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Abstract: Model predictive control (MPC) has emerged as a very popular control technology. This
paper presents and discusses the major applications and recent research advances of MPC in the
field of high-power converters and industrial drives. The classic concepts and implementation
principles of MPC for power electronic control are reviewed, followed by the classification and
application schemes of MPC in electrical drive systems. This paper discusses typical MPC techniques.
Based on the results of extensive discussions on the latest research, this paper analyzes some key
application issues of MPC in industrial control solutions, including the optimization and elimination
of weighting factors, improvement of steady-state performance, and robustness improvement. It
also covers research trends in advanced MPC. By reviewing advanced MPC solutions, this paper
contributes to enhancing the performance in applications of high-power converters and industrial
drives, and providing multiple perspectives to improve control performance of MPC. The presented
content aims to provide readers with a precise overview and facilitate their future research in this
attractive area.
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1. Introduction

In the application field of power electronics control, power converters and industrial
drives are important electrical devices in modern industrial production processes [1]. The
advanced control technologies for high-power converters and motor drives have effectively
promoted the development of industrial automation [2]. Model predictive control (MPC)
has a simple structure, an intuitive concept, and the ability to handle multi-constraint and
nonlinear problems. Hence, MPC has been one of the most popular control methods in
industrial applications and academic research [3].

MPC is a very important control method in the field of advanced process control. After
years of development, MPC has gradually formed a rough idea based on optimal control the-
ory while ensuring stability. Rawlings and Muske studied the stability problem of constrained
MPC, providing important theoretical support for the early application of MPC. Mayne et al.
discussed in detail the stability and optimality of constrained MPC, and proposed the basic
control framework and stability conditions of MPC [4], which has an important impact on
the theoretical application and method promotion of MPC. In [5], Camacho and Bordons
discussed the key application issues of distributed MPC, which improves the ability and
applicability of MPC to cope with complex system control in distributed architecture. Morari
and Lee provided a phased overview of the key technologies of MPC and provided guidance
for the future development of MPC [6]. In [7], Allgöewer reviewed research that covers the
basic framework and key challenges of nonlinear MPC, and delved into the practical applica-
tion challenges of nonlinear predictive control. Alamir and Bornard verified the stability of
the rolling time-domain optimization method, laying a solid foundation for the subsequent
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development of MPC [8]. Cannon et al. solved the problem of difficulty in online calculation
of stochastic model predictive control, thereby further expanding the wide application of MPC
in real-time systems [9]. The pioneers in the field of MPC research mentioned above have
made indelible contributions to the development of MPC, leading to the industrial application
of MPC approaching maturity.

The advanced MPC technology for converters and motor drives is located in the
interdisciplinary research area of power electronics, optimal control with constraints, and
mathematical optimization. MPC is initially applied to industrial process control with
great success. In recent years, due to rapid improvements in controller performance and
underlying solution algorithms, MPC has made significant progress in the areas of power
converter and power system control. It has become the most attractive control strategy for
converters and motor drives. According to the selection range of candidate elements in the
control set, MPC strategies can be further subdivided into two types: continuous control
set MPC (CCS-MPC) and finite control set MPC (FCS-MPC), as shown in Figure 1.
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CCS-MPC uses mathematical tools to find the optimal solution to the cost function
and obtain the optimal control quantity. According to whether the optimization objective
includes system constraints, CCS-MPC includes generalized predictive control (GPC) and
explicit MPC (EMPC). GPC is an excellent method for solving optimal control variables,
but it can only be used for linear or linearized models and is only applicable to some
unconstrained CCS-MPC. When the optimization objective of CCS-MPC needs to include
system constraints, the constrained optimization problem can be transformed into an offline
multi-parameter quadratic programming problem, and the optimal control law can be
determined by online look-up table, known as EMPC.

FCS-MPC has excellent dynamic performance, and fully utilizes the discreteness and
finiteness of the converter to enumerate candidates, and then determines the optimal control
quantity by minimizing cost function. Considering the different control quantities applied,
FCS-MPC includes optimal switching vector MPC (OSV-MPC) and optimal switching
sequence MPC (OSS-MPC). OSV-MPC treats all possible voltage vectors (VVs) generated
by the converter as candidate solutions in the control set. Based on the prediction equation,
OSV-MPC calculates the future values of the control objectives. The merit-seeking problem
is solved by traversal search. In contrast, the control set of OSS-MPC is composed of
a certain number of switching sequences, which implements a modulator-like function,
improves control accuracy, and achieves a relatively fixed switching frequency. Due to its
advantage in terms of optimization difficulty, FCS-MPC is currently more suitable for use
in industrial power electronic real-time control systems [10].

According to [11], based on basic control concepts, MPC was classified and the character-
istics of control structures were summarized. By moving a huge part of the calculational effort
offline, the online calculation time of MPC is in the same range as for PI controllers, which
proves its applicability in the field of power control [12]. According to [13], the feasibility of
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MPC in the control application of three-phase VSI has been confirmed. According to [14],
MOOP in different application scenarios was discussed, and the flexibility and wide applica-
bility of the MPC algorithm in dealing with constraint conditions has been further verified
through the design of cost functions. As research into MPC deepens, a plethora of control
schemes have been developed to address specific control problems in power electronics and
motor drives, demonstrating enhanced efficacy over traditional methods [15].

