional operation and transformer mechanism have been
introduced to these models for better performance and higher accuracy.

2.1. Convolutional Long Short-Term Memory (ConvLSTM)

Advancements in AI, particularly in deep learning, and the use of thermal IR and vi-
sion cameras, have equipped researchers with powerful tools for monitoring and detecting
rapid fire and smoke growth phenomena, such as flashover [11,13,14,27,28]. Despite these
advancements, the prediction of such rapid-fire growth events using vision-based data re-
mains a challenge where the AI model should predict future video frames from limited past
multi-dimensional spatiotemporal data. Traditional RNNs, capable of handling sequential
and time-series one-dimensional data, face challenges with long-term dependencies due to
their tendency to forget previous information. LSTM networks, introduced to overcome
these limitations, incorporate mechanisms for selectively remembering and forgetting
information, making them better suited for capturing long-term dependencies [20]. The
structure of a standard LSTM module, including a forget gate, facilitates this by managing
information flow across sequences, thus serving as a memory unit for predicting subsequent
time steps.

While LSTM models excel at processing one-dimensional data, such as text and signals,
they fall short in handling multi-dimensional spatial sequence data, like images and videos.
ConvLSTM, an extension of the LSTM, integrates convolutional operations within the
LSTM structure, making it suitable for analyzing spatial-temporal data like video data. This
hybrid model allows for the direct processing of two-dimensional image data along with
temporal sequence information, providing a more robust framework for spatial-temporal
data analysis compared to the original LSTM network [21]. Detailed information about
LSTM and ConvLSTM model structures is provided in the Appendix A. It is noteworthy to
mention that the ConvLSTM module is different from the ConvLSTM network. The former
is a module combination of components that act as a network layer, while the latter is an
artificial neural network consisting of ConvLSTM layers and other types of network layers.

The ConvLSTM network architecture, illustrated in Figure 1, consists of multiple
ConvLSTM modules arranged to process video data efficiently. To improve the network’s
training capability of ConvLSTM, a batch normalization layer is positioned between Con-
vLSTM modules. Input data passes through all ConvLSTM layers, batch normalization
layers, and dropout layers. Finally, the input data passes through a 3D convolutional layer
with a Sigmoid activation function. This architecture, detailed in Figure 1, demonstrates the
network component design and their functionality used for predicting complex phenomena
like flashover from IR thermal data. In general, benefiting from both temporal and spatial
information captured in the sequence of image data, ConvLSTM predicts the next frame of
the current video in the future.

2.1.1. Transformers

Transformers are composed of two main components: the encoder and the decoder.
Each encoder layer processes input data with a self-attention mechanism before passing
it through a feedforward neural network. The decoder follows a similar structure, but
includes an additional step of attention over the encoder’s output to make predictions [22].
The core idea behind Transformers is to model relationships between all parts of the
input data, regardless of their positions. For instance, when applied to natural language
processing applications, this allows the model to directly learn the relationship between
distant words in a sentence, without processing the intermediate words sequentially. This
capability comes from the self-attention mechanism, which computes attention scores
representing the importance of every part of the input data to every other part.



Electronics 2024, 13, 4776 4 of 15

Figure 1. The architecture of the ConvLSTM network used in this study, key components of the
network, and their functions.

Building upon their success in natural language processing, Transformers have been
efficiently adapted to tackle complex tasks within the field of computer vision. This
adaptation was marked by the introduction of Vision Transformer (ViT) [29], which applied
the self-attention mechanism to image pixels or patches, treating them analogously to words
in a sentence. As outlined in [29], ViT divides an image into fixed-size patches, linearly
embeds each of them, adds positional embedding which helps the Transformer remember
where each piece was in the original picture, and feeds the sequence of embedding into a
standard Transformer encoder.

