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Abstract: Agricultural loss due to the overpopulation of Sika deer poses a significant challenge in
Japan, leading to frequent human–wildlife conflicts. We conducted a study in Muroran, Hokkaido
(42°22′56.1′′ N–141°01′51.5′′ E), with the objective of monitoring Sika deer and notifying farmers
and locals. We deployed a Sika deer detection model (YOLOv8-nano) on a Raspberry Pi, integrated
with an infrared camera that captured images only when a PIR sensor was triggered. To further
understand the timing of Sika deer visits and potential correlations with environmental temperature
and humidity, respective sensors were installed on Raspberry Pi and the data were analyzed using
an ANOVA test. In addition, a buzzer was deployed to deter Sika deer from the study area. The
buzzer was deactivated in the first 10 days after deployment and was activated in the following
20 days. The Sika deer detection model demonstrated excellent performance, with precision and
recall values approaching 1, and a bounding box creation latency of 0.82 frames per second. Once
a bounding box was established after Sika deer detection, alert notifications were automatically
sent via email and the LINE messaging application, with an average notification time of 0.32 s.
Regarding the buzzer’s impact on Sika deer, 35% of the detected individuals reacted by standing
upright with alert ears, while 65% immediately fled the area. Analysis revealed that the time of day
for Sika deer visits was significantly correlated with humidity (F = 8.95, p < 0.05), but no significant
association with temperature (F = 0.681, p > 0.05). These findings represent a significant step toward
mitigating human–wildlife conflicts and reducing agricultural production losses through effective
conservation measures.

Keywords: sika deer; detection; YOLOv8-nano; alert notification; raspberry pi; buzzer activation;
Hokkaido

1. Introduction

In areas where humans and wildlife interact, competition for resources often leads to
conflicts, particularly in agricultural regions [1,2]. As human activities expand and habitats
diminish, wildlife increasingly encroaches on farmland in search of scarce resources [3].
This encroachment intensifies competition between humans and wildlife, significantly
affecting farmers who rely on their crops for livelihood [4]. Consequently, human–wildlife
conflicts become more pronounced, posing challenges to both agricultural productivity
and conservation efforts [3,5].

Crop damage caused by wildlife is widespread in various conservation areas of
Nepal [6,7]. Elephants are primarily responsible for most of such damages in developing
countries such as Zambia [8–10], and the damages are often left largely uncompensated [11].
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According to a report from Japan’s Ministry of Agriculture, Forestry and Fisheries, wildlife
caused approximately JPY 15.5 billion (about USD 104 million) in damage to agricultural
production during the fiscal year 2021, with the majority of the damage attributed to Sika
deer and bears [12].

Sika deer are native to East Asia, particularly Japan, and were classified as a Least
Concern species by the International Union for Conservation of Nature [13]. However,
since the 19th century, their populations have surged uncontrollably, attributable to the
extinction of Canis lupus hodophilus, a well-known predator responsible for regulating their
numbers [14]. This unchecked population growth has resulted in considerable agricultural
damage and a decline in biodiversity [15,16]. The overpopulation of Sika deer poses
severe challenges for local farmers, leading to crop destruction and consequent economic
losses [16]. Therefore, implementing effective detection and alert mechanisms is essential
to mitigate the issues stemming from their overpopulation.

Despite the limited measures taken to mitigate damages caused by Sika deer on
agricultural production, there is a pressing need for effective solutions. Therefore, we
proposed a Sika deer detection system based on Raspberry Pi technology. This system will
notify farmers, local authorities, and residents when Sika deer enter agricultural areas and
activate a buzzer to help disperse the Sika deer. By implementing this approach, we aim
to provide timely alerts and minimize the negative impact of Sika deer on local farming
(Figure 1).

Figure 1. Visualization of the research motivation.

