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Abstract: A method of electro-thermal co-optimization design for the Gallium nitride (GaN) mono-
lithic microwave integrated circuit (MMIC) power amplifier (PA) is introduced in this paper. Due
to the self-heating effect of the GaN high electron mobility transistor (HEMT), it is necessary to pay
attention to the influence of thermal resistance change on circuit performance when designing a
high-power RF PA. For this purpose, a three-dimensional finite element analysis model of GaN multi-
gate HEMT is developed. The thermal resistance and junction temperature of the device under a RF
dynamic current are extracted by heat transfer simulation and can be substituted into the temperature
node of the transistor model for PA circuit simulation design. To verify the proposed method, a Class
AB MMIC PA was designed and tested using a 0.15-µm GaN-on-SiC process. Through the application
of the above methods, the designed PA performance is optimized and achieves the performance
of over 60% power-added efficiency (PAE) and 38 dBm saturation power (Psat) within a compact
area of 1.6 mm × 2.2 mm. It is demonstrated that the proposed method can effectively improve the
consistency of simulation results and measurement results, which can be a valuable reference for
high-power MMIC PA design.

Keywords: GaN HEMT; power amplifier; MMIC; electro-thermal simulation; thermal resistance;
finite element analysis model; dynamic current

1. Introduction

With the growing demand for mobile device networking, base station transceivers re-
quire greater output power and bandwidth. As a third-generation semiconductor, gallium
nitride (GaN) is increasingly used in high-frequency and high-power device manufactur-
ing [1]. The GaN high electron mobility transistor (HEMT) has the advantages of high
breakdown voltage and power density, as well as good frequency characteristics, which
is a better candidate for designing power amplifiers (PA) in base station transceivers [2].
However, the self-heating effect of GaN transistors under high-power operating conditions
will cause serious module heating, reducing the system’s stability and life [3–6]. Therefore,
in order to improve the performance and reliability of the transceiver, it is important to
perform thermal management of devices and circuits under high-power density [7].

Recently, there have been many reports on the thermal analysis of GaN HEMT and
integrated circuits. Based on the coupling effects of ballistic–diffusive heat conduction and
heat spreading in the GaN HEMT heat conduction model, Chen et al. analyzed the impact
of substrate thickness, GaN thickness, and substrate materials on channel temperatures [8].
Considering conformal mapping technology to convert the device structure into a simple
geometric shape, Mao et al. proposed an analytical thermal model of GaN HEMT, which
can be used to analyze and predict the highest channel temperature and thermal coupling
between multiple gates [9]. Hao’s group proposed a thermoelectric analysis model based
on embedded microfluidic cooling, which embeds the coolant into the SiC substrate of the
GaN HEMT through microchannels to suppress the self-heating effect [10,11]. However,
except for the studies of the thermal impact of transistors under DC, there are few papers
on the heating situation under radio frequency (RF) large signals for a PA.
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In the GaN PA design, Park et al. considered the thermal coupling between multi-
ple transistors and optimized the layout through simulation, which reduced the junction
temperature of the PA by 10 degrees Celsius [12]. Okamoto et al. verified through simula-
tion that GaN-on-SiC and GaN-on-GaN substrates have similar thermal resistances and
designed a 50 W PA by optimizing the heat dissipation structure, which helps to keep the
maximum channel temperature below 200 ◦C, making it more reliable [13]. Zhou et al.
used FE simulation to optimize the layout and obtain the thermal resistance of the device
for circuit design and realized a compact 40 W GaN PA monolithic microwave integrated
circuit (MMIC) while controlling the junction temperature to less than 200 ◦C [14]. However,
in their studies, the influence of junction temperature and the change in thermal resistance
with power and temperature are not fully considered.

It is known that the impact of self-heating effects on transistors will eventually be
reflected in circuit performance. To solve this problem, in this paper, a three-dimensional fi-
nite element analysis model of GaN multi-gate HEMT is developed. The thermal resistance
and junction temperature of the device under a RF dynamic current are extracted by heat
transfer simulation and are substituted into the temperature node of the transistor model
for a PA circuit simulation design.