With the increasing performance requirements of high-power converters, the tradi-
tional control schemes are unsatisfactory in terms of multi-objective optimization problem
(MOOP), free constraint addition, and debugging cost. The conventional two-level voltage
source inverter (2L-VSI) topology is widely used in various power converter applications
such as inverters, rectifiers, active filters, and uninterruptible power supplies [16]. As
shown in Figure 2, 2L-VSI can generate eight fundamental VVs. v1~v6 are active VVs. v0
and v7 are the null VVs.
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Since the number of switching states is limited, MOOP can be simplified and converted
to predict the system behavior for only feasible switching states. As a result, MPC has
demonstrated unique control advantages over traditional power converter control. Owing
to the advantages of low switching stress, excellent output voltage quality, and easy
modularization, the multilevel converter has been considered as a better solution for
medium-voltage and high-voltage power applications [17,18].

Furthermore, MPC has become a highly competitive control scheme in induction motor
(IM) and permanent magnet synchronous motor (PMSM) drive systems. MPC has demon-
strated good control performance and the ability to handle nonlinear problems in complex
AC motor drive systems with multiple inputs and outputs. Different from classic field-
oriented control (FOC), MPC eliminates the PI current controller, which effectively improves
the bandwidth of the current loop, so it provides faster dynamic response than FOC [19].
MPC replaces the hysteresis controller and switch table in direct torque control (DTC) with
predictive equations and cost functions, resulting in more effective vector selection and better
steady-state performance [20]. In fact, MPC has shown significant control advantages in three
aspects: multi-objective optimization capability, dynamic performance, and ease of algorithm
implementation. MPC combines the control advantages of classical FOC and DTC, to some
extent, with good dynamic performance and a relatively simple control structure. Typically,
only a PI controller is required for speed control. However, there are still some issues that
need to be addressed in MPC, such as the need to further promote the parameter robustness
and steady-state tracking error of conventional strategies.

Hence, the advanced model predictive control technology for high-power converters
and motor drivers has become a hot research topic in the field of industrial power electronic
control. To this end, this paper attempts to review some important research progress in the
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field of MPC technologies for high-power converters and industrial drives recently, and
discuss and summarize the key technologies of MPC.

The rest of this paper is organized as follows. First, the basic concepts and principles of
MPC are introduced. Subsequently, the typical MPC techniques are reviewed. Then, the key
application issues of MPC for power converters and motor drivers are discussed, and then
a summary of the corresponding solutions has been provided. Finally, the development
trend of advanced MPC research is anticipated.

2. Basic Concepts and Principles of MPC

Generally, MPC is a highly effective time-domain control method, which is an im-
portant branch of advanced process control. Compared to traditional frequency domain
control, its modelling process is simpler. Combined with flexible cost function design,
MPC can easily handle various constraint problems. In addition, MPC can effectively
perform multivariable control, which makes it very advantageous for multi-input and
multi-output control systems. Unlike general PI controllers, MPC eliminates the need for
an anti-saturation mechanism and additional active damping. It also makes controller
design and debugging easier and more efficient.

Based on the system model, MPC attempts to predict future system behavior and
solves an open-loop optimal control problem in the finite time domain. It then determines
the current control action and updates status information at each sampling instant. In
terms of the control application fields of converters and motor drives, the basic properties
of MPC can be summarized as prediction models, constraints, cost function evaluation,
rolling optimization, and feedback correction. The general control structure of MPC is
shown in Figure 3.
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When performing multivariable control, the process of establishing a prediction model
from the state equation is relatively simple and can more accurately describe the dynamic
evolution process of the system. Therefore, the prediction model can be established by the
state equation of the system, and the prediction equation can be obtained for calculation.
Therefore, the prediction equation obtained in the discrete time domain is as follows.{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(1)

where x represents the state variable of the control object. A, B, and C denote the state,
input, and output coefficient matrices, respectively.

Considering the application of MPC in motor drive, taking IM as an example, (1) is further
described. In α–β stationary frame, stator current is = isα + jisβ and stator flux ψs = ψsα + jψsβ are
selected as the state variables x = [is ψs]T. us = [usα usβ]T is the stator voltage vector. Hence, the
coefficient matrix of the state equation is further described as follows.

A =

[
− 1

σ (
Rs
Ls

+ Rr
Lr
) + jωr

1
σ (

Rr
Ls Lr

− j ωr
Ls
)

−Rs 0

]
(1a)
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B =

[ 1
σLs
1

]
(1b)

where Rs is stator resistance, Rr is rotor resistance, Lm is mutual inductance, Ls is stator in-
ductance, Lr is rotor inductance, ωr is the rotor electrical angular speed, and σ = 1− L2

m/(LsLr)
is the total leakage coefficient.

The electromagnetic torque Te can be described as follows.

J
dωr

dt
= Te − TL (2)

where J is the moment of inertia and TL is the load torque.
According to the above equation, when selecting the state equation as the prediction

model, the predicted output value of the control object at k + l sampling instant is

y(k + l) = Cx(k + l) = C

[
Al x(k) +

l

∑
i=1

Ai−1Bu(k + l − i)

]
(3)

Constraints are very common in MPC, usually requiring constraints on input variables,
state variables, and output variables in the system to meet the physical or circuit hardware
constraints in reality, and these constraints often lead to nonlinearity of the system. During
system operation, it is also necessary to constrain some state variable of the system, such
as limiting the current of the converter or motor. These constraints are often applied to
the system state variables in the form of soft constraints. In addition, specific control
requirements can also be achieved by selectively adding some soft constraints to the
control objectives. For example, upper and lower limits can be applied to torque, flux, and
decoupled current for constraint control, so that the control objective remains within the
preset control range, rather than strictly following its reference value.