2.1.2. Swin Transformer

Swin Transformer is a variant of the Transformer architecture specifically adapted for
computer vision tasks [30]. The Swin Transformer model builds upon the strengths of the
original Transformer model by introducing a hierarchical structure that allows the model to
efficiently process image data of varying size and complexity, making it particularly suitable
for a wide range of computer vision tasks, such as image classification, object detection, and
semantic segmentation [30]. The Swin Transformer processes images through a series of
non-overlapping local windows. To capture global information, it alternates between these
windows and “shifted” windows in subsequent layers. This shifting mechanism enables
cross-window connections without significantly increasing computational complexity, thus
efficiently capturing both local and global contextual information.

By limiting self-attention computation to within local windows and using relative
position bias to maintain translation invariance, the Swin Transformer significantly reduces
the computational cost associated with the self-attention mechanism. This efficiency makes
it scalable to large images and dense prediction tasks. The hierarchical and modular nature
of the Swin Transformer allows that to be easily integrated into existing computer vision
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architectures and scaled for various applications, from small-scale tasks to large, complex
datasets and other deep learning models.

2.1.3. SwinLSTM

SwinLSTM offers a ground-breaking approach to spatiotemporal prediction by combin-
ing the self-attention capabilities of Swin Transformers with the sequential data processing
strengths of LSTM networks. This hybrid model excels at capturing both extensive spatial
dependencies and intricate temporal dynamics, positioning it as a superior choice for
complex prediction tasks, such as rapid-fire spread anticipation [26]. The essence of SwinL-
STM is encapsulated in its innovative cell design, which employs self-attention to process
two-dimensional data, diverging significantly from the traditional convolutional methods
utilized in predecessors like ConvLSTM. This architectural shift enables SwinLSTM to
more effectively comprehend global spatial relationships within data, thereby boosting its
predictive performance for spatiotemporal multi-dimensional data sequences.

Two variants of SwinLSTM have been proposed [26] to cater to different complexities
of prediction tasks: SwinLSTM-B and SwinLSTM-D. SwinLSTM-B, the base model, incor-
porates a single SwinLSTM cell, emphasizing efficiency and simplicity while still delivering
on the model’s promise of effectively capturing spatial and temporal dependencies. On
the other hand, SwinLSTM-D is designed as a deeper, more complex model with multiple
SwinLSTM cells. It includes patch merging and expanding layers to handle spatiotemporal
data at varying scales, making it particularly powerful at addressing more challenging spa-
tiotemporal prediction tasks. For the fire growth prediction task, the power of SwinLSTM
in discerning spatial layouts and temporal progressions offers a promising path toward
enhancing predictive models. The integration of SwinLSTM into our predictive framework
also enables us to extract the intricate dynamics of fire spread over time. The introduction
of SwinLSTM-B and SwinLSTM-D variants handle a broad spectrum of application needs,
from basic to complex spatiotemporal prediction challenges, exemplifying the versatility
and robustness of this novel deep learning algorithm.

2.1.4. Model Architecture

The architecture of SwinLSTM is outlined in Figure 2, introducing two model varia-
tions: SwinLSTM-B and SwinLSTM-D. Figure 2a shows the fundamental SwinLSTM cell
structure, whereas SwinLSTM cell integrates Swin Transformer blocks (STB) with a simpli-
fied LSTM structure around the one for enhanced spatiotemporal representation. The LP
block in the structure denotes linear projection. Patch embedding is the process of dividing
an image into smaller sections, transforming these sections into a series of vectors, and
adding positional information to help a model understand the spatial relationships within
the image. In SwinLSTM architectures, input images are passed through a patch embedding
layer prior to SwinLSTM cells. This way, input images are transformed into sequences
of patches to extract spatiotemporal features. Figure 2b illustrates the architecture of a
SwinLSTM-B model that utilizes a single SwinLSTM cell. As explained, using SwinLSTM-B,
the input image at the current time Xt is divided into patches, embeds these patches, and
then processes them through the SwinLSTM cell alongside the previous time step’s hidden
and cell states (respectively, Ht−1 and Ct−1). The output is then decoded by a reconstruction
layer to predict the next frame. Figure 2c shows SwinLSTM-D architecture. It expands on
the base model by incorporating multiple SwinLSTM cells and including Patch Merging
and Patch Expanding layers for downsampling and upsampling, respectively. This design
facilitates processing across different scales by using hidden and cell states (respectively,
Hl=1,...,m

