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Abstract: Connecting microgrids can promote the sharing of multi-energy sources, reduce carbon
emissions, and enhance the consumption of renewable energy. However, the uncertainty of renewable
energy and the coupling of multiple energy sources makes energy management difficult in connected
microgrids. To address the challenges, a dual-layer energy management framework for interconnected
microgrids is proposed in this paper. In the bottom layer, a load scheduling problem within one
microgrid is formulated to maximize the utilization of renewable energy, which is solved by an
improved gray wolf algorithm with fast convergence and effective optimum seeking. In the upper
layer, a distributed energy dispatch strategy is proposed to coordinate the energy sources for multiple
microgrids to achieve multi-energy sharing with carbon trading. Combining the load scheduling and
energy dispatching, the overall energy utilization is improved, and the operation cost and carbon
emission are reduced. The simulation results on real-world datasets validate the effectiveness of the
proposed method.

Keywords: interconnected microgrids; load scheduling; energy dispatching; multi-energy sharing;
renewable energy utilization; carbon trading

1. Introduction

In recent years, the issues of energy shortages and environmental pollution have
attracted much public attention. To reduce the use of fossil fuels and carbon emissions,
large-scale clean renewable energy sources and multi-energy are integrated into the mi-
crogrid system to achieve stable and reliable operation [1,2]. Microgrids (MGs) typically
operate in a grid-connected mode. However, in remote areas where connecting to the main
grid is inconvenient, microgrids play a crucial role in energy supply [3]. However, indi-
vidual microgrids are less resistant to interference, being liable to system collapse in fault
occurrence [4]. Interconnected microgrids break through the limitations of the individual
microgrid and strengthen the robustness of microgrids [5]. The connection of microgrids
has been validated as an effective approach to achieve stable system operation, enhance
resilience, reduce carbon emission, and improve the utilization of large-scale distributed
renewable energy sources [6].

Within one microgrid, renewable energy utilization can be promoted by means of load
scheduling. There are many studies that regulate flexible loads to reduce the operation cost
as much as possible under the regulatable range. In [7], a decentralized gradient projection
method is proposed for solving the economic load dispatch problem of thermal power units.
In [8], a microgrid air conditioning load scheduling model is developed and a stochastic
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robust optimization model is solved using a column constraint generation algorithm. In [9],
a multi-objective residential load scheduling strategy is proposed and the load scheduling
problem is transformed into a mixed-integer programming problem to be solved. However,
although these traditional methods are effective in solving fundamentally convex objective
functions, they are less effective in solving high-dimensional variables or nonconvex and
nonsmooth objectives in such optimization problems.

Thus, meta-heuristic intelligent algorithms are proposed to solve the load scheduling
issue of microgrids. For instance, the genetic algorithm is utilized for residential load
shifting, which takes into account distributed generation and dynamic pricing. This
approach aims to minimize energy costs, and consequently, reduce electricity bills [10].
In [11], the dragonfly algorithm is proposed to solve the economic load dispatch problem
in power systems. In [12], a nondominated sorting genetic algorithm is used as a multi-
objective optimization algorithm for residential load scheduling methods for smart grids. In
meta-heuristic intelligent algorithms, the gray wolf optimization algorithm has the potential
and effectiveness to achieve global optimization in the power system, and it has a better
transfer mechanism and information-sharing ability, which provides a more diversified
solution space search for solving the complex economic load scheduling problems [13,14].
However, the convergence speed and search capability of the original gray wolf algorithm
still need to be improved to meet the requirements of real-time scheduling.

Furthermore, when microgrids are connected, it is preferable to share the various
energy resources among microgrids, improving energy efficiency. In terms of energy
sharing, a two-layer optimal allocation method is proposed for microgrids with the aid
of shared electric hydrogen storage stations in [15]. In [16], a green power value-driven
energy sharing approach for interconnected microgrids is proposed. In [17], the interactions
between interconnected microgrids are investigated and the incentive mechanisms are
developed by using Nash bargaining theory to encourage energy trading and sharing.
Nevertheless, only the electrical energy is shared among microgrids in the above research.
Currently, more and more microgrids are integrating multiple energies; the sharing and
transferring of multiple energies should be of most concern.