The cost function can evaluate and compare the tracking error between the reference
and predicted values of different control objectives, and select the optimal control solution
by minimizing the cost function. In MPC, the design of the cost function is quite flexible as
it can achieve integrated optimization of multiple control objectives and adjust the control
weights between each control objective by combining weighting factors, thereby achieving
effective multi-objective control. Generally, the cost function can be described as follows.

J(x(k), u(i)) = Qx

k+N

∑
i=k+1

∥ x∗(i)− xp(i|k)∥s + Qy

k+N−1

∑
i=k

Yc (4)

where N denotes the predicted time domain, x* is the reference value, xp denotes the
predicted value, and Q denotes the weighting factor. Yc denotes the constraint condition of
the system containing nonlinear components.

The optimization process of MPC is not completed offline in one go, but is repeated
online within a finite time domain, which is called rolling optimization. At each sampling
moment, MPC repeats the steps of prediction, optimization, and control implementation to
achieve dynamic control of the system. In the above optimization process, MPC usually
considers specific performance indicators such as minimizing the reference tracking error of
the system, and then selects the optimal operation sequence uopt(k) for the control variables.

uopt(k) = argmin
u(k)

J(x(k), u(k)) (5)

The optimization stage of MPC also includes feedback stage, which aims to correct
control variables to reduce output bias. MPC only applies the first element of the obtained
optimal sequence to the system. The reference output in the future prediction is employed in
the construction and optimization process of the cost function. Subsequently, the prediction
error between the reference and the actual values is optimized as part of the cost function.



Electronics 2024, 13, 4969 6 of 20

This feedback correction mechanism also ensures the tracking performance and robustness
of MPC in practical applications.

The real-time optimization performance of MPC is highly valued for solving increas-
ingly complex industrial application problems, especially for high-frequency decision-
making and large-scale problems. Therefore, code optimization and computation accel-
eration tools play a crucial role in improving computational efficiency, reducing latency,
and supporting real-time control requirements. The characteristics of the three common
optimization tools for MPC at present are shown in Figure 4.
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MATLAB is an important tool for real-time optimization of MPC, especially widely
used in control simulation and rapid prototyping development. CasADi supports automatic
differentiation and multiple solver interfaces, making it highly suitable for fast solving in
MPC, which can provide support for controllers to solve large-scale nonlinear optimization
problems. Similar optimization solvers and real-time code generation tools include OSQP,
qpOASES, and FORCES Pro. In addition, ACADO Toolkit provides strong support for
real-time optimization of MPC through its symbol calculation, automatic differentiation,
embedded code generation, and nonlinear solving capability. Similar high-performance
nonlinear optimization solvers include IPOPT, which is suitable for MPC for large-scale
constrained problems. In summary, choosing a suitable real-time optimization tool re-
quires comprehensive consideration of the controller’s response time, accuracy, stability,
resource utilization, and industrial compatibility [21]. For embedded systems, CasADi
and ACADO provide fast and stable solutions. For MPC applications that require high
precision, MATLAB solvers can ensure optimization accuracy. Under high real-time require-
ments, the performance of CasADi may be superior to MATLAB. In complex industrial
control simulation, MATLAB’s flexibility and support for a rich function library may be
more advantageous.