t−1 and Cl=1,...,m
t−1 , which l denotes the number of the layer) of previous time steps and

layers outputs, enhancing the model’s ability to capture complex spatiotemporal dynamics.
SwinLSTM-D follows a similar process to SwinLSTM-B, but with added complexity for
handling multi-scale spatiotemporal information.
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Figure 2. (a) the architecture of the SwinLSTM recurrent cell. STB and LP denote Swin Transformer
blocks and Linear Projection; (b) the architecture of the SwinLSTM-B model, which contains a
single SwinLSTM cell; and (c) the architecture of the deeper version of the SwinLSTM with multiple
SwinLSTM cells, named SwinLSTM-D.

3. Results
3.1. Data Collection and Preparation

To train LSTM-based deep learning models for this study, we created various video
datasets using thermal infrared (IR) video frames recorded by a FLIR T650sc camera during
several full-scale room fire test experiments [2]. The details of the room set-ups and fire tests
are provided in [2]. IR video data were first re-scaled into smaller sizes: 16 × 16, 32 × 32,
64 × 64, and 128 × 128. However, following the architecture of the original SwinLSTM
work [26], we used videos with the size of 64 × 64 in our test experiments. After re-scaling
and calculating the frame rate of raw IR videos captured from room fire test experiments,
we retained one frame per second for generating training and testing videos while ensuring
that all critical events were included in our datasets. We normalized the entire dataset
using Min-Max normalization, and then separated the dataset into small video batches.
The new datasets are tensors containing short-duration videos (i.e., 20 s, 30 s, 50 s, and 100 s
in length). In this way, we made 16 various spatial and temporal datasets (with different
scales and time durations). Again, following the common video size in the literature [21,26],
we selected the 20 s dataset for training and testing in this study. In general, the dataset
we used for training and testing of our deep learning models had a tensor of length
3338 × 20 × 64 × 64 × 1. We randomly separated the dataset into 70%, 20%, and 10% for
training, validation, and test purposes, respectively. Figure 3 shows two random sample
data from our generated dataset. Note that the frames selected every 5 s mean that we
are looking at a video of size 95 s. We did this to increase the variation between frames of
videos in order to force models to learn images with higher amounts of variations, resulting
in better model generalization.
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Figure 3. Two randomly selected data samples from the entire dataset. For the sake of illustration, we
showed every 5 s. Red and yellow colors are lower and higher range of temperatures, respectively.

3.2. SwinLSTM Implementation and Setup

In order to train the LSTM-based models for evaluation and comparison, we imple-
mented each model using the PyTorch library. We trained models for 10 epochs with a batch
size of 16 using one NVIDIA Tesla K80 and 16 GB of Memory. The Adam Optimization [31]
is used as the optimizer with its default parameters utilizing binary cross-entropy as the
loss function. As a random illustration of one training trend of SwinLSTM architecture,
Figure 4 shows that SwinLSTM architecture almost converged after a few epochs using
our experimental setup regarding the trend of mean square error (MSE) as the criteria for
training performance.

Figure 4. Training and validation of SwinLSTM for room fire IR data.