Many economic dispatch algorithms scheduling energy sources have emerged in the
field of energy optimization with centralized modes [18,19]. The multi-energy coupling in
multi-microgrid systems, coupled with the diversity of energy devices, presents a signifi-
cant challenge to energy dispatch. This challenge complicates the application of previous
centralized algorithms. Thus, some distributed dispatch methods have been developed
recently, which can provide more robust, economical, and efficient scheduling for dis-
tributed power systems [20]. In [21], a fully distributed framework using the analytic target
cascading approach was proposed and applied to energy dispatch for multi-microgrid
systems. A multiplier-based proto-dyadic method to implement a distributed optimization
approach is used to model a transportation system for smart islands to save energy and
minimize operating costs [22]. However, the above-distributed methods have the same
problem in terms of optimality. In the distributed optimal algorithms, the alternating
direction method of multipliers is shown to exhibit superior performance on the optimal
capability and convergence speed [23,24].

The joint optimization of load scheduling and energy dispatching enables the efficient
and rational utilization of energy as well as the stable and economic operation of the
microgrid system. There is some literature in existing research that studies joint load
optimization and energy dispatch in microgrids. A generic energy optimization model
is proposed for the grid-connected integrated energy systems, considering price-based
demand response and incentive-based demand response, respectively [25]. In [26], a
control algorithm is introduced to manage the combined challenges of demand response
and thermal comfort within microgrids, utilizing renewable energy and energy storage
units. Additionally, ref. [27] presents an optimal control framework aimed at coordinating
building HVAC systems, renewable energy sources, and peak load reduction, all while
maintaining user comfort. In [28], an integrated optimal control strategy is proposed that
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synergistically combines demand-side management with a grid-tied microgrid approach to
effectively handle the supply and demand aspects of the grid.

However, for interconnected multi-microgrid systems, the direct joint optimization
of load scheduling and energy dispatching can lead to a complex scenario characterized
by a high number of dimensions and a multitude of interdependent constraints, often
culminating in complex optimization problems. Thus, it is worth investigating the combi-
nation framework to jointly optimize the load scheduling and energy dispatching under
interconnected multi-microgrids.

Carbon emission plays a critical role in energy management, which is emphasized
by [29]. Interconnected microgrids have been shown to be effective in reducing the carbon
emissions of the system through the rationalization of energy utilization. In [20], an
optimization model was developed that integrates the minimization of both energy costs
and carbon emissions, and a two-tier scheduling model for multi-energy systems was
proposed. In [30], a charging strategy for electric vehicles was proposed that aligns with
carbon emission constraints. In [31], a stochastic planning model for a multi-energy multi-
microgrid network was developed with a focus on low-carbon considerations.

However, these methods are hard to dynamically adapt to the fluctuating energy
demands and supply scenarios characteristics of an interconnected microgrid. And ad-
dressing the complexities of synthesizing the conversion of multiple energy forms and
integrating carbon trading to mitigate the constraints imposed by carbon emission limits is
a considerable challenge.

To address the above issues, a dual-layer energy management framework for inter-
connected microgrids is proposed to integrate the load scheduling of the demand side
and dispatching of the multi-energy resources. The energy management strategy includes
two layers: the electric load scheduling of the demand side based on an improved gray
wolf algorithm, and the energy dispatching based on a distributed algorithm, considering
multi-energy sharing and carbon trading. In the bottom layer, load scheduling is developed
to redistribute the electric load and to make use of renewable energy fully. In the upper
layer, the dispatching problem with multi-energy sharing and carbon trading between
interconnected microgrids is solved by using the distributed alternating direction method
of multipliers. The proposed strategy can improve the utilization of multiple forms of
energy and achieve a low-carbon economic operation of interconnected microgrid networks.
The main contributions of this paper are as follows:

• A dual-layer load scheduling and energy dispatching joint optimization energy man-
agement framework is proposed to optimize the operation cost and reduce carbon
emission for multi-energy interconnected microgrids.

• An improved gray wolf optimization algorithm using backward learning, Cauchy vari-
ance, and the nonlinear convergence factor is developed to solve the load scheduling
problem and maximize renewable energy utilization.

• Multi-energy sharing and carbon trading are considered in energy dispatching and the
alternating direction method of multipliers is utilized to solve the dispatch problem in
distributed mode.

The remainder of this paper is organized as follows: Section 2 presents the system
framework and mathematical model, including the structure of the interconnected micro-
grids system, the unit models, and the optimization problem. In Section 3, the electric load
scheduling and energy dispatching strategy are presented in detail. In Section 4, the dual-
layer energy optimization management simulation results of interconnected microgrids are
conducted and analysed. Finally, the work is concluded and future perspectives of research
are presented in Section 5.

