
Citation: Shin, J.; An, S.; Lee, S.; Lee,

S.E. PIMCoSim: Hardware/Software

Co-Simulator for Exploring

Processing-in-Memory Architectures.

Electronics 2024, 13, 4795. https://

doi.org/10.3390/electronics13234795

Academic Editor: David Defour

Received: 12 November 2024

Revised: 2 December 2024

Accepted: 2 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

PIMCoSim: Hardware/Software Co-Simulator for Exploring
Processing-in-Memory Architectures
Jinyoung Shin , Seongmo An , Sangho Lee and Seung Eun Lee *

Department of Electronic Engineering, Seoul National University of Science and Technology,
Seoul 01811, Republic of Korea; shinjinyoung@seoultech.ac.kr (J.S.); ahnseongmo@seoultech.ac.kr (S.A.);
leesangho@seoultech.ac.kr (S.L.)
* Correspondence: seung.lee@seoultech.ac.kr; Tel.: +82-2-970-9021

Abstract: As the scope of artificial intelligence (AI) expands and the structure becomes more complex,
the amount of data for inference and training has increased. In traditional computer architectures, the
memory bandwidth limitations have intensified bottlenecks in AI systems, and processing-in-memory
(PIM) architectures have been proposed to overcome this issue. PIM is an architecture that performs
computations within memory, thereby reducing data movement between the CPU and memory.
However, since PIM is difficult to optimize as a general-purpose architecture, it is essential to adopt
an architecture suitable for the target application. While various simulators and emulators have
been introduced for the design space exploration (DSE) of different PIM architectures, simulators
are limited in debugging hardware operations, and emulators face challenges in flexibly modifying
the system configuration, as emulators implement the entire architecture in hardware. Therefore,
this paper introduces PIMCoSim, a comprehensive hardware–software co-simulator for the DSE
of DRAM-PIM systems. This co-simulator partially emulates simplified hardware-implemented
processing elements (PEs) and integrates software models for memory operations, facilitating the DSE
of PIM systems. To validate PIMCoSim, we analyzed results for different computational workloads
by varying PIM structures and operational policies, demonstrating the efficiency of DRAM-PIM
systems. The co-simulation approach in PIMCoSim aims to contribute to analyzing DRAM-PIM
configurations and adopting optimized structures.

Keywords: artificial intelligence (AI); co-simulator; dynamic random-access memory (DRAM);
processing in memory (PIM)

1. Introduction

As AI is applied to various applications, significant research is being conducted on the
architecture of AI [1–3]. With the increasing complexity of neural network architectures,
implementing AI requires managing an enormous number of parameters, which leads to
increased data movement between memory and processors and results in repetitive tasks.
The growth in maximum floating-point operations per second of hardware has exceeded
the growth in DRAM bandwidth, widening the gap between the two components. Conse-
quently, traditional computer architectures, composed of CPUs and memory, struggle to
meet the rising demands for data processing [4]. This challenge causes system performance
degradation and bottlenecks, eventually leading to what is known as the memory wall.

To address these challenges, research has been conducted to develop novel computer
architectures. In the von Neumann architecture, where instructions and data are stored in
memory without physical separation, memory bandwidth causes bottlenecks. In response,
the Harvard architecture was introduced, with physical separation of instruction and data
spaces to enhance processing speed more efficiently.

A large body of research has focused on improving throughput by integrating multiple
accelerators, graphics processing units (GPUs), field-programmable gate arrays (FPGAs),

Electronics 2024, 13, 4795. https://doi.org/10.3390/electronics13234795 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13234795
https://doi.org/10.3390/electronics13234795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-1069-2454
https://orcid.org/0009-0006-1823-3162
https://orcid.org/0009-0004-7197-4029
https://orcid.org/0000-0003-3817-4383
https://doi.org/10.3390/electronics13234795
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13234795?type=check_update&version=1


Electronics 2024, 13, 4795 2 of 20

and application-specific integrated circuits (ASICs) into computer architectures, with par-
ticular attention given to parallel computing [5,6]. The GPUs play critical roles in high-
performance computing tasks such as graphics processing, computer vision, and AI [7].
On the other hand, FPGAs and ASICs operate as accelerators by executing computations
through optimized circuit architectures designed for specific applications, offering greater
power efficiency compared to GPUs [8].

Research has also focused on addressing the memory wall caused by increased data
movement by modifying memory architecture. Research study [9] utilizes the internal
bus of dynamic random-access memory (DRAM) to transfer data from the source row
to the target row in a pipelined manner, enabling the efficient usage of large volumes of
data, specialized instructions are defined to manage large data operations, and small logic
additions are incorporated to facilitate efficient execution of these tasks. Another promising
approach is resistive random-access memory (ReRAM), which leverages resistance state
changes due to external stress to store data. ReRAM offers high read and write speeds, a
simple structure, and high integration density. These features make ReRAM an attractive
option for high-performance computing applications, such as machine learning. The unique
features of ReRAM have sparked growing interest in its potential to meet the demands of
data-intensive applications [10].

Data movement bottlenecks arise when all computations are handled exclusively by
the arithmetic and logical units (ALUs) of a CPU. In response, PIM architectures have been
introduced to perform computations closer to or within memory, reducing data transfers
between the CPU and memory [11]. However, as PIM cannot deliver optimized perfor-
mance with a single architecture across all applications, it is crucial to adopt a structure
suited to specific applications. To enhance the performance of PIM architectures, various
research efforts are being conducted, exploring options such as compiler optimizations,
instruction set definitions, the number and functionality of PEs, cache architectures, data
path structures, and the types of memory [12,13].

As research on PIM architectures progresses, the importance of simulation tools for
effectively analyzing and improving various designs has become increasingly significant.
Simulation tools play a critical role in establishing environments to evaluate and improve
system performance by exploring and analyzing not only target systems but also PIM
architectures alongside memory simulations [14–16]. Accordingly, simulators and emula-
tors for the DSE of PIM architectures have been introduced. Software simulators model
various components of PIM, including PIM kernels, memory timing, power consumption,
and memory controller policies, allowing for the exploration of diverse configurations.
Moreover, these tools offer the ability to modify various system configurations and enable
the flexible simulation of the entire system by integrating PIM simulators with those of
conventional subsystems.

However, software simulators face performance limitations when simulating complex
systems, particularly for computation-intensive, heterogeneous computing architectures,
and present challenges in accurately modeling system architecture [17]. To overcome
these limitations, researchers have focused on implementing structurally accurate target
models on FPGAs for emulation, aiming to achieve both speed improvements and reliable
results. The emulator enhanced the simulation speed and provided a comprehensive
analysis of the entire system, including the PIM architecture and cores. Furthermore, the
enhanced speed enables researchers to perform DSE on PIM architectures with increasingly
complex workloads.

Previous simulators, which run on CPU platforms, are not well suited for debugging
the structural characteristics of hardware [18]. In contrast, emulators implement the entire
PIM architecture in hardware, making it less flexible than simulators in terms of system
configuration adjustments. Moreover, since emulators are designed for specific boards, im-
plementing complex systems may present challenges for practical application. To address
these issues, the need for co-simulation has emerged [19,20]. This approach combines soft-



Electronics 2024, 13, 4795 3 of 20

ware simulators and hardware emulators, enabling the verification of hardware’s structural
characteristics while also allowing for flexible simulation across various systems [21].

Compared to traditional simulators, where PIM’s memory and processors are well
detailed, allowing for complex simulations, there is a lack of precision in verifying the
functional accuracy of PEs. PEs, which have a significant impact on the computational
performance and throughput of PIM, must be analyzed through DSE to evaluate their
performance and functionality, and to design structures suitable for specific systems and
workloads. Therefore, we emphasize the need for a co-simulator capable of performing DSE
on both PIM architectures and the hardware characteristics of PEs in a flexible environment.