We used SwinLSTM-D architecture for the evaluation in this study, also to report
the results from SwinLSTM-B, briefly. Therefore, for simplification from hereon, we use
SwinLSTM interchangeably with the SwinLSTM-D. The pre-trained weights from the
training of the SwinLSTM model on the Moving-MNIST dataset were used as the initial
training weights of the model. The Moving-MNIST dataset is a challenging benchmark
designed for evaluating image sequence prediction models. It consists of sequences of
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frames showing two digits moving inside a 64 × 64 grid, simulating complex, dynamic
patterns that require advanced temporal and spatial understanding for accurate prediction.
This pre-training provided our model with a robust foundational knowledge of handling
dynamic sequences, which is crucial for understanding the intricate movements within
fire-related video datasets. Table 1 illustrates the comparison size of different LSTM-based
models used in this study. Looking at the table, it is clear that SwinLSTM achieved a
better MSE loss value (definition of MSE provided in Equation (3)) with the cost of slower
performance in comparison to the other two models.

Table 1. Comparison table for the number of parameters used in each LSTM-based deep learning
model. Latency was calculated by the average of the time needed for generating frames in different
test videos.

Methods ConvLSTM SwinLSTM

Parameters 3.8 Mb 20.1 Mb

Latency 27 ms ± 0.12 35 ms ± 0.65

3.3. Qualitative Results

We applied the trained SwinLSTM deep learning models for the test datasets that we
collected and created, containing 338 fire content video IR data from different room fire
test experiments. In Figure 5, the top row is ten past seconds, and the second row is ten
seconds of the future (i.e., ground truth frames). The third row is the prediction results
of SwinLSTM for ten seconds in the future. From the figure, it is clear that SwinLSTM
is capable of generating future frames that include fine details and subtle changes in the
image. For instance, the location of the window was not fixed in the experiments, but the
model can predict that accurately. It is observed that the loss of details from the future
frames is inevitable for the three models; however, SwinLSTM generates future frames
with more details regarding the flame heights compared to the ground truth frames.

Figure 5. Results of SwinLSTM applied on test dataset.

In Figure 6, there are randomly selected results of the trained ConvLSTM used in our
study applied for our test IR video dataset. The results show that although ConvLSTM is
good at predicting future frames, it cannot predict details of the fire dynamics (e.g., flame
movement details) in the image with high precision. In general, LSTM-based models are
able to provide future frames by keeping the most of abstract content such as the location
of the opening and the general shape of the flame. For a better comparison, we need to
look at the quantitative results. To show that the temperature content in images is also
approximately retained in generated future frames, we also provided the colormap of
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images in Figure 6. It is difficult to compare between temperature of ground truth frames
and the generated ones since conversion from RGB values to temperature data comes
with the loss of information in this study. Approximately, earlier generated future frames
have more correlation with ground truth frames than the further future generated frames.
However, in total, the range of temperature is reasonable and acceptable.

Figure 6. Selected frames from test dataset for better illustration of prediction details by ConvLSTM
model. The temperature colormap also provided for better comparison between ground truth images
and the predicted images.

3.4. Quantitative Results

Although SwinLSTM could predict fire growth images similar to reality, it is important
to know how far the prediction of the model deviates from the ground truth images. For this
reason, we are reporting here the results of common quantitative assessment measures. The
structural similarity index measure (SSIM) is a method for predicting the perceived quality
of digital images. It is also used for measuring the similarity between two images. The
SSIM between predicted and ground truth frames is defined as the mathematical expression
in Equation (1). SSIM values close to value one indicate a high degree of similarity.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1)

where x and y are the compared prediction and ground truth images, µx and µy represent
the average intensities of x and y images, σ2

x and σ2
y represent the variance of x and y,

σxy is the covariance of x and y, and C1 and C2 are constant. We also reported MSE and
Mean Absolute Error (MAE) as other metrics between predicted and ground truth frames
(see Equations (2) and (3)). A simple explanation for these metrics is that MAE and MSE