2. Energy Management Framework and System Modeling

In this section, the interconnected microgrids framework and various energy devices
are modeled first. Then, the renewable energy resource maximum utilization and load
scheduling model are described in detail. The dual-layer energy management framework
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is proposed by combining the bottom-layer electric load scheduling for individual micro-
grids and the upper-layer energy dispatching for interconnected microgrids, including the
dispatch of electrical and thermal energy of locally controllable units, energy sharing, and
carbon quota trading. At the same time, the constraints of each energy equipment and the
supply–demand balance of the interconnected microgrids system are satisfied.

2.1. Model of Interconnected Multi-Microgrids

The interconnected multi-microgrids system consists of several MGs (MG1, MG2,
. . . , MGN). These microgrids are defined as N , N = {1, 2, . . . , N}. Each MG in the
interconnected multi-microgrids network is indexed by i ∈ N . As shown in Figure 1, in
each microgrid, there are renewable energy sources (RES), combined heat and power units
(CHP), gas boilers (GB), energy storage systems (ES), conventional generators (CG), and
loads. To achieve the maximum consumption of renewable energy, surplus renewable
electricity can be stored or transmitted to other MGs to meet the system’s load demand.

MG1 MGN

 

 

 

EMS

Load 

MG2

MG2

Upper layer

Bottom layer

scheduling

Thermal-sharing Carbon marketElectricity-sharing

Energy dispatching

...

Figure 1. The structure of interconnected microgrid and energy management system. The energy
management system has dual-layer optimization, including bottom-layer load scheduling and upper-
layer energy dispatching.

Each MG contains three types of energy: electricity, gas, and heat. MGs include two
types of load demand, namely electric and thermal loads. The energy flows are shown
in Figure 2. In the energy management of the interconnected microgrids system, the
scheduling range is defined in one day as T = {1, . . . , T}, where T = 24, and one hour as a
time slot.
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ED HD

RES

CG

ES

GB

CHP

 

 

Carbon flow

Electrical flow

Thermal flow

Gas flow

Figure 2. The energy flow of the microgrid, including electricity flow, thermal flow, carbon flow, and
gas flow.

2.2. Model of Devices and Constraints

Each energy device of the interconnected microgrids system is described in detail in
this section by constructing the model. The CHP model, GB model, CG model, RES model,
ES model, load model, and carbon quota model are given as follows.

2.2.1. Combined Heat and Power (CHP)

The CHP is a single-input, multiple-output energy converter. It is typically character-
ized by high efficiency in the use of energy compared to independent sources of electricity
and heat. It can produce both electric and thermal energy at the same time. The coupled
thermal and electric energy for cogeneration is modeled as follows:

Pchp
i,t = η

e,chp
i Qchp

i,t , ∀t ∈ T , ∀i ∈ N (1)

Hchp
i,t = η

h,chp
i Qchp

i,t , ∀t ∈ T , ∀i ∈ N (2)

where Pchp
i,t and Hchp

i,t represent the amount of electricity generated, the amount of heat
produced, and the amount of gas consumed by CHP per unit time t in microgrid i, respec-
tively. η

e,chp
i and η

h,chp
i indicate the efficiency of natural gas being used by CHP to produce

electricity and heat, respectively. The maximum gas consumption and ramp rate limits for
CHP are given in (3) and (4).

0 ≤ Qchp
i,t ≤ Qchp

i,max, ∀t ∈ T , ∀i ∈ N (3)

Qd,chp
i ≤ Qchp

i,t − Qchp
i,t−1 ≤ Qu,chp

i , ∀t ∈ T , ∀i ∈ N (4)

2.2.2. Gas Boilers (GB)

GB generates heat by burning natural gas. η
h,gb
i is the heat energy conversion efficiency

of the GB and Hgb
i,t represents the heat production by the GB. They are described as follows:

Hgb
i,t = η

h,gb
i Qgb

i,t , ∀t ∈ T , ∀i ∈ N (5)
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In addition, the GB has a limit in the output of thermal energy, which is described by (6).

0 ≤ Hgb
i,t ≤ Hgb

i,max, ∀t ∈ T , ∀i ∈ N (6)

2.2.3. Conventional Generators (CG)

Pcg
i,t and Pcg

i,max represent the CG’s power production and the maximum power produc-

tion limits respectively. Pd,cg
i and Pu,cg

i represent the lower and upper boundaries of the
slope rate of the CG respectively. They are described as follows:

0 ≤ Pcg
i,t ≤ Pcg

i,max, ∀t ∈ T , ∀i ∈ N (7)

Pd,cg
i ≤ Pcg

i,t − Pcg
i,t−1 ≤ Pu,cg

i , ∀t ∈ T , ∀i ∈ N (8)

The fuel consumption Vcg
i,t , CO2 emission CEcg

i,t , and the conventional generators cost
Ccg

i,t are expressed as (9)–(11):

Vcg
i,t = η

cg
i Pcg

i,t , ∀t ∈ T , ∀i ∈ N (9)

where η
cg
i represents the fuel consumption rate, which is set to 0.24.