In this paper, we propose PIMCoSim: an HW/SW co-simulator for exploring PIM
architectures. PIMCoSim consists of a software simulator and hardware-implemented PEs
of PIM, allowing researchers to implement DRAM-based PIM architectures in the simulator
while simultaneously evaluating the hardware characteristics. The main contributions are
as follows:

• The software simulator enables debugging of system operations by applying the mod-
ified PE operations and memory access policies to actual hardware implementations.

• Instead of emulating the entire system, PIMCoSim partially emulates simplified pro-
cessing units, allowing for the examination of hardware characteristics and perfor-
mance evaluation in a flexible environment.

• By utilizing the provided basic PIM-specific instruction set, applications are imple-
mented in the software simulation, enabling the exploration of PIM designs suited to
target workloads and instruction sets.

2. Background and Related Works

Modern data-intensive applications require higher frequencies and faster access than
traditional memory systems. However, traditional memory systems are constrained by nar-
row bus widths, which limit performance, and frequent access results in inefficient energy
consumption. As shown in Figure 1a, systems based on the von Neumann architecture ex-
perience bottlenecks due to bandwidth differences, limiting overall system performance. To
address this issue, the concept of PIM, which combines RAM with computational elements,
was introduced, followed by subsequent research utilizing DRAM [22].

(a) (b)
Figure 1. Comparison of traditional memory architecture (a) and PIM architecture (b).

The PIM architecture, as depicted in Figure 1b, performs computations directly in the
memory, reducing not only the computational load on the CPU but also the data move-
ment between the CPU and memory, making it suitable for alleviating bottlenecks. Since
the computational units access the memory directly, PIM benefits from higher internal
bandwidth. Additionally, PIM offers more efficient data processing by distributing the com-
putational load between the memory and the CPU. PIM architectures with such advantages
are classified based on the type and location of the computational units.



Electronics 2024, 13, 4795 4 of 20

2.1. Data Array

In data arrays, computations are performed at the cell level of the memory, utilizing
the analog properties of memory cells to support computational functions. In particular,
extensive research has been conducted using resistive ReRAM.

ReRAM is a memory technology that stores data based on resistance states and demon-
strates excellent performance in matrix–vector multiplication (MVM) operations. In the cell
array of ReRAM implemented with a crossbar architecture, an input vector is applied as
voltage across the word lines, generating currents proportional to the input voltage based
on the state of each cell. According to Kirchhoff’s law, the currents flowing through the bit
lines are summed to perform MVM operations [23,24].

2.2. Subarray

In subarrays, computations are performed by connecting circuits that execute specific
functions to the row buffer or sense amplifier of the memory, enabling computational
capabilities. This approach leverages existing memory structures to process data directly
within the memory, thereby reducing data movement and latency while enhancing overall
system efficiency.

As shown in Figure 2d, DRAM is composed of cells made up of transistors and
capacitors, where data are stored based on the charge state of each cell’s capacitor. The
DRAM subarray consists of components such as sense amplifiers and row buffers. The
sense amplifier is positioned along each bitline of the subarray and amplifies the charge
from the memory cells, ensuring stable data transfer. The row buffer temporarily stores
the data amplified by the sense amplifier, improving data access speed when accessing
consecutive rows. Research study [25] modifies the DRAM subarray to efficiently perform
bitwise AND operations required for multiplication. By allocating a compute row to copy
operands, activating the bitline precharge and the wordline for bitwise AND operations,
the result is amplified through the sense amplifier connected to the bitline. Additionally, by
integrating an adder tree into the row buffer, multiply–accumulate (MAC) operations are
performed within the DRAM, reducing data movement overhead and enabling efficient
data processing through parallel operations.

Figure 2. Overview of DRAM-PIM architecture.

2.3. Near Bank

Near memory banks, it is possible to integrate more advanced computing units com-
pared to subarrays or data arrays, enabling various and complex operations and reducing
the need to transfer data to the CPU. Research has been particularly active in memory
systems based on DRAM where the near-bank processing approach enhances the computa-
tional efficiency of computer systems.

As depicted in Figure 2b, the DRAM die consists of multiple bank groups, each of which
is further composed of individual banks. Adding computing units near a bank or bank
group reduces memory traffic and enhances the utilization of internal memory bandwidth.
Newton [26] places MAC units within DRAM banks to meet constraints on overall core area
and power overhead. This enables PIM control through the DRAM interface and adds specific



Electronics 2024, 13, 4795 5 of 20

instructions for optimization. The placement of computation units within memory enables
efficient parallel operations, achieving significant bandwidth improvements.

Additionally, by utilizing the stacking of DRAM, as presented in Figure 2a, high-
bandwidth memory (HBM) was employed to achieve further bandwidth improvements.
Research study [27] introduced an HBM-based PIM architecture that integrates single-
instruction multiple data floating-point units (FPUs) near the bank. This architecture
supports parallel processing at the bank level, categorized into single bank, all bank, and all
bank PIM modes, and optimizes PIM operations by incorporating instruction register files,
general register files, and scalar register files. By adding computation units suitable for
machine learning tasks within DRAM banks, this approach saves energy and maximizes
application performance.

2.4. PE Type

The implementation of PEs plays a critical role in PIM architectures, as throughput,
area, and power characteristics vary depending on the design of the PE. Optimizing and
allocating PEs to match the application and memory architecture enables a well-balanced
PIM architecture. Research study [28] utilized a hybrid memory cube (HMC), where logic
layers and multiple DRAM layers are vertically stacked through a hybrid memory cube
(TSV), as shown in Figure 2a, to enhance execution efficiency in graph processing. Unlike
HBM, HMC places specialized PEs for target operations in the logic layer, accelerating
graph computations to improve speed and reduce energy consumption. Another approach
is to use general-purpose processor cores instead of PEs specialized for specific operations.
Research study [29] proposed memory-centric computing by dynamically scheduling tasks
and data within the memory hierarchy to minimize data movement. By allocating data
to memory and performing computations within the memory hierarchy, issues related
to data movement, synchronization, and cache coherence are minimized. Implementing
PEs on FPGAs with reconfigurable logic allows for flexible adjustment of computation
units. Resarch study [30] targets convolutional neural networks (CNNs) and consists of
PEs connected by a statically reconfigurable routing fabric, along with configurable logic
blocks. Each block type is optimized based on specific applications, offering a more flexible
system than PEs implemented as ASICs and enhancing computational performance.

2.5. Prior Related Works

As research on PIM architectures has advanced, the importance of simulators and
emulators for modeling and analyzing architectural complexity and parallelism has grown,
leading to the introduction of various designs. Table 1 summarizes simulators and emula-
tors designed for the DSE of PIM architectures. Each tool is analyzed based on the system
modeling level, distinctive featurs, and the simulation methods.

2.5.1. Simulator

PIMSim [31] integrates DRAMSim2 [32], HMCSim [33], and NVMain [34] simulators
to support hybrid memory simulation, offering performance simulations with a tradeoff
between speed and accuracy across three different modes. Additionally, gem5 [35] sim-
ulates the processor of the entire system, mimicking the core of the target PIM logic to
support full-system-level research. The frontend of PIMSim recognizes and distributes
PIM instructions, allowing researchers to define PIM kernels to minimize application con-
straints. Furthermore, cache hit rates and data locality are tracked, enabling adjustments to
application partitioning strategies.

Sim2PIM [36] provides flexible PIM simulation with high accuracy through compile-
time instrumentation. By leveraging gem5, native code from various hosts, such as Intel,
AMD, and ARM, suitable environments for PIM applications, is executed on the CPU,
with support for hardware performance counters to provide reliable host-side information.
These features allow for simulating only the PIM area, enhancing the simulation speed.