2. Materials and Methods

We collected 6400 images of Sika deer over a period of one year (July 2023–July
2024) using three camera traps installed on farmland in Hokkaido, Muroran. The dataset
was then split into 80% and 20% for training and validation, respectively. For Sika deer
detection and bounding box annotation, we used the YOLOv8-nano model (“yolov8n-
oiv7”), which is specifically designed to be lightweight and optimized to run on resource-
constrained devices such as Raspberry Pi and mobile devices [17]. The model was trained
over 500 epochs with a batch size of 4 and an image size of 640. The trained model was
then incorporated into Raspberry Pi 4B (8 GB) for real-time monitoring of the target species.

2.1. External Monitoring Components

We equipped the Raspberry Pi with external components, including a PIR sensor.
In this study, we used the “Grove-digital PIR sensor”, which can detect motion up to a
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distance of 12 m [18] (Table 1). Images and videos (3 min) of Sika deer were captured,
and bounding boxes were generated in real-time and triggered only after the PIR sensor was
activated. We utilized an infrared night vision camera (ASIN: B08775TNBJ) that captured
high-resolution images (1280 × 720) under both daylight and low-light conditions, even
complete darkness [19]. The camera was directly connected to the Raspberry Pi via USB
and configured to operate automatically through a Python script, ensuring continuous
monitoring without manual intervention. The camera’s infrared capability enabled effective
image capture under varying light conditions, and its integration with Raspberry Pi allowed
for seamless data processing and storage [19]. Wildlife distribution is strongly influenced
by environmental factors [20]. To better understand the influence of environmental factors,
we deployed a DHT11 temperature and humidity sensor [21] to measure environmental
conditions and correlate the collected data with the timing of Sika deer visits (Figure 2).
Environmental temperature and humidity data were collected every second during the
study period (Table 1). To ensure a continuous power supply, we connected the Raspberry
Pi to an LEOCH (WP20-12) battery with a capacity of 12 V and 20 Ah. When used alone,
the battery allows the Raspberry Pi to operate continuously for 36 h. The battery was
charged using a 50 W solar panel (IAKTD), with a 10 A charge controller positioned
between the panel and battery to regulate the voltage and current, ensuring safe charging.
Being exposed to sunlight for 4 h was sufficient to fully charge the battery, providing ample
power for the continuous operation of the Raspberry Pi. In addition, the Raspberry Pi was
equipped with a Wi-Fi module for constant data access to the server. In this study, we used
the Ruk-Com cloud server.

Figure 2. Circuit diagram for Raspberry Pi-based Sika deer monitoring and alert system.

Table 1. Internal and external monitoring components.

Internal Components
with Battery Activities External Components GPIO PIN

CPU Temperature Cool down for 30 min Temperature Sensor 26

Disk Space Images and Datasets sent
to server Humidity Sensor 26

CPU Usage Cool down for 30 min Button for Controlling
Raspberry Pi 13

Battery and Solar Panel Connected to Controller PIR Sensor 22
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2.2. Internal Components

We also monitored key internal components of the Raspberry Pi such as the disk space,
CPU usage, and CPU temperature, as these are critical for maintaining its continuous
functionality (Table 1). To send alert notifications when any of the values of these internal
components reached 80 or higher, we set up a sender email with a token via a 2-step
verification process. If the CPU temperature exceeds 80 ◦C, the system triggers the sleep
mode for 30 min to allow the CPU to cool down (Figure 3). To manage disk space efficiently,
we automated the process of uploading original images with bounding boxes along with
videos of detected Sika deer to the server and deleting them from the Raspberry Pi after
transfer. Information in the internal components was checked every 2 s and all information
was stored in the server in the form of a database. Throughout the study period, the usage
percentage of all internal components remained below 80%; therefore, no alert emails
were sent. The maximum recorded values were as follows: disk space- /root: 45%; /dev:
0%; /dev/shm: 0%; /run: 1%; /run/lock: 1%; /boot: 13%; /run/user/1000: 1%; CPU
temperature: 63.3 ◦C; and CPU usage: 73.1%.

Figure 3. Workflow illustrating Sika deer real-time detection and alert mechanism.