CEcg
i,t = αcgPcg

i,t , ∀t ∈ T , ∀i ∈ N (10)

Ccg
i,t = λoilV

cg
i,t , ∀t ∈ T , ∀i ∈ N (11)

where αcg and λoil indicate the per unit carbon emission factor of CG and per unit price of
diesel, respectively.

2.2.4. Renewable Energy (WT and PV)

WT and PV are considered to be uncontrollable generation units because of their
intermittent and stochastic nature. In this paper, the historical forecast data of the microgrid
are used as a relevant scenario for the experiment. Ppv

i,t , and Pwt
i,t are the forecasted output

power (in kW) of PV and wind power, respectively, which need to meet the following
power limits:

0 ≤ Ppv
i,t ≤ Ppv

i,max, ∀t ∈ T , ∀i ∈ N (12)

0 ≤ Pwt
i,t ≤ Pwt

i,max, ∀t ∈ T , ∀i ∈ N (13)

Pres
i,t = Ppv

i,t + Pwt
i,t , ∀t ∈ T , ∀i ∈ N (14)

where Ppv
i,max and Pwt

i,max are the upper limits for the output power of PV and wind turbines,
respectively. Pres

i,t is the total RES output of the isolated microgrid i in per unit t (in kW).

2.2.5. Energy Storage System (ES)

The purpose of the energy storage system is to store excess electricity during low
electricity consumption periods. During peak periods of electricity consumption, electricity
is exported and can facilitate peak shaving and valley filling. The state of the energy storage
system (ES) at time t during charging and discharging is shown in (15). Es

i,t−1, Es
i,t, ηes,c

i ,

and ηes,d
i denote the battery state of the energy storage system at the time t − 1 and time t,

and the charging and discharging efficiency, respectively.

Es
i,t = Es

i,t−1 + ηes,c
i Pes,ch

i,t ∆t −
(

1/ηes,d
i

)
Pes,dch

i,t ∆t

∀t ∈ T , ∀i ∈ N
(15)
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The charging and discharging power constraints are shown below:

0 ≤ Pes,ch
i,t ≤ Pes,ch

i,maxues,ch
i,t (16)

0 ≤ Pes,dch
i,t ≤ Pes,dch

i,max ues,dch
i,t (17)

0 ≤ ues,ch
i,t + ues,dch

i,t ≤ 1, ues,ch
i,t , ues,dch

i,t ∈ {0, 1} (18)

where Pes,ch
i,max and Pes,dch

i,max are the maximum charging and discharging power of storage,
respectively. The charging and discharging power are constrained in (19) according to
capacity C and the binary variable ues,ch

i,t , and ues,dch
i,t , respectively. In particular, if u = 1, the

storage is in the charged state; if u = 0, the storage is in the discharged or idle state. The
amount of stored energy should satisfy the following constraints:

SOCes,minCes
i ≤ Ees

i,t ≤ SOCes,maxCes
i (19)

where Ces
i is the rated energy storage capacity of the energy storage unit, measured in kWh,

representing the maximum energy that can be stored when the unit is fully charged. Ees
i,t

represents the remaining capacity of the energy storage system. Constraint (19) states the
maximum SOC and the minimum SOC.

Ees
i,1 = Ees

i,24 (20)

where Ees
i,1 represents the initial value of the energy storage system before the day-ahead

scheduling. Typically, it may be set at around 50% of total capacity to allow for flexible
charging and discharging as needed. Constraint (20) indicates that the stored energy at the
beginning and end of the scheduling range should be the same.

2.2.6. Electric Loads (LOAD)

Two types of electricity loads, schedulable load and inflexible electricity load, are
considered in each MG. The schedulable load can be shifted from time t to other times,
while the inflexible load cannot be shifted. Psche,in

i,t and Psche,out
i,t represent the amounts of

scheduled load from time t to other times. Psche,in
i,t indicates the amount of electrical load

transferred in. Psche,out
i,t indicates the amount of electrical load transferred out. These loads

can be calculated as follows:

POload
i,t = P f ix

i,t + Po f lex
i,t , ∀t ∈ T , ∀i ∈ N (21)

Psche,out
i,t,s = ρout

i,t,sPo f lex
i,t , ∀t ∈ T , ∀i ∈ N (22)

0 ≤ ρout
i,t,s ≤ ρout

i,max (23)

Psche,in
i,t,s = ρin

i,t,sPo f lex
i,t , ∀t ∈ T , ∀i ∈ N (24)

0 ≤ ρin
i,t,s ≤ ρin

i,max (25)

where POload
i,t and Po f lex

i,t represent the initial load and initial flex load at time slot t (in kW).
ρout

i,t,s and ρin
i,t,s represent transfer-out and transfer-in factors. (23) and (25) represent their

upper and lower bound constraints.