The remainder of this paper is organized as follows. In Section 2, a GaN HEMT
finite element (FE) analysis model is developed, and the thermal resistance and junction
temperature under a dynamic current are extracted. Section 3 describes the electro-thermal
co-optimization design of the GaN MMIC PA. Thermal resistance and junction temperature
were introduced through thermal nodes to optimize the accuracy of the HEMT model. To
verify the proposed method, a Class AB PA was designed. Section 4 is the measurement
results and analysis, showing the consistency of the simulation results and measurement
results of the designed PA. Section 5 provides the conclusion of this paper.

2. Electro-Thermal Model of GaN HEMT

The heat generated by the power amplifier mainly comes from the self-heating effect of
the GaN HEMTs during the operation. In order to consider the thermal effects of transistors
during circuit design, electro-thermal models can be developed to help predict the heating
of transistors. In previous work, a commercial GaN HMET die was used for thermal
modeling and extraction of thermal resistance [15]. In this paper, we extend this method to
new chip manufacturing processes and make the extracted thermal resistance parameters
more conveniently used in circuit design.

A depletion model structure of the GaN HEMT developed in this work is based on the
transistor-with-individual-backvia (ISV) devices of a 0.15-µm GaN-on-SiC process. Com-
pared with the transistor-with-outside-backvia (OSV) devices, ISV devices are individually
grounded for each source. Although this structure has a larger area, it increases the distance
between the adjacent group of channels and has a huge grounding hole, which is more
conducive to heat dissipation. Therefore, ISV transistors are more suitable for designing
high-power amplifiers. The structure of the ISV GaN HEMT is shown in Figure 1, and the
key characteristics of the process are shown in Table 1.

Table 1. Key characteristics of the proposed GaN HEMT model.

Process Layer/Materials Thickness (µm) Dimensions (µm) Thermal Conductivity λth
(W/(m·K))

Protect and SiNx layers ~0.74 / 60
MET1 and MET2 layers 1.1 & 4 / 317

GaN ~2 1400 × 1400 165 × ((300/T)ˆ0.49)
SiC substrate 100 1400 × 1400 374 × ((300/T)ˆ1.49)

Die-attach layer (Au80Sn20) 40 1450 × 1780 57
Heat sink (Cu) 200 5000 × 5000 400
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Figure 1. Structure diagram of an ISV GaN HEMT (not scale). 
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The static power consumption of the transistor is about 2.6 watts when the gate volt-
age is –1.7 V and the drain voltage is 28 V. Under RF working conditions, the transistor 
operates at a dynamic current that is much larger than the quiescent current. Some values 
between the static current and the highest dynamic current are taken for transistor thermal 
analysis. The thermal simulation results of the transistor surface thermal distribution un-
der different powers are pictured in Figure 2. Figure 2b is a 3D view of the simulation 
results of the entire model. We can see that the temperature spreads outward along the 
heat source. Figure 2c–g show the top surface temperature distribution under different 
dissipation powers. As the dissipation power increases, the surface temperature also rises, 
and the heat conduction becomes more obvious. Figure 3 shows the temperature distri-
bution of the HEMT’s channels along the x-axis shown in Figure 2c. When the dissipated 
power Pdiss = 12.6 W, the highest temperature reaches 170 °C. Due to thermal coupling, 
the highest temperature occurs near the middlemost gate and gradually decreases toward 
both sides. Obviously, the temperature of the GaN HEMT under a dynamic current will 
become very high, which makes it necessary to analyze the effect of the thermal resistance 
changes with temperature on circuit performance [16]. 

Figure 4 shows the thermal resistance from the channel to the substrate’s bottom of 
the transistor at different dissipated powers. It can be seen that the thermal resistance of 
the transistor increases as the power dissipated increases. Furthermore, the thermal re-
sistance can be used for circuit design to improve the consistency of the simulation and 
measurement comparison. Because the dissipated power is mainly consumed in the form 
of heat energy, the temperature of the chip will rise as the dissipated power increases. Due 
to the thermal resistance changing with temperature, a trend equation to express the 
changes in thermal resistance will make the circuit simulation results more reliable. 

The trends of junction temperature and thermal resistance as the dissipated power 
changes are fitted into linear curves, respectively. The fitting curve equation of the junction 
temperature change is 

Figure 1. Structure diagram of an ISV GaN HEMT (not scale).