Electronics 2024, 13, 4795 6 of 20

MultiPIM [37] anticipates that PIM will be employed in systems composed of multiple
memory stacks rather than a single memory stack, meeting demands for higher memory
capacity and bandwidth. Additionally, to reflect the architectural details of a real PIM
system in the simulator, MultiPIM simulates specifics such as PIM core consistency, virtual
memory, and latency between stacks. The simulator is divided into a frontend, which
handles instruction simulation, and a backend, which handles memory access simulation,
providing accurate memory request simulation.

CLAPPS [38] introduces a PIM simulator based on the HMC architecture. Employing
a cycle-accurate approach, the simulator accurately models the memory and computational
units within the HMC, enabling experimentation with various architectures. Supporting
read–modify–write operations and parallel processing based on technical specifications
of the HMC, the simulator is optimized for high-performance computing and big data
applications. The simulator consists of independent modules, including transceivers, vaults,
and a PIM interface, which support parallel simulation.

Table 1. Analysis of related works.

Source System Modeling Features Simulation Method

PIMSim [31] Full-system level,
CPU, DRAM, HMC,
NVM, PIM logic

Offers integration with memory-specific
simulators, focusing on accurate memory
system modeling at the DRAM level.

Cycle-accurate simulation into memory ac-
cess patterns and PIM-specific instruction
simulations.

Sim2PIM [36] Full-system level,
CPU, memory

Emphasizes modularity and fast simulations
by adopting configurable memory compo-
nents to support agnostic simulations, focus-
ing less on memory hierarchy specifics.

Fast, parallel simulation method to priori-
tize speed and modularity with host-side
hardware performance counters for captur-
ing real system metrics.

MultiPIM [37] Full-system level,
CPU, PIM logic,
multi-stack DRAM

Targets multi-stack PIM systems, support-
ing complex multi-memory stack architec-
tures and memory network timing through
custom configurations.

Cycle-accurate simulation with instruction
level and memory level for modeling timing
in multi-stack-memory networks.

CLAPPS [38] Full-system level,
CPU, HMC, PIM logic

Focuses on HMC architecture with DRAM
and 3D-stacked memory modeling, support-
ing detailed timing for various HMC com-
ponents.

Cycle-accurate approach, implemented in
SystemC to simulate the HMC architecture,
aligning closely with the RTL design speci-
fications of the HMC.

MEG [39] Full-system level,
CPU, HMC,
nonvolatile memory,
accelerator

A modular design with a bootable Linux im-
age enables full-system software and hard-
ware co-optimization.

Cycle-accurate RISC-V-based emulation
platform with FPGA and HBM support, of-
fering flexible performance monitoring.

PRIMO [18] Memory-system level,
DRAM, HBM, PIM
logic

Full-stack PIM-DRAM framework with a
specialized ISA and software stack for effi-
cient memory management and cross-layer
optimization, tailored for AI workloads.

Cycle-accurate, FPGA-based emulation ap-
proach that provides significant speed im-
provements over traditional CPU-based
simulation, supporting detailed memory ac-
cess trace collection and high-speed, real-
time emulation.

PiMulator [40] Memory-system level,
DRAM, HBM, PIM
logic

Integrates with the LiteX framework for flex-
ible, full-system support on FPGAs, facili-
tating DSE, performance monitoring, and
real-time emulation speed gains.

FPGA-based emulation to achieve cycle-
accurate memory operations, maintaining
emulation state and memory consistency
across operation.

2.5.2. Emulator

MEG [39] is a cycle-exact system emulator developed utilizing HBM and an FPGA-
based RISC-V processor. MEG collects full-system traces, provides hardware counter
functionality for detailed system analysis, and emulates memory system behavior. MEG is
well suited for verifying software flow and enables hardware–software co-optimization
with Linux support.



Electronics 2024, 13, 4795 7 of 20

PRIMO [18] is an emulator designed to overcome the execution time limitations of
CPU-based PIM simulators and to emulate the operations of target DRAM-PIM architectures,
allowing real-time workload analysis. Sixteen bank engines handle parallel operations to
emulate DRAM-PIM on an FPGA, utilizing intra- and inter-bank memory timing controllers to
provide accurate memory access timing information. The PIM compiler optimizes parallel pro-
cessing by mapping scalar–vector and vector–matrix operations to the PIM domain. PRIMO
provides memory access patterns and cycle information for target DRAM-PIM architectures,
achieving speeds up to 6093 times faster than CPU-based simulators.

PiMulator [40] is an emulator that provides a soft-memory and soft-PIM infrastruc-
ture by implementing configurable memory and PIM models on FPGAs. PiMulator is
implemented on an FPGA with a hierarchical architecture of chips, bank groups, banks,
and subarrays to emulate various PIM architectures. Each level in the hierarchy features
adjustable PIM logic, allowing for flexible configuration. PiMulator integrates with the
LiteX framework, allowing for easy construction of PIM systems with RISC-V and various
IPs. Timing is calculated based on an finite state machine (FSM) model of bank states, while
a data synchronization engine synchronizes bank module data, efficiently utilizing the
total memory capacity. PiMulator achieves an average speed that is 28 times faster than
simulations using CPU-based gem5 and DRAMsim3 [41].

3. PIMCoSim
3.1. Overall Architecture

Figure 3 illustrates the target architecture of the PIM that the proposed PIMCoSim,
the HW/SW co-simulator, aims to implement. Multiple pairs of static random-access
memory (SRAM) caches and PEs are connected to the DRAM through the PE data path
and PE controller.

Figure 3. Targeted PIM architecture.

The DRAM and PE controller are simulated in software, while the actual hardware-
implemented PEs are connected via serial communication. In the PIMCoSim architecture,
unlike the targeted PIM architecture, multiple PEs are consolidated into a single PE for area
efficiency. This single PE performs repeated operations as needed to achieve the same oper-
ational results as multiple PEs operating simultaneously. For the SRAM cache connected
to the PE, a single SRAM’s address space is divided into multiple spaces, making it as if
each PE is connected to its own SRAM. The proposed PIMCoSim supports a maximum of
nine PEs; thus 4 bits of the SRAM address are designated as the PE number to divide the
address space.



Electronics 2024, 13, 4795 8 of 20

3.2. Framework

Figure 4 illustrates the flow of hardware and software co-simulation. When a trace is
generated for the application model and PIM operations are allocated, they are converted
into instructions and passed to both the software and hardware models. The PIM Library
enters a waiting state upon receiving tasks and, during this time, performs the interpreted
operations in both the software model and hardware. In order to synchronize the timing
between hardware and software, the next instruction is issued once both the software
and hardware models are in a ready state. Through this process, PIMCoSim ensures that
data are shared and synchronized between the software and hardware, allowing for the
stable simulation of memory system behavior and PE hardware using the application
model. Additionally, the Runtime Library evaluates the overall simulation performance by
receiving parameters for the operation of the PIM Library and the computation time of the
PE hardware.

Figure 4. Flow between simulator software and PE hardware.

3.3. Simulator Software

Figure 5 depicts the overall architecture of the software simulator responsible for
memory system operations. The simulator receives application code from the researcher,
converts it into RISC-V instructions, and transmits it to the hardware via the PIM Library,
which models PIM functionality, and the serial peripheral interface (SPI). The application
code is written using APIs that allocate PIM operations, and the simulation environment is
defined based on the configuration file.

Figure 5. Overview of architecture of the simulator software.

3.3.1. Configurations

The Simulation Library parses the researcher-defined configuration file to model the
memory system environment and establish the PIM architecture. Parameters specified in
the configuration file are summarized in Table 2. The DRAM structure is designed with
parameters that are ranks per channel, banks per rank, burst length, bus width, and PEs
per bank. Timing parameters, based on DRAM operations, are integrated into the Runtime
Library to support DRAM behavior modeling. Additionally, the SRAM cache is modeled
based on timing parameters and the size allocated per PE.