MPC methods can be classified from a control theory perspective based on various
factors such as system dynamics, constraints, optimization approach, and robustness. As the
main MPC methods, linear MPC, robust MPC, and nonlinear MPC play an important role
in industrial applications [22]. Their corresponding classifications and features are shown
in Figure 5. Linear MPC is effective for systems that can be accurately represented by linear
models. By employing quadratic programming or linear programming for solving the op-
timization problem, linear MPC maintains computational efficiency, making it feasible for
real-time applications. Linear MPC’s ease of implementation, coupled with its scalability and
constraint-handling capability, makes it a versatile choice in various industrial, automotive,
and energy applications. Robust MPC is designed to handle system uncertainties and external
disturbances that can affect model accuracy and system performance. Unlike standard MPC,
which optimizes based on a fixed model, robust MPC incorporates uncertainties directly into
its control model, ensuring performance under a range of potential system variations [23].
Although this method increases computational complexity, it ensures that the control actions
satisfy safety and performance constraints under all considered uncertainties. Robust MPC
is particularly beneficial in systems where maintaining reliable performance and constraint
adherence is critical, even with model inaccuracies, such as in aerospace, energy management,
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and advanced manufacturing. Nonlinear MPC is tailored for systems where dynamics cannot
be accurately captured by linear models. Unlike linear MPC, nonlinear MPC directly incorpo-
rates nonlinear system models into the optimization process, enabling it to handle complex
dynamics and achieve higher precision in control tasks. This nonlinear optimization increases
computational demands, often requiring iterative solvers and specialized algorithms [24].
Despite the added complexity, nonlinear MPC provides a robust framework for achieving
precise control in nonlinear and multivariable systems, delivering optimal performance and
constraint adherence even in highly dynamic environments.
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In terms of model features, both linear MPC and robust MPC are based on linear models,
while robust MPC further considers the existence of system uncertainty. Nonlinear MPC uses
nonlinear models to describe the dynamic behavior of a system, such as state space nonlinear
models, nonlinear regression models, neural network models, and mechanism models. In terms
of computational complexity, linear MPC has high computational efficiency and is suitable for
real-time applications due to its simple optimization problems. Robust MPC often uses min–max
optimization or scenario optimization to handle uncertainty, with slightly higher computational
complexity than linear MPC, as it requires consideration of multiple possible system states.
Nonlinear MPC commonly uses sequential quadratic programming or interior point method,
which has a large computational load and slow optimization solving speed, especially as the
system dimension increases, and it is difficult to meet real-time requirements, which usually
requires stronger computational resources or optimization algorithm improvements. In terms of
system uncertainty, linear MPC is sensitive to external interference and model errors, and cannot
effectively handle uncertainty. Robust MPC considers uncertainty as part of optimization and
has better anti-interference ability and safety. Nonlinear MPC has natural advantages in dealing
with nonlinear dynamics, but does not directly consider robustness, so it needs to be combined
with other methods (such as observers or gain scheduling) when dealing with uncertainty [25].
In summary, linear MPC has the most advantage in computational efficiency and is suitable for
linear systems. Robust MPC has significant advantages in control safety and robustness, and is
suitable for systems that are sensitive to uncertainty. Nonlinear MPC performs well in handling
complex nonlinear dynamics, but it requires a large amount of computation and is suitable for
high dynamic and high-precision control tasks.

3. Typical Applications of MPC

In the industrial process of modern society, the electrical transmission system, as an
important device for converting electrical and mechanical energy [26–29], plays a crucial role
in the industrial field. As important pieces of equipment in electrical transmission systems,
high-efficiency AC motor systems have become a focus of attention in the global industrial
field of electrical transmission. The typical structure diagram of the industrial transmission
system is shown in Figure 6. Efficient and reliable system operation can be achieved by
providing high performance control of power converters. The next step is to summarize the
typical applications of MPC for power converters and motor drives, respectively.
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3.1. MPC for High-Power Converters

For power converters, the control schemes based on MPC have been widely studied
and applied. MPC is highly effective in various types of power converters such as DC/DC
converters [30], active rectifiers [31], 2L-VSI, three-level inverter [32], matrix converters [33],
and modular multilevel converters [34]. Some typical applications of MPC for high-power
converters are shown in Figure 7.
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In [35], the authors present a CCS-MPC designed for DC/DC converters, which have
bilinear dynamic structures and allow generalized control design. According to [36], a
sequential MPC based on the optimal sector method for current source rectifier is proposed,
and a duty-cycle-based modulation is applied to provide fixed frequency operation. Active
damping based on virtual impedance is embedded in the current control to suppress oscil-
lations and current harmonics. According to [33], an MPC method is proposed to optimize
switching frequency and simultaneously adjust the common mode voltage in a direct ma-
trix converters supply system, while keeping the sinusoidal load and source current close to
the device input power factor. In addition, to simplify algorithm structure while processing
different targets, appropriate normalization techniques have been implemented to scale the
errors in each target. In [37], a hybrid multi-vector MPC strategy for internal interleaved
hybrid multilevel converters is proposed, and it achieves separation of low-frequency
and high-frequency regions. From the typical applications of MPC in power converters
mentioned above, it can be seen that MPC has played a huge advantage in solving control
problems, especially in multilevel converters. By combining effective control complexity
reduction algorithms, MPC has achieved more effective converter control [38,39].

3.2. MPC for Industrial Drives

Compared to its application in converters, MPC has a more diverse range of appli-
cations in motor drives. As shown in Figure 8, MPC is a powerful control technique that
is increasingly applied across a wide range of industrial drive applications, such as mo-
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tor control, electric vehicle, wind and hydroelectric power generation, industrial process
control, etc.
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According to specific control objectives, the application of FCS-MPC can be divided into
different control strategies, such as model predictive torque control (MPTC), model predictive
current control (MPCC), model predictive flux control (MPFC), and model predictive speed
control (MPSC). MPCC can directly predict the stator current component through decoupling
control, thereby achieving faster current loop response than FOC [40]. The research results
of [41] indicate that the current ripple of MPCC is much larger than FOC, and the harmonics
concentrate on low-frequency band, which is different to FOC. Similar to DTC, MPTC can
achieve good performance, and control torque and stator flux directly. Therefore, MPTC is
considered an important alternative to DTC [42]. The research results of [43] indicate that
DTC has larger ripples than MPTC. In terms of THD, MPTC achieved better current quality
than DTC. In [44], the comparisons of MPC methods and conventional PI-based methods are
presented. The research results of [44] indicate that the torque error of MPTC is the smallest of
the three methods. Compared with DTC, MPTC and MPCC show a better control performance
and the tracking errors are smaller. The three methods have a fast dynamic response. Different
from MPTC, MPFC can directly control the stator flux, achieving good control performance
while eliminating the weighting factor [45]. Free from the classic cascaded double closed-loop
structure, MPSC incorporates both speed and current into the cost function for evaluation,
and further improves the dynamic response of speed control [46]. As shown in Table 1,
different types of conventional MPC methods are summarized to demonstrate their technical
characteristics, including control objectives, classical cost function design, and corresponding
control advantages and disadvantages, as well as improved applications for motor drives. In
addition, Figures 9 and 10 show the structure diagram of conventional MPCC and MPTC,
respectively. By comparison, the differences and connections in the application of different
MPC technology solutions can be seen.
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Table 1. Typical characteristics and applications of MPC.