A GaN HEMT that can be used in power amplifiers is constructed using the process.
The transistor consists of two 8-gate transistors with a single gate length of 100 µm con-
nected in parallel. The adjacent source metal of the two tubes is merged in the layout
to reduce the size of the parallel tubes, which can reduce the length of the drain output
microstrip line, thereby reducing losses and improving the efficiency of the transistor. Based
on our work of reference [15,16], a 3D FE electro-thermal simulation model was developed,
as shown in Figure 2a. The heat source is set at the gates, and the constant temperature
surface is at the bottom of the heat sink. The characteristics of the GaN HEMT, AuSn layer,
and heat sink are listed in Table 1.
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Figure 3. Channel temperature distribution along the x-axis. 

Figure 2. (a) 3D FE analysis model of the proposed GaN HEMT and (b–g) its temperature distribution.
(b) is the 3D image, and (c–g) are the top surface temperature distributions of the device at different
dissipated powers.
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The static power consumption of the transistor is about 2.6 watts when the gate voltage
is −1.7 V and the drain voltage is 28 V. Under RF working conditions, the transistor operates
at a dynamic current that is much larger than the quiescent current. Some values between
the static current and the highest dynamic current are taken for transistor thermal analysis.
The thermal simulation results of the transistor surface thermal distribution under different
powers are pictured in Figure 2. Figure 2b is a 3D view of the simulation results of the
entire model. We can see that the temperature spreads outward along the heat source.
Figure 2c–g show the top surface temperature distribution under different dissipation
powers. As the dissipation power increases, the surface temperature also rises, and the
heat conduction becomes more obvious. Figure 3 shows the temperature distribution of
the HEMT’s channels along the x-axis shown in Figure 2c. When the dissipated power
Pdiss = 12.6 W, the highest temperature reaches 170 ◦C. Due to thermal coupling, the
highest temperature occurs near the middlemost gate and gradually decreases toward both
sides. Obviously, the temperature of the GaN HEMT under a dynamic current will become
very high, which makes it necessary to analyze the effect of the thermal resistance changes
with temperature on circuit performance [16].
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Figure 3. Channel temperature distribution along the x-axis. Figure 3. Channel temperature distribution along the x-axis.

Figure 4 shows the thermal resistance from the channel to the substrate’s bottom of
the transistor at different dissipated powers. It can be seen that the thermal resistance
of the transistor increases as the power dissipated increases. Furthermore, the thermal
resistance can be used for circuit design to improve the consistency of the simulation and
measurement comparison. Because the dissipated power is mainly consumed in the form of
heat energy, the temperature of the chip will rise as the dissipated power increases. Due to
the thermal resistance changing with temperature, a trend equation to express the changes
in thermal resistance will make the circuit simulation results more reliable.

The trends of junction temperature and thermal resistance as the dissipated power
changes are fitted into linear curves, respectively. The fitting curve equation of the junction
temperature change is

y1 = 11.67x + 22.2 (1)

and the fitting curve equation of thermal resistance change is

y2 = 0.94x + 7.57. (2)

These two equations represent the trend of the junction temperature value y1 and the
thermal resistance value y2 changing with the dissipated power value x. It is worth noting
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that they have no actual physical meaning and will change with different parameters, such
as the device structure. They need to be extracted for different device models.
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3. Electro-Thermal Co-Design of GaN PA

Gallium nitride HEMTs have high-power density and can achieve greater output
power in a smaller area. Currently, the commercial GaN MMIC process is dominated by
depletion-mode devices. Limited by process and cost, the on-chip mainly contains amplifier
tubes and matching, and the bias is implemented off-chip. A single-stage PA biased in class
AB was designed in this paper for analysis. The class AB PA works in amplification mode,
and its conduction angle, linearity, and efficiency are all in the middle of class A and class
B, achieving a compromise between efficiency and linearity.

The 0.15-µm GaN HEMT process is used for the MMIC design. In order to achieve a
saturated output power of 5 watts, the amplification stage uses two parallel ISV transistors
with a length of 8 × 100 µm. The drain operating voltage is 28 V; the gate voltage is −1.7 V,
biasing the circuit in class AB; and the static drain current is 92 mA.

Circuit stability is an important prerequisite for ensuring the normal operation of
the power amplifier. Thus, before PA design, it is necessary to design the stable structure
of the amplification stage to ensure that the transistor can work in a stable state. Some
common methods to improve stability include connecting a resistor in series with the
gate, a resistor and capacitor in parallel with the gate, or an inductor in series with the
source. As shown in Figure 5a, an RC parallel stable structure is used at the input end
of the transistor, and a resistive loss Rp is added to the gate power branch to eliminate
low-frequency oscillation [17]. In addition, a 50 Ω resistor is connected in parallel between
the gates of the two transistors to further improve the loop stability of the transistor.