Electronics 2024, 13, 4795 9 of 20

Table 2. PIMCoSim configuration file setting parameters.

Configuration Parameters

Ranks The number of ranks per channel, which are independently ac-
tivated units within the memory. Multiple ranks support more
parallel operations.

Banks The number of banks within each rank, which are units that store
data in segments and enable parallel access. More banks improve
memory access efficiency.

Burst Length The amount of data transferred in a single memory access, determin-
ing the data transferred per clock cycle.

Bus Width The width of the memory bus, indicating the amount of data trans-
ferred at once between memory and CPU or PIM.

SRAM Cache Size The size of the SRAM cache associated with each PE, allowing for
temporary data storage close to the PE to reduce memory access
latency and improve computational efficiency.

PEs per Bank The number of PEs allocated to each bank, which enhances PIM
computational performance through parallel processing.

Timings Various timing parameters that determine system latency.

3.3.2. RISC-V ISE for PIM Workload

To efficiently operate PIM and support the extension of various instructions, an RISC-
V-based instruction set extension (ISE) is provided. RISC-V, an open-source instruction set
architecture (ISA) based on RISC principles, offers a simple and efficient base instruction
set with the flexibility to add a variety of extended instructions, making it widely used
in research.

PIM-specific instructions are defined using the R, I, and S types provided in the RV32I,
as shown in Tables 3 and 4. To support memory access in DRAM and PEs, the sw.pim and
lw.pim instructions are extended, enabling data movement within specific banks. Instruc-
tions are provided for integer and floating-point operations, logical operations, and MAC
operations. Since operand sharing and movement among PEs within PIM are critical, addi-
tional instructions are available to support these functions. Researchers are able to model
the computational requirements of applications by utilizing these provided instructions.

3.3.3. Application Code

PIMCoSim provides an API for developing target applications. The PIMCoSim API
converts specified operations in application code into PIM ISE instructions, transforming
them into low-level commands and traces that the PIM Library and PE hardware are able to
interpret and execute. The converted binary instructions are added to the trace, preserving
the execution order and sequentially passing them to the PIM Library model and PE
hardware, ensuring that the PIMCoSim is synchronized and executed at the expected time.
Therefore, the PIM API not only translates high-level instructions into low-level commands
executable on PIM hardware but also serves as an interface for hardware control and the
simulation model.

Table 3. RISC-V base instruction format with R, I, and S types.

31 25 24 20 19 15 14 12 11 7 6 0
R-Type funct7 rs2 rs1 funct3 rd opcode
I-Type imm12 rs1 funct3 rd opcode
S-Type imm7 rs2 rs1 funct3 imm5 opcode



Electronics 2024, 13, 4795 10 of 20

Table 4. PIM-specific instructions on PIMCoSim.

Instruction Type Instruction Description
S-Type sw.pim Stores data from DRAM to PEs. PE[imm][SRAM[rs1]] = DRAM[rs2]
I-Type lw.pim Loads data from PEs to DRAM. DRAM[rd] = PE[imm][SRAM[rs1]]

R-Type

fadd.pim Performs floating-point addition. PE[funct][SRAM[rd]] = SRAM[rs1] + SRAM[rs2]
fsub.pim Performs floating-point subtraction. PE[funct][SRAM[rd]] = SRAM[rs1] − SRAM[rs2]
fmul.pim Performs floating-point multiplication. PE[funct][SRAM[rd]] = SRAM[rs1] × SRAM[rs2]
iadd.pim Performs integer addition. PE[funct][SRAM[rd]] = SRAM[rs1] + SRAM[rs2]
isub.pim Performs integer subtraction. PE[funct][SRAM[rd]] = SRAM[rs1] − SRAM[rs2]
imul.pim Performs integer multiplication. PE[funct][SRAM[rd]] = SRAM[rs1] × SRAM[rs2]
and.pim Performs bitwise AND operation. PE[funct][SRAM[rd]] = SRAM[rs1] & SRAM[rs2]
or.pim Performs bitwise OR operation. PE[funct][SRAM[rd]] = SRAM[rs1] | SRAM[rs2]
xor.pim Performs bitwise XOR operation. PE[funct][SRAM[rd]] = SRAM[rs1] ∧ SRAM[rs2]
acc.pim Accumulates values within range. PE[funct][SRAM[rd]] = SUM{SRAM[rs1:rs2]}
cp.pim Copies data from source PE to target PE. PE[funct][SRAM[rd]] = PE[rs2][SRAM[rs1]]

This enables researchers to effectively utilize complex functionalities of PIM architecture
with high-level instructions, simplifying application implementation by removing the need
to work directly with hardware interfaces. As a result, researchers are able to easily model
computational and memory access policies using application code for implementation.

3.3.4. PIM Modeling

The Controller model manages the operation of other models within the PIM Library
and sequentially loads PIM-specific instructions that have been converted into traces and
allocates data and computations to the relevant PIM Library models needed for executing
the instructions. Simultaneously, the corresponding instructions and necessary data are
transmitted to the hardware PE through the SPI. Since the DRAM model in the PIM
Library acts as virtual memory within PIMCoSim, data dependency issues arise between
the software model and hardware PE when executing memory access instructions. To
prevent this, when directly accessing DRAM, the simulation of the PIM Library model is
prioritized before passing instructions to the PE hardware. Conversely, when computations
are performed within the PE, instructions are first sent to the PE hardware, allowing the
software simulator to independently simulate computations while hardware operations
are executed. This approach resolves synchronization issues and ensures both efficiency
and accuracy by parallelizing co-simulation as needed. Once the synchronization signal
from the PE hardware is validated and the software model’s computation is complete, the
next instruction is loaded from the trace to continue the simulation.

The DRAM model stores data in the IEEE 754 floating-point format, which is used for
simulation and computations by the hardware PE. Additionally, by handling the software
results and PE hardware computations separately as software DRAM and hardware DRAM,
the system enables comparison and debugging of both computation results. A simplified
FSM, as depicted in Figure 6, is defined, consisting of states for read, write, activate,
precharge, and refresh operations to model the DRAM. Even when DRAM is continuously
accessed in the simulation, unused cells still require refreshing. Therefore, a wait time equal
to the refresh cycle time (tRFC) is applied at each refresh interval (tREFI). In the case of a
read operation, the process transitions from the IDLE state to the active state to activate the
row, then waits for the row-to-column delay (tRCD) time to read the data. Subsequently,
during a read command, timing is modeled with column address strobe (CAS) latency (tCL)
and row active time (tRAS) to ensure timing accuracy and data stability. Once the read
operation is completed, the FSM performs a precharge operation during the row precharge
time (tRP) and transitions back to the IDLE state. For a write operation, the transition
from the IDLE state to the active state is the same as in the read process. Then, during the
write command, there is a wait for the CAS write latency (tCWL) before data are written.



Electronics 2024, 13, 4795 11 of 20

After the write operation is completed, the write recovery time (tWR) allows for stable data
storage, followed by closing the row for the tRP duration, transitioning back to the IDLE
state. The cycle counts for each step are parameterized and passed to the Runtime Library
to model DRAM functionality.

Figure 6. State diagram for DRAM modeling.

The SRAM cache model receives data needed for PE computations from the DRAM
model and facilitates storage and exchange. Each PE model is assigned an SRAM cache
model, where data are stored based on the address interpreted from instructions. Following
the same synchronization process used for DRAM data, the actual SRAM in PE hardware
and the software SRAM cache model store identical data. The SRAM cache is modeled in a
simplified form using read and write latency parameters. According to [42], the write-back
policy was adopted to optimize performance, as write-through cache structures reportedly
cause a performance degradation.