MPC Strategies Control Objectives Cost Function Design Typical Characteristics and Improved
Applications

MPCC Stator current component

J = [i∗sα − isα ]
2

+[i∗sβ − isβ ]
2 + Im

J = [i∗sd − isd ]
2

+[i∗sq − isq ]
2 + Im

Current decoupled control
Rapid current dynamic response

Unsatisfactory parameter robustness
Relatively large current harmonics

[47,48]

MPTC Torque and stator flux J = [T∗
e − Te ]

2

+kψ [|ψ∗
s |−|ψs |] 2

+Im

Direct control of torque and flux
Rapid torque dynamic response

Weighting factor required
Good robustness for rotor parameters

Unsatisfactory torque/flux ripple
[49,50]

MPFC Flux vector J = [ψ∗
s − ψs ]

2 + Im

Direct control of stator flux
Rapid torque dynamic response

Weighting factor elimination
Relatively good scalability of cost function

[51,52]

MPSC
Rotor speed

and
stator current

J = [ω∗
r − ωr ]

2

+kisd [i∗sd − isd ]
2

+kisq [i∗sq − isq ]
2 + Im

Direct control of rotor speed
Rapid speed response

Weighting factor required
Complex cost function design

[10,53]
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The real MPC technologies for high-power converters and industrial drives are increas-
ingly being adopted across various industries due to their ability to optimize performance,
improve energy efficiency, and enhance system stability in complex, dynamic environ-
ments. MPC is particularly valuable in applications such as electric vehicle (EV) motor
drives, renewable energy systems (e.g., wind turbines and solar inverters), and indus-
trial motor control, where traditional control methods like FOC and DTC fall short. The
technology allows for real-time optimization of system parameters, providing better load
handling, reducing harmonic distortion, and increasing overall efficiency. Companies
like Siemens and ABB have successfully deployed MPC in electric vehicle motor drives,
high-efficiency power converters, and wind turbine systems. Rockwell Automation has
successfully implemented MPC in high-power converters and drives, driving its growth
in the market. Despite its advantages, the high computational demands and integration
complexity remain barriers to broader adoption. However, with advancements in compu-
tational hardware and software, the adoption of MPC in industrial automation, electric
vehicles, and power electronics is expected to continue growing, contributing to a more
efficient and sustainable energy future.

4. Key Application Issues for MPC

Since its development, MPC has also faced some key issues that need to be addressed.
Recently, many studies have explored these issues in depth and developed many effective
MPC strategies.

4.1. Optimization and Elimination of Weighting Factors

The evaluation of candidate solutions by cost functions is an effective means of multi-
objective optimization in predictive control methods, and cost functions can provide
support for the design of constraints involving multiple control objectives and different
shapes. In conventional MPC, the cost function requires weighting factors. By changing
weighting factors, it is possible to adjust the priority relationship between multiple control
objectives. The weighting factor design is very important for MOOP in MPC. However,
weighting factor tuning is not an easy task, and there is currently no unified design principle
based on mature theories. Most of them are determined by trial and error or based on a
large number of simulations and experiments. This empirical process of weighting factor
tuning is time-consuming, and an inappropriate choice of weighting factor can even lead to
a deterioration in system control performance. The different methods for optimizing and
eliminating weighting factors can be summarized as shown in Figure 11.
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Based on specific criteria, some MPC strategies design weighting factors to avoid the
traditional tuning process of weighting factors based on experience. In [54], the authors ana-
lyzed the impact and reasons of weighting factors on the dynamic and static performance of
torque and flux control, and designed weighting factors based on the principle of balancing
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voltage sensitivity with control objectives. In [55], the author aimed to minimize current
distortion and used algebraic methods to calculate the optimal weights. Other studies are
dedicated to obtaining online optimal solutions of weighting factors. In [56], an intelligent
algorithm of compromise sorting was adopted to achieve online solution of weighting
factors in the objective function, but the calculation was complex and time-consuming.
In addition, other intelligent optimization algorithms have also been introduced into the
processing method of MPTC weight factors to achieve motor optimization control under
multiple constraints of torque, flux, and inverter switching frequency, such as the particle
swarm optimization (PSO) algorithm [57], genetic algorithm [58], and neural network
algorithm [59]. Although various online weighting factor configuration strategies have
been developed by combining algebraic methods or intelligent algorithms, the appropriate
determination of optimization criteria is still a problem that these methods have to face.
Inappropriate optimization criteria can reduce the performance of other aspects of MPC.