Since the heat of the PA is mainly concentrated in the amplification stage, and the
layout of the circuit also has a certain impact on the heat dissipation of the chip, the
layout design of the amplification stage needs to be fully considered during the design.
After iterative design and simulation, the proposed amplification stage layout is shown
in Figure 5b. As seen in Figure 5b, we added a large-area double-layer metal microstrip
structure on the front end of the gate. These structures can not only help the progressive
transmission of RF signals but also serve as a way to dissipate heat. Heat can be transferred
into these metal structures through the gate. Since they are at the input end, these structures
have less impact on circuit performance, and the parasitic parameters they bring can also
be solved through matching.
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the transistor.

In the GaN HEMT simulation model, a design solution considering thermal resistance
is provided, as shown in Figure 5c. By connecting a resistor representing the thermal
resistance and a regulated power supply representing the temperature at the temperature
node, the electro-thermal co-design of the circuit can be easily performed. In addition to
the thermal resistance of the chip itself, the thermal resistance brought by other parts, such
as the heat sink in the test structure, can also be considered. For considering the impact of
the self-heating effect of GaN HEMT on the circuit, the temperature and thermal resistance
fitting curves Equations (1) and (2) extracted from the modeling in Section 2 are substituted
into the T_node parameters of the device model.

After adding the temperature node parameters, as shown in Figure 5c, the stability
post-simulation of the stable structure circuit in Figure 5b is performed. The simulation
results of the stability coefficient are shown in Figure 6a. The µ-factor is often used to judge
the stability of a circuit. The µ-factor is defined as the minimum distance in the ΓL-plane
between the origin of the unit Smith chart and the unstable region, where

µ ≡ 1 − |S11|2

|S22 − S∗11∆|+ |S12S21|
. (3)
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When µ > 1, the output stability circle is outside the Smith chart, and there is no
unstable region in the Smith chart, which indicates the circuit is unconditionally stable [18].
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It can be seen from Figure 6a that the stability coefficients k and µ factors are both greater
than 1, which means the circuit structure, considering the thermal resistance and channel
temperature, is unconditionally stable in 3–6 GHz. Meanwhile, its encirclements of the
amplification stage are less than 1 within 10 GHz, as shown in Figure 6b, and there is no
clockwise encirclement of return difference around the origin, which proves the proposed
circuit structure can work stably within 10 GHz.

In the amplification stage design, the method of electro-thermal co-operative opti-
mization design is embedded, as shown in Figure 7. An electro-thermal FE analysis model
was established for the amplification stage’s layout to extract the thermal resistance and
junction temperature under different dissipated powers. The extracted values are generated
into Formulas (1) and (2) for post-simulation of the circuit, and the performances of the
circuit, such as PAE and Psat, are obtained. In order to achieve more satisfactory circuit
performance, layout parameters such as the transistor spacing and shape of the microstrip
line can be modified. A satisfactory layout of the amplification stage can be obtained
through several iterations of simulation. Using the post-simulation results, the relationship
between Pdiss and the input signal power can be obtained to optimize the input of the FE
model. During the iteration process, changes in the layout also require the coefficients of
Formulas (1) and (2) to be revised accordingly.
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Based on the amplification stage stable structure, the circuit is designed using load-pull
and source-pull to find the appropriate input and output matching impedances. The input
power is 28 dBm, the center frequency is 4.8 GHz, and the static current is 92 mA. After
iterative calculation, the optimal source impedance and load impedance are obtained, as
shown in the Smith chart in Figure 8. The corresponding optimal load impedance is

ZLopt = (15.3 + j × 43) Ω , (4)

and the optimal source impedance is

ZSopt = (19.3 + j × 27.2) Ω. (5)

At the optimal impedance, the optimal power-added efficiency (PAE) of the ideal
PA is 73%, and the saturated output power (Psat) is 38.8 dBm. Actually, the optimal load
impedance is relatively small so that the output can use simple conjugate matching. The
input matching uses a high-pass Π-shaped matching network, and third-order high-pass
filtering can increase the bandwidth. The input–output matching structure is shown in
Figure 9. Among them, Ci1 and Co1 are DC blocks. RF chock is implemented using
microstrip lines, which will have a larger area than the inductor. However, because the
drain current flows through the RF chock, using a double-layer microstrip line is more
reliable than an inductor and can withstand larger currents. Ctrap will form a trap with
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the parasitic Ltrap around 7 GHz to reduce out-of-band interference. CDeC with 30 pF is a
decoupling capacitor that is used to suppress the interference of AC signals on DC, reduce
the impact of the parts outside the pad on circuit performance, and improve stability.
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Figure 9. Circuit schematic of the proposed Class AB PA.