A specified number of PE models are allocated to each bank, serving as computation
kernels and performing operations according to PIM-specific instructions using data stored
in the SRAM cache. Based on the given instructions, they execute addition, multiplication,
and MAC operations, and exchange integer and floating-point computation results with the
SRAM cache. The use of the write-back policy allows the PE models to perform repeated
operations on cached data efficiently, minimizing DRAM access latency and improving
overall system performance.

3.4. PE Hardware

Figure 7 shows the overall architecture of the PE implemented in hardware. It consists
of a data controller module to control data path within the PE hardware, a module for
serial communication with the simulator software, a module for data exchange with the
SRAM, and an operator module containing the floating-point unit (FPU) where actual
computations are performed.

The data controller module includes a decoder to interpret instructions received
from the simulator software and an FSM to perform operations for each instruction. The
serial communication module and the SRAM control module include interfaces to match
the bit length of 1-word between connections. The operator module comprises a 32-bit
FPU capable of addition, subtraction, multiplication, and absolute operations, and an
accumulator consisting of four floating-point adders to perform accumulation operations
within four clock cycles.



Electronics 2024, 13, 4795 12 of 20

Figure 7. Overview of architecture of the PE hardware.

3.4.1. Data Controller

To perform operations for each instruction within the PE hardware, the data con-
troller module first decodes the instruction upon receipt. The decoder interprets the 32-bit
custom instruction based on RISC-V, received from the simulator software, and outputs
signals indicating the operation to be performed (op_code), the address of the SRAM for
reading/writing data (addr), and the PE within the virtual PE array where the operation is
to be executed (pe_sel).

Figure 8 illustrates the state diagram for the FSM included in the data controller
module. When a 32-bit signal is received from the simulator software in the IDLE state, it
determines whether the signal is an instruction or data. For write operations to the SRAM,
a data signal always follows the instruction signal, so the FSM validates if it is ordered
to receive the data signal after interpreting the instruction. If it is determined to be an
instruction, the state transitions to DEC (decode), and if it is data, the state transitions to
W_EX_DATA (write external data). In the W_EX_DATA state, since it involves writing data
received from external sources to the SRAM, the data are repeatedly written to the address
regions of the SRAM corresponding to all selected PEs. After interpreting the instruction in
the DEC state and determining the operation to be executed, the state transitions accordingly.
Except for the RDATA1 (read 1 data) and CP_RDATA (read and copy data) states, which
read SRAM data for a single PE, all other states repeat the operation until the signal pe_last,
which indicates if the operation is repeated for the number of selected PEs, becomes ‘1’.
The abbreviations for the states not mentioned are as follows:

• RDATA2 : read 2 data.
• RDATA9 : read 9 data.
• TXDATA : transmit data to external.
• OP : operate.
• ACC : accumulate.
• W_CP_DATA : write copied data.
• W_OP_RES : write operational result.
• W_ACC_RES : write accumulation result.



Electronics 2024, 13, 4795 13 of 20

Figure 8. State diagram for FSM of the PE hardware.

3.4.2. Communication with Simulator Software

Signals such as instructions and data are exchanged between the PE hardware and the
simulator software via the SPI communication. The SPI mode employed in this PIMCoSim
is mode 3 (CPHA = 1, CPOL = 1), and each communication transmits and receives 8-bit
signals. However, since 1-word in the PIMCoSim system is 32-bit, an interface module is
required to conduct communication four times to create a 32-bit signal.

When communicating between the simulator software (master) and the PE hardware
(slave), it is crucial to perform the communication with proper timing. If the software
sends a signal to communicate when the hardware is not ready, unintended errors occur.
Therefore, in the proposed PIMCoSim, an spi_irq signal is added to notify the software
when the PE hardware needs to communicate. Specifically, the FSM in the data controller
module indicates that the communication is possible when it is in the IDLE state, and the
simulator software waits until the signal is ’1’ before beginning the communication.

3.4.3. SRAM Controller

The SRAM utilized in the PIMCoSim is ISSI IS61WV102416ALL, which supports fully
static operation, eliminating the need for clock or refresh cycles. Each word in the SRAM is
16-bit, and the address is 20-bit. The SRAM controller module consists of a submodule that
generates signals matching the SRAM read/write cycle waveform and a submodule that
controls the bidirectional pins for data exchange between the controller and the SRAM.

Similar to SPI communication, an interface is required to match the word size with the
PIMCoSim system. Since the word size of the SRAM controller is 16-bit, data are exchanged
by combining two data units and performing burst read/write operations.

3.4.4. Operator

The operator module consists of an FPU for performing 32-bit floating-point- or
integer-based PIM operations and an accumulator for accumulation in the MAC operations
required for convolutions. The PIMCoSim utilizes up to nine PEs per instruction, enabling
the addition of nine numbers during accumulation operations. Since the floating-point
adder applied in the PIMCoSim only adds two numbers at a time, the maximum number
of parallel addition operations for nine numbers is four, requiring four sequential stages
of operations.



Electronics 2024, 13, 4795 14 of 20

Figure 9 shows the architectural diagram of the accumulator module. As explained
above, the maximum number of parallel addition operations is four, so the module includes
a total of four floating-point adders. A controller included in the accumulator module
ensures that the results of the addition operations are fed back into the floating-point
adders. This design allows the addition of nine numbers to be completed in a total of four
clock cycles.

The designed floating-point unit (FPU) comprises a floating-point adder and multi-
plier for conducting 32-bit real number operations, and an ALU for integer operations.
Both the adder and multiplier adopt the IEEE 754 standard for floating-point arithmetic.
Additionally, a decoder is integrated to interpret operation codes and select the appropriate
module among the adder, multiplier, or ALU. The FPU is capable of performing various
operations including addition, subtraction, and multiplication for real numbers, as well as
addition, subtraction, multiplication, and logical operations (AND, OR, XOR) for integers.
Based on the input of two numbers and an operand code, the FPU executes the specified
operation and outputs the result after a two-clock-cycle delay.

Figure 9. An architectural diagram of the accumulator.

4. Implementation and Evaluation

This section evaluates the efficiency of a DRAM-PIM system by optimizing application
benchmarks and the number of PEs in the PIMCoSim.The PIMCoSim was implemented
as a Python program on a Raspberry Pi 4, while the PE hardware was implemented
on an Intel FPGA (Cyclone IV EP4CE115F29C7N) with 2MB SRAM (IS61WV102416BLL)
and synthesized by Quartus, targeting an operating frequency of 50 MHz. To verify
the feasibility of the PIMCoSim, we also developed a software simulator that performs
operations of the PIM-specific instructions.

4.1. Experimental Use Case

Table 5 presents benchmarks for general matrix–vector multiplication (GEMV) and
general matrix–matrix multiplication (GEMM) kernels applied to the CNN, and Trans-
former models. GEMV and GEMM are utilized in fully connected layers or convolutional
layers, and matrix sizes employed in various models were selected for benchmarking. The
GEMV is expressed as y = αAx + βy, where A and B are matrix inputs, α and β are scalar
inputs, and x and y are the vector input and vector output, which is overwritten by the
output, respectively. The GEMM is expressed as C = αAB + βC, where C is the pre-existing
matrix, which is overwritten by the output.



Electronics 2024, 13, 4795 15 of 20

Table 5. Benchmark.

Case GEMV Dimension Case GEMM Dimension
GEMV1 256 × 1k

GEMM1 256 × 1k × 9GEMV2 512 × 1k
GEMV3 512 × 2k
GEMV4 1k × 2k

GEMM2 512 × 1k × 9GEMV5 1k × 4k
GEMV6 2k × 4k

The baseline DRAM-CPU system references gem5, focusing on memory system sim-
ulation through the system-call emulation mode. The gem5 configuration employs a
2.90 GHz RISC-V CPU to measure memory accesses. Table 6 shows the memory system
configurations for gem5 and PIMCoSim, with the parameters.