By eliminating weighting factors, complex weighting-tuning processes can be avoided
in principle. Some methods explore the relationships between variables such as flux, torque,
and voltage by transforming the control objectives. Through variable substitution and other
techniques, the control objectives in the cost function are simplified from multiple to single
objectives, thereby eliminating the need for weighting factors. According to [60], by directly
predicting torque and its duality, the proposed method transforms the prediction equation
into a multi-scalar form, thereby eliminating the weighting factor. According to [61], the
voltage control variable is directly used to design the cost function, which improves the
elimination of weighting factors and reduces computational burden. In addition, as shown
in Table 2, some other MPC methods consider the elimination of weighting factors from
the perspective of changing the structure or valuation form of the cost function. The cost
function is split into a single objective, such as J1 = [T∗

e − Te]
2 and J2 = [|ψ∗

s |−|ψs|] 2, then
evaluated independently.

Table 2. MPC with changing cost function evaluation form.

MPC Strategies Evaluation Form Optimal Solution Decision-Making

Ranking-based MPC Parallel evaluation
Optimize the average ranking of J1 and J2.

Relatively large current harmonics
[62]

Sequential MPC Sequential evaluation Evaluate and select vectors in order of J1 and J2.
[63,64]

Parallel MPTC Parallel evaluation
Integrate and optimize the top three ranking

results of J1 and J2.
[65]

Fast computation-based MPC Direct computation of the optimal
solution

Synthesize and solve reference vectors based on
deadbeat technique, geometric method, or

region method.
[42,50,66,67]

In addition, fast computation-based MPC methods are also presented, in which the
optimal solution is directly calculated. In previous MPC methods, the merit-seeking
problem is solved by traversal search. However, enumerating all candidate solutions is
not conducive to reducing computational burden. For this reason, relevant fast FCS-MPC
methods are developed to greatly simplify or even eliminate the conventional traversal
process. Based on the obtained magnetic flux reference vector, The optimal solution
decision-making process has been greatly simplified, and duty-cycle control has been
achieved in [50]. By solving the reference voltage, Ref. [68] directly selects the optimal
voltage vector in single-vector control, and only needs to traverse three candidates to
determine the optimal solution in dual-vector control. For MPCC, Ref. [66] projects the
current error vector onto the active voltage vector to reduce the number of candidate active
voltage vectors without the need for additional coordinate transformations and related
trigonometric calculations. In the above fast FCS-MPC methods, evaluating every possible
solution is avoided. To further improve the performance of MPCC based on reference
current, Ref. [69] proposes a reference variant FCS-MPC approach to truly comply with the
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boundary settings. The problem of limited input quantity in conventional reference-current-
based methods has been improved by introducing a limited number of reference variants.
Ref. [70] avoids the combinatorial optimization phase of standard FCS-MPC, which is
based on physical insights obtained from the application of FCS-MPC to multi-phase drives
leading to the concept of evolutionary gap regions. As a result, the sampling period can be
reduced while producing predictive control.

In multi-phase motor drive systems, the methods of eliminating weighting factors
have also received attention. In [71], a sensor-less MPTC scheme for a five-phase IM drive
is presented. Based on synthetic voltage vector, it eliminates common-mode voltage and
the harmonic current in the xy-subspace. A five-phase PMSM MPTC scheme using dual
virtual voltage vectors is proposed in [42], which applies the geometric principle to select
the second voltage vector and calculate the vector duration. Based on the dual d-q model of
the motor, Ref. [72] redefines the prediction stage of the asymmetric six-phase IM FCS-MPC;
the proposed method obtains four control variables with the same priority, and eliminates
the need to design weighting factors in the cost function.

In addition, MPCs with weighting factor determination have also been reported,
which are based on the actual operating point [73]. In [74], the analytical expressions for
the weighting factors are derived, and it aims to ensure good operational performance
of current closed-loop control by minimizing current distortions. For multi-phase IM
drive systems, Ref. [75] defines a performance index relative to the observed behavior, and
the cost functions are derived from an optimization of said index. Hence, the weighting
factor determination has been achieved. Ref. [76] reviews various weighting factor design
methods, and it reveals the advantages and disadvantages of existing methods.

The weighting factor elimination avoids complex tuning processes, which is beneficial
for shortening development time. However, the impact of weighting factor elimination
on MPC is not only positive. The weighting factors of cost function provide flexibility
for adjusting the weighting relationship between control objectives [72,77]. Eliminating
weighting factors makes it difficult for conventional MPC to freely modify important
components between different control objectives. At present, there is no clear conclusion
on whether to retain weighting factors, and further research is needed.