Electronics 2024, 13, 4776 10 of 15

measure the average and variance of the residuals between predicted and ground truth
images, respectively.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where yi and ŷi are image pixels at location i of the predicted and ground truth images,
and n is the spatial dimension of the images. The results of the comparison assessment
measure for one test video sample (qualitatively illustrated in Figure 5) used for testing
SwinLSTM are illustrated in Figure 7. The fire details, such as flame area, were not clear in
the qualitative comparison figure, but here, from Figure 7, it can be seen that the value of
SSIM is decreasing while the value of MAE is increasing. The reason is that the more time
passes in the future, the more difficult it is for the model to predict the future. However, the
difference between the values for the next frame in the future and 10 frames in the future is
not significant. The MSE trend value was constant while the MAE increased. This can also
be expected since the average value of intensities in the frames is similar over time while
the variance of average intensity per frame between ground truth images and prediction
increases due to the loss of details by passing the time in the future. Again the differences
are meaningful, but not significant, and in general SwinLSTM can predict images with high
SSIM values.

Figure 7. Quantitative comparison analysis of ground truth image and prediction result image of
SwinLSTM applied on IR video data shown in Figure 5.

Table 2 shows a notable performance comparison of LSTM-based models applied to
our test IR video dataset. The pre-trained weights from the Moving-MNIST dataset boosted
LSTM-based models with a pre-understanding of motion, enabling it to perform more
effectively to the specific challenges presented by the image sequence of fire dynamics. From
Table 2, the average SSIM values for the results of almost all LSTM-based models are around
1, which confirms the high similarity between ground truth images and predicted images.

Table 2. The performance (average and standard deviation) comparison table of LSTM-based deep
learning models on test IR video data.

Model ConvLSTM SwinLSTM-B SwinLSTM-D

SSIM 0.97 ± 0.062 0.96 ± 0.021 0.98 ± 0.010

To further evaluate the performance of the SwinLSTM model, we calculated the same
similarity and error measurements for a few novel test videos data collected from a com-
pletely different room fire test IR dataset [32]. The graph in Figure 8 shows frame prediction
results by SwinLSTM model for 20 randomly selected test videos from that dataset. It
should be noted that these videos were unseen, and with almost different test setups (e.g.,
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various opening sizes and locations, angle of view, temperatures, and fire behavior). As
can be seen, the maximum range of error and similarity differences are still negligible, and
the performance of the model for various data situations is significantly stable.

Figure 8. Performance of SwinLSTM in prediction of one frame in future for 20 randomly selected
room fire test videos.

4. Discussion and Conclusions

In this study, we applied two deep learning architectures, SwinLSTM and ConvLSTM
models, to tackle the challenge of predicting rapid room fire growth. The nature of fire
growth in enclosed spaces is alarmingly rapid, leaving minimal time for occupants and
firefighters to respond effectively. Furthermore, the potential for a fire to transition to a
flashover stage, where it consumes a room entirely, underscores the urgency of accurately
forecasting fire behavior to safeguard lives.

Traditionally, prediction efforts have relied on sensor-based data, requiring the prior
installation of sensors and gauges in a room. While this approach helped establish the
scientific understanding of flashover phenomena, it falls short in practical fireground
scenarios due to its inherent limitations and lack of flexibility. Vision-based methods using
thermal IR and RGB cameras have emerged as promising alternatives, overcoming some
constraints of conventional techniques by enabling fire detection, location, and growth
monitoring through dynamic visual data.

This study represents a significant advancement in fire behavior prediction. We
harnessed the power of deep neural networks, specifically the SwinLSTM and ConvLSTM
models, to leverage spatiotemporal data, a previously untapped strategy in this context.
The adoption of Swin Transformers in our models is particularly noteworthy for its ability
to capture complex spatial relationships and temporal dynamics in high-dimensional
data. This approach allows for a nuanced understanding of fire development, offering the
potential to predict critical fire behaviors, such as flashover, several seconds in advance with
remarkable accuracy, instilling hope for improved fire safety. The findings demonstrate
that Convolutional LSTM-based models such as ConvLSTM and SwinLSTM are capable of
predicting general and abstract contents of future frames with acceptable detail contents
useful to be employed in fire safety applications such as flashover detection, where the
need is to predict the onset of flashover.