Table 6. Specification of PIMCoSim system.

Memory Configuration

Timing tCL = tRCD = tRP = tCWL = 13.75 ns, tRAS = 35 ns, tWR =
15 ns, tRFC = 260 ns, tREFI = 7800 ns

DRAM 1 channel, 2 ranks/channel, 8 banks/rank,
8-burst length, 8B bus width

PIM Configuration

PE 1 FPU/PE, 1 accumulator/PE,
(1, 3, 9) PEs/bank

SRAM Cache 128B/PE

To simulate GEMV and GEMM in gem5, applications were written in C and compiled
to the RV32I format by the RISC-V GNU toolchain 13.2.0. In contrast, application code for
GEMV and GEMM in PIMCoSim was written in Python, with variations in the number
of PEs located in each bank for each application. To optimize parallel processing of
matrix operations, the Fox algorithm was adopted, allowing multiple PEs in each bank to
perform partial matrix operations simultaneously and aggregate the results. The experiment
evaluated performance differences based on memory accesses for each application and the
number of PEs per PIM bank, comparing the impact of PIM architecture and computation
policies on matrix computation performance.

4.2. Experimental Results

We experimentally evaluated the CPU and memory access patterns for GEMV and
GEMM operations across various matrix sizes to assess the efficiency of PIM operations.

First, we compared memory accesses for each benchmark between the traditional
CPU-based memory system and the DRAM-PIM memory system, examining both the total
accesses and the proportion of each access type based on the number of PEs allocated per
PIM bank, as shown in Figure 10. Because the goal of PIM is to reduce memory bottlenecks
by decreasing memory accesses, these factors were tested in the experiment. In PIM-DRAM,
the proportion of direct accesses to DRAM is lower than in CPU-based memory systems,
while overall cache access patterns tend to remain consistent regardless of the increase in
the number of PEs. This is attributed to the observation that, as the number of PEs increases
in the same application, the number of operands written back to the cache decreases, while
the number of operands loaded or copied remains constant.



Electronics 2024, 13, 4795 16 of 20

Figure 10. Impact of the number of PEs and processing optimization on memory access patterns.

Second, we compared the execution times of emulated PE hardware for each bench-
mark, as shown in Figure 11. In the case of GEMV, the computation time showed an
increasing trend as the dimensions grew. However, as the number of PEs increased, a
significant reduction in computation time was observed. Compared to a single PE, three
PEs resulted in a speed improvement ranging from 1.7 to 1.9 times, while nine PEs achieved
a performance increase between 2.4 and 3.5 times. The performance degradation with
increasing GEMM dimensions was more pronounced than with GEMV since GEMM opera-
tions are more computationally intensive than GEMV. Using three PEs led to a performance
improvement of about 1.2 times compared to a single PE, while nine PEs resulted in an im-
provement of approximately 2.2 times. While the GEMV application demonstrated effective
performance improvements, GEMM showed limited gains even with an increased number
of PEs. This suggests that GEMM requires optimization through tailored computation
policies or a further increase in PEs for additional parallel processing.

Figure 11. Impact of the number of PEs and optimization on the execution time of PE hardware.

Thirdly, we evaluated the computational accuracy and performance by comparing the
mean squared error (MSE) results among the host, software simulator, and emulated PE
hardware for each benchmark, as shown in Table 7. The MSE values in GEMV and GEMM
showed very minor differences, confirming the accuracy of the default PE hardware com-
putation results and the consistency of the software simulator. This experiment provides
reliable results for performance evaluation across various applications and verifies that the
computation performance of PE hardware is effectively analyzed and debugged.



Electronics 2024, 13, 4795 17 of 20

Table 7. MSE analysis of computation performance.

Case PEs per PIM Bank
GEMV (×10−6) GEMM (×10−9)

GEMV1 GEMV2 GEMV3 GEMV4 GEMV5 GEMV6 GEMM1 GEMM2

Host vs. Simulator
1 0.631 0.617 0.61 0.61 0.366 0.306 0.113 0.102
3 0.658 0.64 0.559 0.628 0.597 0.692 0.057 0.082
9 0.598 0.558 0.506 0.5 0.623 0.672 0.012 0.064

Simulator vs. PE
1 0.094 0.105 0.26 0.251 0.884 1.02 0.177 0.194
3 0.055 0.055 0.172 0.127 0.446 0.43 0.254 0.255
9 0.031 0.041 0.104 0.077 0.239 0.264 0.263 0.264

Host vs. PE
1 0.725 0.722 0.87 0.861 1.25 1.326 0.29 0.296
3 0.713 0.695 0.731 0.755 1.043 1.122 0.311 0.337
9 0.629 0.599 0.61 0.577 0.852 0.936 0.275 0.328

We confirmed that the DRAM-PIM memory system shows improvements in memory
accesses and computational performance compared to a CPU-based memory system in
GEMV and GEMM operations. Notably, increasing the number of PEs led to greater
performance gains in GEMV, due to the data access pattern aligning effectively with
the PIM architecture. In contrast, GEMM showed relatively limited performance gains,
indicating the need for further optimization to address the computational complexity. These
findings highlight both the strengths and limitations of the PIM architecture, underscoring
the importance of optimizing PIM for various computational environments.

PIMCoSim successfully evaluates the efficiency of PIM operations, enabling the analy-
sis of system behavior. By partially emulating simplified PEs without emulating the entire
system, it allows for effective examination of hardware characteristics and performance
assessment in a flexible environment. Specifically, by utilizing the PIM-specific instruction
set provided by the simulator to simulate GEMV and GEMM operations across various
matrix sizes, PIMCoSim demonstrates the potential by showing concrete improvements
in memory access patterns and computational performance compared to a CPU-based
memory system.

5. Conclusions

This paper introduces PIMCoSim, a comprehensive co-simulation framework de-
signed to optimize and evaluate DRAM-PIM architectures. PIMCoSim provides a flexible
simulation environment that integrates both hardware and software models, enabling
precise evaluation of PIM systems for machine learning and other data-intensive applica-
tions. The cycle-accurate emulation enables researchers to analyze detailed memory access
patterns and optimize PIM-specific instructions within various DRAM configurations. Ad-
ditionally, the PIM-specific instruction set allows applications to be implemented within
the software simulation, while supporting RISC-V ISE to enable researchers to extend
instructions suitable for target workloads and apply them to DRAM-PIM systems. For
PIM DSE, researchers modify the characteristics of PEs located in banks, enabling access to
various PE computation structures and facilitating comparisons of access policies using
PIM-specific instructions.

In order to verify the validity of PIMCoSim, we implemented the co-simulator on a
Raspberry Pi 4 and an Intel FPGA. We compared the memory access counts for each bench-
mark and the execution times of the emulated PE hardware between CPU-based memory
systems and DRAM-PIM memory systems. The experimental results demonstrated signifi-
cant improvements in performance and efficiency by leveraging PIM operations to reduce
data movement bottlenecks commonly encountered in conventional CPU-based systems.

Contribution of the PIMCoSim is centered on enabling cross-layer optimization by
effectively aligning hardware and software tasks to maximize the potential of PIM. Addi-
tionally, PIMCoSim provides the flexibility to examine hardware characteristics and assess
performance without emulating the entire system, by utilizing PE hardware implemented
on hardware along with a modeled software memory system. Future research will focus



Electronics 2024, 13, 4795 18 of 20

on extending the functionality of the PIMCoSim to provide more configurable parameters,
exploring additional optimizations, and evaluating DRAM-PIM systems across various
computing environments.