The final PA layout of Figure 9 is shown in Figure 10. In order to facilitate measurement,
the ground–signal–ground (GSG) RF pad with a spacing of 150 µm was used for both the
signal input and output. The DC PAD uses a supply–ground (SG) array to facilitate the
use of a DC probe card with decoupling capacitors to power up the chip. To avoid device
breakdown caused by gate leakage current, a 1 kΩ resistor was added outside the gate
decoupling capacitor. Since the HEMT is voltage-driven, the reduction of gate current has
little impact on the device’s performance, and a larger decoupling capacitor can also reduce
the impact of this resistance on matching.

Combined with the impact of the self-heating effect on transistor performance, the
fitting curve parameters of thermal resistance and junction temperature are added to the
T_node. The post-simulation results in Figure 11a show that the µ-factors of the PA circuit
are over 1 at 0–12 GHz, which means that the circuit is stable in this frequency band
according to Equation (3). As shown in Figure 11b, in the range of 4.2 GHz to 5.4 GHz,
the small signal gain of the PA is 13.8–15.9 dB. The saturated drain efficiency reached
52.6–66.8%.
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4. Measurement Results and Discussion

The chip microphoto of the proposed Class AB PA is shown in the middle of Figure 12,
with an area of 1.6 mm × 2.2 mm, including the pads. In order to ensure good heat
dissipation conditions of the chip, the chip is placed on the steel probe table directly for
measurement. Both the DC supply and the RF signal are carried out by inserting the probe.
The DC supply uses a custom SG DC probe with a set of decoupling capacitors between
each set of signals and the ground. The continuous wave (CW) RF signal is transmitted to
the chip using Cascade’s Z40-P-GSG-150 probe. After calibration, the impact of the probe
and RF cables on the chip performance is removed. During the test, the DC bias of the chip
is maintained at the drain voltage of 28 V, and the drain static current is 92 mA.



Electronics 2024, 13, 4796 10 of 12

Electronics 2024, 13, x FOR PEER REVIEW 10 of 12 
 

 

influence of the accuracy of the simulation device model and ground parasitic inductance, 
the gain is about 0.5 dB smaller than the simulation. In addition, the position of a trap was 
shifted from 7.4 GHz to 6.5 GHz due to the parasitic inductance between ideal ground 
and actual ground. Since the input RF signal power is very small during the small signal 
test, the drain current does not increase significantly, so the heating of the chip is almost 
the same as under DC. The change in thermal resistance is also relatively small. 

Since the signal power output by the PNA-X is limited, a driver amplifier (Mini-Cir-
cuits ZVE-3W-83+) was added to the signal input end to amplify the input power during 
large signal testing. Figure 13b shows the measurement results. At 4.2–5.4 GHz, the output 
saturation power (Psat) is 37.3–38.0 dBm, the drain efficiency (DE) is 61.8%–68.1%, and 
the PAE is 52.5–60.5%. 

Since the dynamic current of the transistor is much larger than the static current un-
der large signals, the impact of the temperature increase on the change in the transistor 
thermal resistance cannot be ignored. Therefore, the prediction of thermal resistance has 
a high value for the accuracy of the simulation results. It can be seen from Figure 13b that 
the consistency between the simulation results and the measurement results of the design 
considering the thermal resistance change is better than that of the solution that does not 
consider it. Compared with the simulation results, the measured results of the saturated 
power in the frequency band are slightly larger, with a maximum difference of 0.6 dBm. 
Due to the significant increase in thermal power consumption caused by the mismatch, 
the self-heating effect is worsened, and the efficiency at high frequencies deviates greatly 
from the simulation. 