Based on the best of our knowledge from the literature, this study is the first sample
of vision-based prediction of rapid-fire growth prediction. Our work in the use of convolu-
tional LSTM-based deep learning models provides a promising framework for the further
development of methods to predict and monitor fire growth in room fire incidents using
vision-based data. In terms of future work, training these models on vision-based datasets
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with various content variations will improve the accuracy of the methods as well as predict
frames farther into the future to save more lives and properties from room fires.
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Appendix A

Basics of Recurrent Network Models

In this Appendix, we provided the fundamentals and details of recurrent and LSTM-
based convolutional neural networks as a reference for non-expert reader. We recommend
to review the appendix before reading the entire study for better understanding the method-
ology. Details of components in a recurrent cell can be seen in Figure A1C. From the figure,
the output of a recurrent layer (see Figure A1A) is fed to the input in a loop. In reality,
this small recurrent network with one layer can be represented in an unrolled version
(Figure A1B). The mathematical expressions of one standard recurrent cell can be expressed
by Equation (A1). {

ht = σ(Wh · ht−1 + Wx · xt + b),

yt = ht
(A1)

where xt, ht, and yt denote the input vector, hypothesis vector or recurrent information,
and the output vector of the recurrent cell at time t, respectively. Wh, Wx, and b are the
network weights and the bias. If we omit Wh · ht−1 term in Equation (A1), then the cell is
converted into one standard neural network. In neural networks, activation functions [33],
here Sigmoid function, are used to give non-linearity to the network equations.

Figure A1. Schematic of (A) a simple standard recurrent layer, (B) unrolled version of a simple
recurrent layer, (C) detailed components of a recurrent neuron or cell.

As explained in the introduction section, LSTM architecture is designed based on
RNN models to alleviate the problem of memory loss for longer data sequences. The
mathematical expressions of the LSTM with forget gate is presented by Equation (A2).
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ft = σ(W f h · ht−1 + W f x · xt + b f ),

it = σ(Wih · ht−1 + Wix · xt + bi),

c′t = tanh(Wc′h · ht−1 + Wc′x · xt + bc′),

ct = ft · ct−1 + it · c′t,

ot = σ(Woh · ht−1 + Wox · xt + bo),

ht = ot · tanh(ct)

(A2)

Figure A2 is the implementation and deployment of Equation (A2) as a schematic for
one LSTM cell or layer. The input data in a form of one-dimensional sequence is fed to the
LSTM cell as Xt and states of previous layers ht−1 and Ct−1 provided separately as inputs.
The output of the cell will be the states of the cell in the current time sending to the next
layer, as well as the hypothesis of the current layers ht, which can be converted into the
prediction y using a decoder layer (i.e., use of a loss function).

Figure A2. Schematic of original LSTM architecture with forget gate.

The two-dimensional version of LSTM cell was designed using convolutional opera-
tion. Mathematically, one ConvLSTM cell can be expressed as Equation (A3).

ft = σ(W f h ∗ ht−1 + W f x ∗ xt + b f ),

it = σ(Wih ∗ ht−1 + Wix ∗ xt + bi),

c′t = tanh(Wc′h ∗ ht−1 + Wc′x ∗ xt + bc′),

ct = ft · ct−1 + it · c′t,

ot = σ(Woh ∗ ht−1 + Wox ∗ xt + bo),

ht = ot · tanh(ct)

(A3)

In a ConvLSTM cell, matrix multiplication at each gate of classical LSTM is replaced
with convolution operation. Comparing Equation (A2) with Equation (A3), the only
difference is the utilization of convolutional operation ‘∗’ instead of multiplication ‘·’ in
gate sub-layers. In Figure A3, you can see the structure of one ConvLSTM layer.

Having ConvLSTM cells, it is possible to connect several ConvLSTM cells in various
configurations and with other types of convolutional layers (e.g., batch normalization) to
create a complete ConvLSTM network for the task of video frame prediction.
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Figure A3. Details of the recurrent structure of a ConvLSTM module.