The PIMCoSim in this work lacks the capability to thoroughly analyze the impact
of various bit widths on system performance or systematically compare the performance
differences of cache policies. To address these limitations, future work aims to enhance
the co-simulator to enable the design of instruction architectures optimized for specific
workloads and to analyze performance variations based on data consistency and memory
access costs. These improvements are expected to support the development of more efficient
PIM architecture designs.

Author Contributions: Conceptualization, J.S., S.A., S.L. and S.E.L.; methodology, J.S., S.A., S.L. and
S.E.L.; software, J.S.; hardware, S.A. and S.L.; validation, J.S., S.A., S.L. and S.E.L.; data curation,
J.S., S.A. and S.L.; investigation, J.S. and S.A.; writing—original draft preparation, J.S. and S.A.;
writing—review and editing, J.S., S.A., S.L. and S.E.L.; supervision, S.E.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2024-RS-2022-00156295)
supervised by the IITP (Institute of Information & Communications Technology Planning & Evalua-
tion). This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (IITP-2022-0-01013,
Development of DRAM PIM semiconductor technology for enhanced computing function for edge).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
GPU graphics processing unit
FPGA field-programmable gate array
ASIC application-specific integrated circuit
DRAM dynamic random-access memory
ReRAM resistive random-access memory
ALU arithmetic and logical unit
PIM processing in memory
PE processing element
DSE design space exploration
MVM matrix–vector multiplication
MAC multiply–accumulate
HBM high-bandwidth memory
FPU floating-point unit
HMC hybrid memory cube
TSV Through-Silicon Vias
CNN convolutional neural network
SRAM static random-access memory
SPI serial peripheral interface
ISA instruction set architecture
ISE instruction set extension
CAS column address strobe
FSM finite state machine
MSE mean squared error
GEMV general matrix–vector multiplication
GEMM general matrix–matrix multiplication



Electronics 2024, 13, 4795 19 of 20

References
1. Park, J.; Shin, J.; Kim, R.; An, S.; Lee, S.; Kim, J.; Oh, J.; Jeong, Y.; Kim, S.; Jeong, Y.R.; et al. Accelerating Strawberry Ripeness

Classification Using a Convolution-Based Feature Extractor along with an Edge AI Processor. Electronics 2024, 13, 344. [CrossRef]
2. Guo, X.; Wang, J.; Gao, G.; Li, L.; Zhou, J.; Li, Y. Improving Text Classification in Agricultural Expert Systems with a Bidirectional

Encoder Recurrent Convolutional Neural Network. Electronics 2024, 13, 4054. [CrossRef]
3. Seng, K.P.; Ang, L.-M.; Peter, E.; Mmonyi, A. Machine Learning and AI Technologies for Smart Wearables. Electronics 2023,

12, 1509. [CrossRef]
4. Gholami, A.; Yao, Z.; Kim, S.; Hooper, C.; Mahoney, M.W.; Keutzer, K. AI and Memory Wall. IEEE Micro 2024, 44, 33–39.

[CrossRef]
5. Kim, J.; Kim, R.; Oh, J.; Lee, S.E. Hardware-Based WebAssembly Accelerator for Embedded System. Electronics 2024, 13, 3979.

[CrossRef]
6. Lee, S.; An, S.; Kim, J.; Namkung, H.; Park, J.; Kim, R.; Lee, S.E. Grid-Based DBSCAN Clustering Accelerator for LiDAR’s Point

Cloud. Electronics 2024, 13, 3395. [CrossRef]
7. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the Future of Parallel Computing. IEEE Micro 2011, 31,

7–17. [CrossRef]
8. An, S.; Oh, J.; Lee, S.; Kim, J.; Jeong, Y.; Kim, J.; Lee, S.E. Lightweight and Error-Tolerant Stereo Matching with a Stochastic

Computing Processor. Electronics 2024, 13, 2024. [CrossRef]
9. Seshadri, V.; Kim, Y.; Fallin, C.; Lee, D.; Ausavarungnirun, R.; Pekhimenko, G.; Luo, Y.; Mutlu, O.; Gibbons, P.B.; Kozuch, M.A.;

et al. RowClone: Fast and energy-efficient in-DRAM bulk data copy and initialization. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-46), Davis, CA, USA, 7–11 December 2013 ; Association for
Computing Machinery: New York, NY, USA, 2013; 185–197. [CrossRef]

10. Chen, Y. ReRAM: History, Status, and Future. IEEE Trans. Electron Devices 2020, 67, 1420–1433. [CrossRef]
11. Asifuzzaman, K.; Miniskar, N.R.; Young, A.R.; Liu, F.; Vetter, J.S. A survey on processing-in-memory techniques: Advances and

challenges. Mem. Mater. Devices, Circuits Syst. 2023, 4, 100022. [CrossRef]
12. Lim, J.; Son, J.; Yoo, H. Efficient Processing-in-Memory System Based on RISC-V Instruction Set Architecture. Electronics 2024,

13, 2971. [CrossRef]
13. Kaur, R.; Asad, A.; Mohammadi, F. A Comprehensive Review of Processing-in-Memory Architectures for Deep Neural Networks.

Electronics 2024, 13, 174. [CrossRef]
14. Han, C.; Jeong, Y.; Lee, S.E. Simulation-Based Fault Analysis for Resilient System-On-Chip Design. J. Inf. Commun. Converg. Eng.

2021, 19, 175. [CrossRef]
15. Hwang, D.H.; Han, C.Y.; Oh, H.W.; Lee, S.E. ASimOV: A Framework for Simulation and Optimization of an Embedded AI

Accelerator. Micromachines 2021, 12, 838. [CrossRef] [PubMed]
16. Gabbay, F.; Lev Aharoni, R.; Schweitzer, O. Deep Neural Network Memory Performance and Throughput Modeling and

Simulation Framework. Mathematics 2022, 10, 4144. [CrossRef]
17. Biancolin, D.; Karandikar, S.; Kim, D.; Koenig, J.; Waterman, A.; Bachrach, J.; Asanovic, K. FASED: FPGA-Accelerated Simulation

and Evaluation of DRAM. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’19), Seaside, CA, USA, 24–26 February 2019 ; Association for Computing Machinery: New York, NY, USA, 2019;
pp. 330–339. [CrossRef]

18. Heo, J.; Shin, Y.; Choi, S.; Yune, S.; Kim, J.H.; Sung, H.; Kwon, Y.; Kim, J.Y. PRIMO: A Full-Stack Processing-in-DRAM Emulation
Framework for Machine Learning Workloads. In Proceedings of the 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), San Francisco, CA, USA, 29 October–2 November 2023; pp. 1–9. [CrossRef]

19. Krammer, M.; Schiffer, C.; Benedikt, M. ProMECoS: A Process Model for Efficient Standard-Driven Distributed Co-Simulation.
Electronics 2021, 10, 633. [CrossRef]

20. Barukčić, M.; Varga, T.; Jerković Štil, V.; Benšić, T. Co-Simulation Framework for Optimal Allocation and Power Management of
DGs in Power Distribution Networks Based on Computational Intelligence Techniques. Electronics 2021, 10, 1648. [CrossRef]

21. Biagetti, G.; Falaschetti, L.; Crippa, P.; Alessandrini, M.; Turchetti, C. Open-Source HW/SW Co-Simulation Using QEMU and
GHDL for VHDL-Based SoC Design. Electronics 2023, 12, 3986. [CrossRef]

22. Chen, W.; Qi, Z.; Akhtar, Z.; Siddique, K. Resistive-RAM-Based In-Memory Computing for Neural Network: A Review. Electronics
2022, 11, 3667. [CrossRef]

23. Long, Y.; Na, T.; Mukhopadhyay, S. ReRAM-Based Processing-in-Memory Architecture for Recurrent Neural Network Accelera-
tion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 2781–2794. [CrossRef]