4.2. Improvement of Steady-State Control Performance

Conventional MPC applies a single vector throughout the entire control period, result-
ing in the steady-state control performance being unsatisfactory. Expanding the control set
for multi-vector control is an effective method to reduce tracking error. By increasing the
number of voltage vectors applied within one control cycle, the tracking performance is
improved to minimize the reference value tracking error and achieve higher control accu-
racy. Multi-vector control can be further divided into duty-cycle control, two-vector control,
and multi-vector control. Duty-cycle control is a combination of combined active VV and
null VV applied simultaneously within one control period. Due to the fact that the second
vector of its VV combination is fixed as a zero vector, it greatly retains the advantages of
simple implementation of single-vector-based MPC, but the performance improvement is
still relatively limited [78]. Considering the relatively low control freedom of duty-cycle
control, the selection range of the second VV in the application combination can be further
expanded, thereby realizing the two-vector-based control to better improve performance.
In [79], the authors achieve two-vector control of torque and flux without the weighting
factor based on a dynamically adjustable torque boundary. Compared to the conventional
method, the proposed MPC in [79] reduces the torque ripple from 0.4320 to 0.3492 Nm at
the rated speed. In [80], a hysteresis form of two-vector-based model predictive control
method is proposed, and it effectively controls the current error within an acceptable range
at low sampling frequency, so the current THD (4.94%) in [80] is nearly 1% less than that
(5.87%) in single-vector method. Considering the limitations of vector combination in
duty-cycle control, a generalized two-vector control method is developed [81]. According
to the principle of torque deadbeat control, the action time of active VV is solved, which can
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effectively reduce the torque ripple of conventional MPTC. In [82], an improved two-vector
sequential MPC is presented, which achieves two-vector control with targeted optimization
methods for torque and flux. In addition, to expand the control set to a greater extent, some
ways of considering applying more vectors have been developed to increase the degree of
control freedom. By establishing an effective vector selection table, the three-vector control
strategy is proposed [83], which can further suppress flux fluctuations. In [84], the authors
combine discrete space vector modulation (DSVM), and a multi-vector MPTC strategy with
equal interval action time is proposed, and further determines candidate combinations
based on the planning method of switching table in DTC. In [85], the authors propose a
universal multi-vector-based MPC method that expands the number of DSVMs to a greater
extent, and reveal the inherent relationship between the two-vector MPC method it was
based on and the DSVM method using deadbeat control.

In addition, for most existing MPC methods, the interaction between computational
complexity and weighting factors in the cost function is critical to optimizing performance.
As the weighting factors are adjusted to prioritize specific control objectives, such as torque
tracking or minimizing energy dissipation, this has a significant impact on the behavior and
stability of the system. However, a key consideration is the effect of switching frequency;
reducing or limiting the switching frequency usually results in an increase in current
harmonics [86]. These harmonics can exacerbate heating and electromagnetic interference
problems, which can affect overall system efficiency and lifetime. Therefore, while striving
to simplify the computational load, it is necessary to carefully balance these weighting
factors to ensure that the final control strategy does not inadvertently reduce performance
through higher order harmonic distortion. Although MPCs based on reference vector
can eliminate weighting factors and greatly simplify the prediction calculation process,
limited candidate solution inputs can also reduce control degrees of freedom, leading to
performance degradation of certain indicators [69]. Therefore, future development of MPC
strategies that take into account different control objectives, such as low computational
cost, good tracking accuracy, and effective multi-objective optimization, should seek to
balance and compromise the results. This is a promising research field, and related studies
are still ongoing.

To describe the technical features of improved MPC methods, Table 3 provides a com-
prehensive comparative analysis for related methods in recent years. Note that improved
MPC is moving towards high performance and low complexity.

Table 3. MPC with changing cost function evaluation form.

Improved
MPC Method

Control
Objectives

Number of
Vectors
Applied

Number of
Candidates

Execution
Time/Controller

Weighting
Factor

Main
Contributions

MPCC [47] Stator current 2 1 ≈39 µs
DSP TMS320F28377D No

Direct computation
of the optimal

solution

MPTC [49] Torque
Stator flux 3 4 ≈14 µs

DSP TMS320F28377D No Optimized
switching pattern

RVV-MPC [50] Stator voltage 2 1 ≈37 µs
DSP TMS320F28335 No Reference voltage

vector synthesis

MPFC [68] Stator flux 2 3 ≈55 µs
DSP TMS320F28335 No Reference flux

vector synthesis

MPSC [10] Rotor speed
Stator current 1 7 ≈43 µs

DSP TMS320F28335 Yes Excellent dynamic
performance

4.3. Robustness Improvement

Since predictive control is essentially a model-parameter-based method, model param-
eters are often used for prediction calculations during the prediction and control process. If
the parameters change or are subject to external disturbances, the predicted values of the
control target will deviate, which has a negative impact on the optimal solution selection
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and reduces the overall control performance of the MPC algorithm. Therefore, improving
the robustness of MPC is also a key research issue [87].

MPC strategies combine online engine parameter identification technology to provide
more accurate parameters for predictive models. Extended Kalman Filter is employed
to obtain the stator current error [88], which tries to replace the measured stator current
and is fed back into the prediction model, achieving lower current THD while improv-
ing robustness. Ref. [89] deploys the concept of the EKF to identify the resistance and
inductance in real time online, and estimates the grid variables. Then, based on artificial
neural network, the proposed method selects the optimal weighting factor set among the
predefined weighting factor sets, which are calculated using the PSO algorithm for different
conditions of the circuit.

Some MPC strategies unify parameter mismatch and external disturbances as errors
by combining observer technology. The designed observer monitors the errors and feeds
them back to the control loop for compensation. A sliding mode observer is designed
for feedback error observation, and the obtained nonlinear error feedback term is back to
the system model to deal with parameter uncertainty and unexpected disturbances [90].
In response to the problems of traditional speed loop PI controllers in dealing with load
torque disturbances and unsatisfactory setpoint generation, a feedforward compensation
strategy based on a disturbance observer is adopted to improve robustness and promote
control performance [91]. In [92], an improved MPC method based on observer-predictor
is proposed, which modifies the conventional motor prediction equations with the voltage
and current hybrid model.