2.3. Alert Notification and Buzzer Implementation

After detecting Sika deer and creating a bounding box, alert notifications were sent to
local residents, farmers, and university professors via email and LINE. LINE is a widely
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used messaging application across Asia, particularly in Japan, Taiwan, Thailand, and In-
donesia. It provides free instant messaging, voice calls, and video calls, and is renowned for
its intuitive interface and playful customization options [22]. To send notifications via LINE,
we generated a token using LINE Notify (Figure 2). Sika deer can detect sounds within
the human audible frequency range of 20 Hz to 20 kHz, showing increased sensitivity to
frequencies around 16 kHz [23,24]. Therefore, we created a sound at 16 kHz in stereo and
saved the audio files in a lossless compressed format (.wav). The lossless file format was
used for a buzzer (a Yirdapall small portable speaker) to help deter Sika deer from the area.
Overall, after detecting Sika deer and creating a bounding box, the notifications were first
sent to locals via email and LINE. Afterward, the buzzer was promptly activated to deter
the Sika deer from the deployment site.

For the Raspberry Pi, we implemented a button-based control system that activates
automatically with each press. In this study, a tactile push button connected to a GPIO pin 13
was employed to trigger specific actions on the Raspberry Pi. In a field setting, a single press
of the button would activate the Raspberry Pi’s functionality. However, because we could
not test the system’s functionality in the field, we decided against incorporating a shutdown
mechanism. As a result, the Raspberry Pi remained continuously active, regardless of the
number of times the button was pressed. We deployed the Raspberry Pi, equipped with all
necessary sensors, in the field in Muroran, Hokkaido, Japan (42°22′56.1′′ N–141°01′51.5′′ E),
for a 30-day testing period in October 2024. Throughout this deployment, the Raspberry
Pi operated continuously to gather and assess all datasets and required information. We
placed all sensors, along with the battery and Raspberry Pi, in a box. We used a plastic
covering to shield the sensors from rain, and the switch was enclosed in a plastic box for
added protection (Figure 4). We monitored the Sika deer using a Raspberry Pi without the
buzzer for the first 10 days (1–10 October 2024), and we activated the buzzer for the next
20 days (11–30 October 2024) to observe the deer’s behavior before and after the buzzer
was introduced (Figure 3). We performed weekly checks on the Raspberry Pi in the field.

Figure 4. Components connected to the Raspberry Pi for Sika deer detection in the field: (a) external
components housed inside a plastic box; (b) sensors, camera, and switch positioned outside the plastic
box; (c) solar panel providing a continuous power supply; and (d) Raspberry Pi with components
enclosed in a plastic box alongside a solar panel installed in the study field.

An ANOVA test was performed to evaluate the impact of the time of day on the
temperature and humidity at the Sika deer visiting site. The time of day was categorized
into a.m. and p.m., based on the observed hours of Sika deer activity. Separate analyses
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were performed for temperature and humidity, considering the time of day (a.m./p.m.) as
the independent variable. These analyses were performed to determine the influence of
environmental conditions on Sika deer’s visiting patterns across different times of the day.

3. Results

The training process of the YOLOv8-nano (“yolov8n-oiv7”) model for Sika deer detec-
tion shows a clear downward trend in losses over the course of the epochs. Both training
and validation box losses, along with the training and validation class losses, steadily de-
clined. By the time the model reached 500 epochs, the losses started to stabilize, suggesting
that further training may not result in significant enhancements (Figure 5). The proposed
model demonstrated excellent performance, with precision and recall values close to 1. It
achieved a mean Average Precision (mAP) score at 50% IoU (mAP50) of nearly 1 and a
mean Average Precision across IoU thresholds from 50% to 95% (mAP50-95) of about 0.98
(Figure 6).

Figure 5. Curves representing box and class loss for training and validation datasets.

Figure 6. Performance metrics across multiple epochs.

We observed two herds of Sika deer. Herd 1 comprised three individual Sika deer,
while Herd 2 comprised two individuals. Before the buzzer activation, both herds displayed
similar visitation patterns. Herd 1 visited the site between 6:00 and 7:00 p.m., while Herd 2
visited between 2:00 and 3:00 p.m. (Figures 7 and 8).
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Figure 7. The number of herds observed daily before the buzzer activation was recorded. Day 1 repre-
sented the first day without the buzzer activation on the Raspberry Pi, followed by subsequent days.