24. Jin, H.; Liu, C.; Liu, H.; Luo, R.; Xu, J.; Mao, F.; Liao, X. ReHy: A ReRAM-Based Digital/Analog Hybrid PIM Architecture for
Accelerating CNN Training. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2872–2884. [CrossRef]

25. Roy, S.; Ali, M.; Raghunathan, A. PIM-DRAM: Accelerating Machine Learning Workloads Using Processing in Commodity
DRAM. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 701–710. [CrossRef]

26. He, M.; Song, C.; Kim, I.; Jeong, C.; Kim, S.; Park, I.; Thottethodi, M.; Vijaykumar, T.N. Newton: A DRAM-maker’s Accelerator-in-
Memory (AiM) Architecture for Machine Learning. In Proceedings of the 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Athens, Greece, 17–21 October 2020; pp. 372–385. [CrossRef]

http://doi.org/10.3390/electronics13020344
http://dx.doi.org/10.3390/electronics13204054
http://dx.doi.org/10.3390/electronics12071509
http://dx.doi.org/10.1109/MM.2024.3373763
http://dx.doi.org/10.3390/electronics13203979
http://dx.doi.org/10.3390/electronics13173395
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.3390/electronics13112024
http://dx.doi.org/10.1145/2540708.2540725
http://dx.doi.org/10.1109/TED.2019.2961505
http://dx.doi.org/10.1016/j.memori.2022.100022
http://dx.doi.org/10.3390/electronics13152971
http://dx.doi.org/10.3390/computers13070174
http://dx.doi.org/10.6109/jicce.2021.19.3.175
http://dx.doi.org/10.3390/mi12070838
http://www.ncbi.nlm.nih.gov/pubmed/34357248
http://dx.doi.org/10.3390/math10214144
http://dx.doi.org/10.1145/3289602.3293894
http://dx.doi.org/10.1109/ICCAD57390.2023.10323637
http://dx.doi.org/10.3390/electronics10050633
http://dx.doi.org/10.3390/electronics10141648
http://dx.doi.org/10.3390/electronics12183986
http://dx.doi.org/10.3390/electronics11223667
http://dx.doi.org/10.1109/TVLSI.2018.2819190
http://dx.doi.org/10.1109/TPDS.2021.3138087
http://dx.doi.org/10.1109/JETCAS.2021.3127517
http://dx.doi.org/10.1109/MICRO50266.2020.00040


Electronics 2024, 13, 4795 20 of 20

27. Lee, S.; Kang, S.H.; Lee, J.; Kim, H.; Lee, E.; Seo, S.; Yoon, H.; Lee, S.; Lim, K.; Shin, H.; et al. Hardware Architecture and Software
Stack for PIM Based on Commercial DRAM Technology: Industrial Product. In Proceedings of the 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), Valencia, Spain, 14–18 June 2021; pp. 43–56. [CrossRef]

28. Nai, L.; Hadidi, R.; Sim, J.; Kim, H.; Kumar, P.; Kim, H. GraphPIM: Enabling Instruction-Level PIM Offloading in Graph
Computing Frameworks. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), Austin, TX, USA, 4–8 February 2017; pp. 457–468. [CrossRef]

29. Lockerman, E.; Feldmann, A.; Bakhshalipour, M.; Stanescu, A.; Gupta, S.; Sanchez, D.; Beckmann, N. Livia: Data-Centric Comput-
ing Throughout the Memory Hierarchy. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’20), Lausanne, Switzerland, 16–20 March 2020; Association for
Computing Machinery: New York, NY, USA, 2020; pp. 417–433. [CrossRef]

30. Li, S.; Niu, D.; Malladi, K.T.; Zheng, H.; Brennan, B.; Xie, Y. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17), Cambridge, MA,
USA, 14–18 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 288–301. [CrossRef]

31. Xu, S.; Chen, X.; Wang, Y.; Han, Y.; Qian, X.; Li, X. PIMSim: A Flexible and Detailed Processing-in-Memory Simulator. IEEE
Comput. Archit. Lett. 2019, 18, 6–9. [CrossRef]

32. Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. DRAMSim2: A Cycle Accurate Memory System Simulator. IEEE Comput. Archit. Lett.
2011, 10, 16–19. [CrossRef]

33. Leidel, J.D.; Chen, Y. HMC-SIM: A Simulation Framework for Hybrid Memory Cube Devices. Parallel Process. Lett. 2014,
24, 1442002. [CrossRef]

34. Poremba, M.; Xie, Y. NVMain: An Architectural-Level Main Memory Simulator for Emerging Non-volatile Memories. In
Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Amherst, MA, USA, 19–21 August 2012; pp. 392–397.
[CrossRef]

35. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The gem5 simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

36. Santos, P.C.; Forlin, B.E.; Carro, L. Sim2PIM: A Fast Method for Simulating Host Independent & PIM Agnostic Designs. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021;
pp. 226–231. [CrossRef]

37. Yu, C.; Liu, S.; Khan, S. MultiPIM: A Detailed and Configurable Multi-Stack Processing-In-Memory Simulator. IEEE Comput.
Archit. Lett. 2021, 20, 54–57. [CrossRef]

38. Oliveira, G.F.; Santos, P.C.; Alves, M.A.Z.; Carro, L. A generic processing in memory cycle accurate simulator under hybrid
memory cube architecture. In Proceedings of the International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), Pythagorion, Greece, 17–20 July 2017; pp. 54–61. [CrossRef]

39. Zhang, J.; Zha, Y.; Beckwith, N.; Liu, B.; Li, J. MEG: A RISCV-based System Emulation Infrastructure for Near-data Processing
Using FPGAs and High-bandwidth Memory. ACM Trans. Reconfigurable Technol. Syst. 2020, 13, 1–24. [CrossRef]

40. Mosanu, S.; Sakib, M.N.; Tracy, T.; Cukurtas, E.; Ahmed, A.; Ivanov, P.; Khan, S.; Skadron, K.; Stan, M. PiMulator: A Fast and
Flexible Processing-in-Memory Emulation Platform. In Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 1473–1478. [CrossRef]

41. Li, S.; Yang, Z.; Reddy, D.; Srivastava, A.; Jacob, B. DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE
Comput. Archit. Lett. 2020, 19, 106–109. [CrossRef]

42. Shin, Y.; Park, J.; Cho, S.; Sung, H. PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory DRAM.
In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization (CGO’23), Montreal, QC
Canada, 25 February–1 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 249–262. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCA52012.2021.00013
http://dx.doi.org/10.1109/HPCA.2017.54
http://dx.doi.org/10.1145/3373376.3378497
http://dx.doi.org/10.1145/3123939.3123977
http://dx.doi.org/10.1109/LCA.2018.2885752
http://dx.doi.org/10.1109/L-CA.2011.4
http://dx.doi.org/10.1142/S012962641442002X
http://dx.doi.org/10.1109/ISVLSI.2012.82
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.23919/DATE51398.2021.9474104
http://dx.doi.org/10.1109/LCA.2021.3061905
http://dx.doi.org/10.1109/SAMOS.2017.8344611
http://dx.doi.org/10.1145/3409114
http://dx.doi.org/10.23919/DATE54114.2022.9774614
http://dx.doi.org/10.1109/LCA.2020.2973991
http://dx.doi.org/10.1145/3579990.3580009

	Introduction
	Background and Related Works
	Data Array
	Subarray
	Near Bank
	PE Type
	Prior Related Works
	Simulator
	Emulator


	PIMCoSim
	Overall Architecture
	Framework
	Simulator Software
	Configurations
	RISC-V ISE for PIM Workload
	Application Code
	PIM Modeling

	PE Hardware
	Data Controller
	Communication with Simulator Software
	SRAM Controller
	Operator


	Implementation and Evaluation
	Experimental Use Case
	Experimental Results

	Conclusions
	References