5. MPC Research Priorities and Trends

Since the development of MPC technology, some basic control problems have been solved,
but there are still some issues that need further in-depth research, such as strict proof of global
stability and further reduction of computational efficiency under multi-step conditions.

To avoid prior knowledge of model information and weighting-factor-tuning, model-
free MPC is combined with data-driven technology for robust improvement [93–96]. In-
spired by artificial intelligence methods, Ref. [97] integrates data-driven and event-driven
design framework, and presents an online learning MPC for power converters. The
dynamic-linearization data model is utilized to equivalently reformulate the governed
power converter at each operation point in [98]. In pursuit of accurate modeling, the
time-varying parameters of the data model are updated online by an adaptive linear neural
network. On the other hand, due to improvements in computational efficiency, CCS-MPC
has also made some progress [99,100]. Owing to Laguerre functions, Ref. [101] presents
a CCS-MPSC with a long prediction horizon, and the dynamics of the equivalent speed
tracking error and the direct-axis current are naturally decoupled. In [102], a CCS model-
free predictive control based on a time-series subspace is proposed. This method constructs
a time-series subspace model from data and creates a suitable control law using the re-
cursive least squares algorithm and Lagrange method without any time-varying physical
parameters, to predict the future behavior of the stator voltage. Ref. [103] proposes an
improved implicit CCS-MPCC method, which has strong parameter robustness against
stator resistance and inductance variations. In addition, some new fusion MPC methods
have also been attempted to further improve the control performance of conventional
MPC in various aspects [46,100]. Ref. [104] introduces a semiclosed loop MPCC, and it
fully accounts for the Lagrangian approach for the dynamic model of the servo system.
Considering nonlinear factors, the proposed method significantly enhances the control
accuracy of crank position and speed. Different from FCS-MPC assessing seven basic
voltage vectors, Ref. [86] offers optimized candidate solutions considering one, two, three,
and four vectors during one control period to obtain superior steady-state performance and
controllable switching frequency. An adaptive inertia observer-based model-free MPCC
strategy is proposed in [105], and it achieves inertia matching between system inertia
and load inertia based on online estimated load torque, reducing the influence of inertia
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mismatch. Ref. [106] proposes a direct optimal input determination data-based MPCC
method, where raw input–output data are collected online and stored to directly determine
the optimal control action, skipping the stage of parameter identification. Implementing
MPC in industrial environments typically requires a significant amount of hardware re-
sources, thus requiring a trade-off between high-performance processor cost and system
performance. On the other hand, the large computational complexity of MPC can also lead
to issues of power consumption and device aging in the control system, which is crucial
for some MPC systems that require long-term continuous operation. Therefore, the energy
demand and economic cost of MPC should also become key indicators for evaluating MPC
methods in the future. Reasonable energy efficiency improvement for MPC will become a
highly anticipated research direction. Some important research directions and trends are
also worth considering as follows.

(1) The future trend is to combine MPC with intelligent algorithms such as machine
learning and advanced optimization algorithms to achieve intelligence and adaptive
control. The above-mentioned combined research can further enhance the adaptability
and robustness to cope with complex and ever-changing working environments.

(2) In practical applications, power converters and motor control systems often have
to satisfy several performance indicators simultaneously (such as energy efficiency,
response time, stability, etc.). Therefore, an important research trend is the design
and implementation of multi-objective optimization algorithms to achieve a balance
between multiple performance indicators. The optimization problems for 2–3 control
objectives and corresponding weighting factors have been basically addressed. How-
ever, the optimization problems for more control objectives, as well as issues related
to tuning and computational burden, are still under investigation,

(3) In practical applications, power converters and motor control systems have high
real-time and reliability requirements. More attention needs to be paid to the accuracy,
real-time performance and robustness of the model. On this basis, efforts should
be made to improve the real-time responsiveness of the MPC algorithm, reduce
computational delays, and realize stable operation of the system.

(4) The combination of MPC and optimized pulse modulation should be explored. Pulse
modulation is an excellent solution for low-power electronics applications with low
switching frequencies, but there is a problem of slow dynamic response. The combi-
nation of MPC and optimized pulse modulation can present excellent dynamic and
steady-state performance, but the implementation is relatively complex. In addition,
it is necessary to calculate and store the optimized pulse modulation angle in advance,
and to develop a fully online MPC with excellent steady-state performance to optimize
pulse modulation while maintaining fast dynamic response.

6. Conclusions

For high-power converters and industrial drives, MPC has become the most attractive
control method. The numerous research results and practical applications have shown
that MPC is sufficiently effective and convenient. In this paper, an overview of advanced
MPC technologies for high-power converters and industrial drives is presented. Starting
from the basic concepts and implementation principles of MPC, this paper discusses
in detail the technical characteristics and research progress of different MPC schemes
in the terms of power converters and motor drives. Some important solutions to key
issues in advanced MPC have been reviewed. Finally, some mainstream research trends
of advanced MPC in the next stage are elaborated. Recent research on various MPC
schemes pursues comprehensive performance optimization with high control accuracy, low
control complexity, and strong robustness. In addition, stability and implementation cost
are increasingly valued in practical development to accelerate integration into industrial
applications. The above research content is enlightening, and it can provide reference
for the theoretical and practical research of advanced MPC technologies for high-power
converters and industrial drives.
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