It is seen that, through electro-thermal co-design, a PA with good consistency be-
tween testing and simulation results was proposed. During the design process, the trend 
equations of thermal resistance and junction temperature values were used for simulation. 
Compared with the thermal resistance parameters embedded in the device model, this 
trend equation can reflect the changes in thermal resistance and junction temperature as 
the dissipated power changes, making the circuit simulation more accurate. 

 

 
(a) (b) 

Figure 12. Measurement configuration of (a) small signal and (b) large signal. Figure 12. Measurement configuration of (a) small signal and (b) large signal.

Keysight 5247B PNA-X is used for small and large signal measurements. The measure-
ment configuration is set in Figure 12. The input signal amplitude is −30 dBm at the small
signal measurement, and the test range is from 1 MHz to 12 GHz. The measurement results
are shown in Figure 13a. Comparing with the simulation results, it can be seen that the
S-parameters of the proposed PA fit well in the range of 4.2–5.4 GHz. Due to the influence
of the accuracy of the simulation device model and ground parasitic inductance, the gain is
about 0.5 dB smaller than the simulation. In addition, the position of a trap was shifted
from 7.4 GHz to 6.5 GHz due to the parasitic inductance between ideal ground and actual
ground. Since the input RF signal power is very small during the small signal test, the
drain current does not increase significantly, so the heating of the chip is almost the same
as under DC. The change in thermal resistance is also relatively small.
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thermal simulation model of the PA amplification stage was developed. The junction tem-
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can provide a reference for high-power PA designers to consider the impact of heating. 

In addition, this paper mainly focuses on the electro-thermal co-optimization design 
of PA in the sub-6 GHz band. At higher frequencies, in addition to the influence of t RF 
dynamic current, the effect of increasing frequency on the lattice vibration of the material 
leading to a change in the heating state also needs to be more considered, which will be 
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Since the signal power output by the PNA-X is limited, a driver amplifier (Mini-
Circuits ZVE-3W-83+) was added to the signal input end to amplify the input power during
large signal testing. Figure 13b shows the measurement results. At 4.2–5.4 GHz, the output
saturation power (Psat) is 37.3–38.0 dBm, the drain efficiency (DE) is 61.8–68.1%, and the
PAE is 52.5–60.5%.
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Since the dynamic current of the transistor is much larger than the static current under
large signals, the impact of the temperature increase on the change in the transistor thermal
resistance cannot be ignored. Therefore, the prediction of thermal resistance has a high
value for the accuracy of the simulation results. It can be seen from Figure 13b that the
consistency between the simulation results and the measurement results of the design
considering the thermal resistance change is better than that of the solution that does not
consider it. Compared with the simulation results, the measured results of the saturated
power in the frequency band are slightly larger, with a maximum difference of 0.6 dBm.
Due to the significant increase in thermal power consumption caused by the mismatch, the
self-heating effect is worsened, and the efficiency at high frequencies deviates greatly from
the simulation.

It is seen that, through electro-thermal co-design, a PA with good consistency between
testing and simulation results was proposed. During the design process, the trend equations
of thermal resistance and junction temperature values were used for simulation. Compared
with the thermal resistance parameters embedded in the device model, this trend equation
can reflect the changes in thermal resistance and junction temperature as the dissipated
power changes, making the circuit simulation more accurate.

5. Conclusions

In this paper, the method of electro-thermal co-optimization design for the GaN MMIC
PA was carried out. In order to consider the impact of changes in thermal resistance
with temperature on large-signal performance in circuit design, an FE analysis electro-
thermal simulation model of the PA amplification stage was developed. The junction
temperature and thermal resistance were extracted from the model, and the trend equation
of their values changing with the dissipated power was obtained to optimize the device
model. Through an iterative optimization of the layout and device model parameters, the
proposed PA achieves more than 60% PAE and 38 dBm saturation power in a compact
area of 1.6 mm × 2.2 mm. Compared with traditional design methods, the proposed PA
achieves better consistency between simulation and measurement after considering the
change in thermal resistance with temperature under the large signal. Moreover, the
proposed method of electro-thermal co-optimization design has a certain universality and
can provide a reference for high-power PA designers to consider the impact of heating.

In addition, this paper mainly focuses on the electro-thermal co-optimization design
of PA in the sub-6 GHz band. At higher frequencies, in addition to the influence of t RF
dynamic current, the effect of increasing frequency on the lattice vibration of the material
leading to a change in the heating state also needs to be more considered, which will be the
further improvement direction of this design method.
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