Figure 8. Images of individual Sika deer within each herd: (a) Herd 1, consisting of three individual
Sika deer; and (b) Herd 2, consisting of two individual Sika deer.

The average latency for creating a bounding box when Sika deer were detected in
images was 0.82 frames per seconds. Once the bounding boxes were established, alert
notifications were automatically sent via email and LINE, with an average time of 0.32 s for
each notification. After analyzing the impact of the buzzer on Sika deer, we observed that
35% of the detected individuals reacted by standing upright with their ears alert, while
the remaining 65% quickly fled the area. These observations were based on the Sika deer
detected within the bounding boxes of the captured images (Figure 9).

After buzzer activation, we observed the same herd of Sika deer that had been seen
before activation. However, their visiting times at Raspberry Pi-deployed sites differed
from those when the buzzer was inactive. During our study, no Sika deer visits were
recorded during nighttime (7:00 p.m. to 6:00 a.m.). Herd 1 visited the site more frequently
than Herd 2, and their visits did not overlap, maintaining a minimum gap of 30 min
between their appearances (Figure 10). The average temperature and humidity recorded
when the Sika deer were observed after buzzer activation were 17 ◦C and 75%, respectively.
The temperature ranged from 12 ◦C to 24 ◦C, while the humidity levels varied between 66%
and 90% (Figure 10, Table 2). ANOVA revealed no significant effect of the time of day of
Sika deer visits (a.m./p.m.) on temperature (F = 0.681, p = 0.410). Meanwhile, the analysis
showed that the time of day of Sika deer visits was significantly impacted by humidity
(F = 8.95, p = 0.003).



Electronics 2024, 13, 4852 8 of 13

Figure 9. Visualization of alert mechanisms following Sika deer detection in captured images:
(a) identification of Sika deer using bounding boxes in captured images; (b) alert notification via
email; (c) alert notification through LINE application; and (d) analysis of Sika deer behavior following
buzzer activation.

Table 2. The time of Sika deer visit and environmental data after buzzer activation.

Parameters Observation

Herds Observed Herd 1, Herd 2

Visit Frequency Herd 1 visited more frequently

Visit Overlap of two Herds No overlap, minimum 30 min gap

Nighttime Visits None

Average Temperature 17 ◦C

Average Humidity 75%

Temperature Range 12–24 ◦C

Humidity Range 66–90%
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Figure 10. Herd observations recorded at different times throughout the day, along with environmen-
tal temperature and humidity, after buzzer activation. The term “Day” refers to the number of days
since the buzzer was activated; for example, “Day 1” indicates the first day after activation, “Day 4”
refers to the fourth day, and so forth. The visualization only includes days when herds of Sika deer
were observed, excluding days without any sightings.

4. Discussion

Regular monitoring of wildlife and promptly notifying locals when wildlife ap-
proaches residential areas are essential for reducing human–wildlife conflicts and ensuring
effective wildlife management [1]. In this study, we implemented an automated Sika deer
detection model on a Raspberry Pi to notify locals upon Sika deer arrival at specific sites.
The Sika deer population in Hokkaido, Japan, is growing alarmingly, exerting an increasing
pressure on agricultural land and leading to significant economic losses in agricultural
production [15]. Therefore, we aimed to provide prompt notifications to inform locals
about Sika deer sightings by deploying a buzzer system designed to deter the Sika deer
from these areas.

We deployed the fine-tuned YOLOv8-nano model for detecting Sika deer and success-
fully deployed it on Raspberry Pi for real-time automated detection. The YOLOv8-nano ar-
chitecture is specifically designed to be lightweight and optimized for resource-constrained
devices, such as Raspberry Pi and mobile devices [17]. After evaluating the latency for
generating bounding boxes around Sika deer in the captured images, we found an aver-
age processing speed of 0.82 frames per second. This performance is slightly below the
0.9 frames per second achieved with the YOLOv3 architecture [25], indicating that the
YOLOv8-nano architecture, designed for enhanced efficiency, was effective in this study
(Table 3).
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Table 3. Comparison of real-time object detection using YOLOv8-nano in our study and YOLOv3 in
existing studies.