References
1. Statistics Canada. Incident-Based Fire Statistics, by Type of Fire Incident and Type of Structure; Statistics Canada: Ottawa, ON, Canada,

2017. [CrossRef]
2. Mozaffari, M.H.; Li, Y.; Ko, Y. Real-time detection and forecast of flashovers by the visual room fire features using deep

convolutional neural networks. J. Build. Eng. 2023, 64, 105674. [CrossRef]
3. Peacock, R.D.; Reneke, P.A.; Bukowski, R.W.; Babrauskas, V. Defining flashover for fire hazard calculations. Fire Saf. J. 1999,

32, 331–345. [CrossRef]
4. Cortés, D.; Gil, D.; Azorín, J. Fire Science Living Lab for Flashover Prediction. Proceedings 2019, 31, 87. [CrossRef]
5. Mozaffari, M.H.; Li, Y.; Weinfurter, M.; Ko, Y. Study of flashover in full-scale room fires using imaging technologies. In Technical

Report; National Research Council of Canada: Statistics Canada: Ottawa, ON, Canada, 2024. [CrossRef]
6. Kim, H.J.; Lilley, D.G. Flashover: A study of parameter effects on time to reach flashover conditions. J. Propuls. Power 2002,

18, 669–673. [CrossRef]
7. Zhang, Y.; Wang, L. Research on flashover prediction method of large-space timber structures in a fire. Materials 2021, 14, 5515.

[CrossRef] [PubMed]
8. Tam, W.C.; Fu, E.Y.; Peacock, R.; Reneke, P.; Wang, J.; Li, J.; Cleary, T. Generating synthetic sensor data to facilitate machine

learning paradigm for prediction of building fire hazard. Fire Technol. 2020, 59, 1–22 . [CrossRef] [PubMed]
9. Huyen, A.; Yun, K.; De Baun, S.; Wiggins, S.; Bustos, J.; Lu, T.; Chow, E. Dynamic fire and smoke detection and classification for

flashover prediction. In Proceedings of the Pattern Recognition and Tracking XXXII, Online, 12–16 April 2021; SPIE: Bellingham,
WA, USA, 2021; Volume 11735, p. 1173502. [CrossRef]

10. Mozaffari, M.H.; Li, Y.; Ko, Y. Generative AI for Fire Safety. In Applications of Generative AI; Springer: Berlin/Heidelberg, Germany,
2024; pp. 577–600. [CrossRef]

11. Mozaffari, M.H.; Li, Y.; Ko, Y. Detecting Flashover in a Room Fire based on the Sequence of Thermal Infrared Images using
Convolutional Neural Networks. In Proceedings of the Canadian AI, Toronto, ON, Canada, 30 May–3 June 2022. [CrossRef]

12. Ko, Y.; Hamed Mozaffari, M.; Li, Y. Fire and smoke image recognition. In Intelligent Building Fire Safety and Smart Firefighting;
Springer: Berlin/Heidelberg, Germany, 2024; pp. 305–333. [CrossRef]

13. Yun, K.; Bustos, J.; Lu, T. Predicting rapid fire growth (flashover) using conditional generative adversarial networks. arXiv 2018,
arXiv:1801.09804. [CrossRef]

14. Francis, J.; Chen, A. Observable characteristics of flashover. Fire Saf. J. 2012, 51, 42–52. [CrossRef]
15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
16. Kim, B.; Lee, J. A video-based fire detection using deep learning models. Appl. Sci. 2019, 9, 2862. . [CrossRef]
17. Han, D.; Lee, B. Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Saf. J. 2009, 44, 951–961.

[CrossRef]
18. Zhou, Y.; Dong, H.; El Saddik, A. Deep learning in next-frame prediction: A benchmark review. IEEE Access 2020, 8, 69273–69283.

[CrossRef]
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