Metric YOLOv8-nano (Our Research) YOLOv3 [25]

Latency (frames per second) 0.82 0.9

Detection Architecture YOLOv8-nano YOLOv3

Deployment Environment Raspberry Pi 4B Raspberry Pi 3

Two herds of Sika deer were recorded using the Raspberry Pi set up at the study
sites (Figure 7). Herd 1 comprised three individual Sika deer, and Herd 2 comprised two.
The herds were differentiated by their distinct spot patterns, as identified in our prior re-
search [26]. Before the activation of the buzzer, the visiting times for the deployed Raspberry
Pi locations were predetermined (Herd 1; 6:00 p.m.–7:00 p.m., Herd 2; 2:00 p.m.–3:00 p.m.).
However, after the buzzer activation, Sika deer began visiting the sites more frequently,
though their timing patterns became increasingly erratic. This change is attributable to the
initial disturbance caused by the buzzer, which likely prompted the Sika deer to modify
their visiting times to evade the noise. Over time, they appeared to adapt to the new
conditions, resulting in a broader range of visiting patterns [27].

The results indicated that temperature did not differ significantly between the times
of day (a.m. and p.m.) of Sika deer visits, as evidenced by the high p-value (F = 0.681,
p = 0.410). This suggests that temperature fluctuations within the 24-h cycle were relatively
minimal or stable in the study area, meaning that temperature may not be a key factor
driving the visit timing of Sika deer visits. Meanwhile, the significant difference in humidity
(F = 8.95, p = 0.003) highlighted that the time of day had a notable effect on humidity levels.
This finding suggests that Sika deer may be more responsive to changes in humidity,
with higher humidity potentially influencing their behavior, such as foraging or movement
patterns [27].

The effectiveness of alert notifications sent via LINE and email was proven by their
swift delivery to locals, supervisors, and colleagues upon detecting Sika deer. We chose
LINE as our primary communication method because it is widely used and preferred in our
study areas (SS, Pers. Obs.). We evaluated the average notification timing, which was 0.32 s
per alert, by comparing the bounding boxes of detected Sika deer in log datasets stored
on the server with the corresponding images. The time taken to send alert notifications
ranged from 0.28 to 0.4 s, depending on the strength of the cellular data signals used by
the Wi-Fi module, which varied based on weather conditions, for instance, whether sunny
or cloudy [28]. The average notification time for sending alerts closely aligns with the
findings of Dertien et al. [29], who reported a notification time of 0.3 s using WhatsApp
with an AI-based sensing camera alert system at the Duhwa Tiger Reserve in India for
tiger detection and alert messaging. This analysis showed a 100% success rate. Recipients,
including locals, supervisors, and colleagues, expressed complete satisfaction, as each mes-
sage included the date and time of Sika deer detection, along with its ecological significance
and impact on both the ecosystem and agricultural production. Promptly notifying locals
about wildlife detection via email and mobile applications effectively mitigates human–
wildlife conflicts [29]. All the informants (N = 10), after receiving notifications via email and
LINE, did not approach the sites and instead altered the timing of their agricultural tasks,
such as irrigation, to avoid conflict with the deer. These actions are effective in mitigating
human–wildlife conflict, as demonstrated by Dartien et al. [29] in their real-time study of
tiger species.

After buzzer activation, about 65% of the Sika deer fled the area, while the remaining
35% stayed alert by standing upright with their ears perked, despite the buzzer running
at full volume. This mixed response under disturbance or threat is commonly observed
in deer species [30]. Similarly, Babińska-Werka et al. [31] reported a 68% success rate in
using acoustic wildlife warning devices for white-tailed deer, with this percentage of deer
escaping after hearing the warning sound.
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This research is crucial for the long-term conservation of target species, as it contributes
to reducing human–wildlife conflict. The experimental setup, which includes sensors,
buzzers, and the architecture for wildlife detection, is adaptable and can be used for various
wildlife species. However, the model developed in this study is specifically customized for
Sika deer, as it was trained exclusively with Sika deer images. While the architecture from
this research can be applied to wildlife detection, it would require fine-tuning with target
species images during the training process. Once trained, the model can be deployed on a
Raspberry Pi, following the same method outlined in this study, to detect wildlife and send
alert notifications.

However, certain limitations should be acknowledged. Initially, we deployed only
temperature and humidity sensors to study the micro-environmental conditions associated
with Sika deer. Sika deer dynamics are influenced by other factors, such as precipitation,
wind, and light intensity. We propose extending this study by incorporating sensors
for these additional factors to gain a deeper understanding of the environmental factors
affecting Sika deer distribution. This study was conducted during a single season, and we
recommend replicating the experiment across different seasons (such as spring, snowy
periods, and autumn), and during extreme environmental conditions such as typhoons.
Additionally, it is important to consider that crop damage tends to be more severe during
harvest periods. By expanding the study to include these different times of year, we can
gain a better understanding of the timing and behavior of Sika deer visits. This would
also enable a more thorough evaluation of the performance of the sensors deployed on the
Raspberry Pi, helping to mitigate human–wildlife conflict and reduce agricultural losses
caused by Sika deer under varying environmental conditions. Our findings indicate that
the effectiveness of buzzers in deterring Sika deer at deployment sites is minimal. Therefore,
we recommend the use of unmanned aerial vehicles (UAVs) to deter Sika deer, as they have
been effective in mitigating human–wildlife conflict for other species, such as elephants
and tigers.

5. Conclusions

In conclusion, fine-tuning a YOLOv8-nano model proved highly effective for detecting
Sika deer, achieving a near-perfect mAP score at 50% IoU (0.98). During the deployment
of a Raspberry Pi in the field, we observed two Sika deer herds: Herd 1 comprising three
individuals, and Herd 2 comprising two individuals. Alert notifications sent via email
and the LINE application after detecting individual Sika deer and generating bounding
boxes were 100% effective, as all participants (N = 10) received timely notifications after
each Sika deer sighting. Following the alerts, a buzzer was activated, causing 35% of
the Sika deer to stay alert, while 65% fled immediately. Before the buzzer activation,
the timing of Sika deer visits was specific, with Herd 1 visiting between 6:00 and 7:00 p.m.,
and Herd 2 between 2:00 and 3:00 p.m. After the buzzer activation, both herds began
visiting at various times throughout the day. We found a significant association between
the timing of Sika deer visits and humidity (F = 8.95, p = 0.003), but no such association
with temperature (F = 0.681, p = 0.410). This research provides crucial insights for decision-
makers in developing conservation strategies aimed at reducing human–wildlife conflicts
involving Sika deer.
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31. Babińska-Werka, J.; Krauze-Gryz, D.; Wasilewski, M.; Jasińska, K. Effectiveness of an acoustic wildlife warning device using
natural calls to reduce the risk of train collisions with animals. Transp. Res. D Trans. Environ. 2015, 38, 6–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10344-013-0705-z
https://www.weboost.com/blog/does-weather-affect-cell-phone-signal
https://www.weboost.com/blog/does-weather-affect-cell-phone-signal
http://dx.doi.org/10.1093/biosci/biad076
http://www.ncbi.nlm.nih.gov/pubmed/37854891
https://realtree.com/deer-hunting/galleries/20-things-to-know-about-deer-body-language-and-behavior
https://realtree.com/deer-hunting/galleries/20-things-to-know-about-deer-body-language-and-behavior
http://dx.doi.org/10.1016/j.trd.2015.04.021

	Introduction
	Materials and Methods
	External Monitoring Components
	Internal Components
	Alert Notification and Buzzer Implementation

	Results
	Discussion
	Conclusions
	References