PA f lex
i,t = Po f lex

i,t − Psche,out
i,t,s + Psche,in

i,t,s (26)
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The amount of electrical load transferred in should be equal to the amount of electrical
load transferred out during the time range s. Then the balance constraint can be defined
as follows:

∑
t∈Φflex

i

Psche,in
i,t,s = ∑

t∈Φflex
i

Psche,out
i,t,s (27)

The purpose of electrical load scheduling is to maximize RES utilization. The actual
load of each MG changes after the electrical load shift. PAload

i,t is the actual load after load
scheduling, which is calculated as follows:

PAload
i,t = P f ix

i,t + (Po f lex
i,t − Psche,out

i,t,s uout
i,t,s + uin

i,t,sPsche,in
i,t,s ) (28)

∑
t∈Φflex

i

(
uin

i,t,s + uout
i,t,s

)
≤ Nsche,max

i (29)

where uin
i,t,s and uout

i,t,s denote the shifted-in and shifted-out states of the ith MG at time t of
the s shifting time, respectively, as 0 and 1 variables. Φflex

i denotes the set of transferable
work periods; Nsche, max

i denotes the maximum number of transfers in the optimal cycle.

2.2.7. Carbon Quota and Carbon Trading

Carbon emission quota Wo
i,t of the ith MG is calculated from (30):

Wo
i,t = Dgas

(
Pchp

i,t + Pgb
i,t

)
+ DresPres

i,t (30)

where Dgas represents the carbon quota associated with the production of natural gas by
MG, and Dres denotes the carbon quota attributed to the utilization of renewable energy.

Carbon emissions come from the burning of oil by CG and the combustion of natural
gas by the CHP and GB. This is expressed as in (31). emgas

i and emoil
i represent the CO2

emission factors for diesel and natural gas, respectively.

WCO2
i,t = emgas

i

(
Qchp

i,t + Qgb
i,t

)
+ emoil

i Pcg
i,t (31)

The derivation of carbon trading costs for the carbon market is shown in (32):

CCO2
i =

T

∑
t=1

ε
(

WCO2
i,t − Wo

i,t

)
(32)

where ε is the carbon trading price. In the carbon trading market, the price of purchasing
carbon quota is 6 YUAN/kWh and the price of selling carbon quota is 4 YUAN/kWh.

2.3. Demand–Supply Balance

Each microgrid tends to share electrical and thermal energy with other interconnected
microgrids. This can reduce the operating costs of the interconnected system. Given energy
production, consumption, and storage, the balance between supply and demand in the
electricity and heat sectors should always be met at each time slot. The electrical power
balance constraint for participation in energy sharing is the following (33):

Pcg
i,t + Pres

i,t + Pchp
t,i + Pes,dch

i,t = PAload
i,i + Pes,ch

i,t + ∑
j∈N |i

Pi−j,t

∀t ∈ T , ∀i ∈ N
(33)

The heat supply and demand balance is shown in (34):

Hh,chp
i,t + Hgb

i,t = HLoad
i,t + ∑

j∈N |i
Hi−j,t ∀t ∈ T , ∀i ∈ N (34)
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|Pi−j,t| ≤ Pi−j,max

∑
i∈N

Pi,t = 0 (35)

|Hi−j,t| ≤ Hi−j,max

∑
i∈N

Hi,t = 0 (36)

where Pi−j,t and Hi−j,t represent the amount of electrical and thermal energy shared be-
tween interconnected microgrids. (35) represents the power limit and power-sharing
balance constraint on the power transmitted between the microgrids. (36) represents the
heat transfer power bound and the heat sharing balance constraint.

The natural gas balance in the interconnected microgrids is described in (37):

Qgas
i,t = Qchp

i,t + Qgb
i,t , ∀t ∈ T , ∀i ∈ N (37)

3. Dual-Layer Energy Management Strategy for Interconnected Microgrids

In this section, the energy management strategy is presented for the interconnected
microgrids system, consisting of two layers. In the bottom layer, the gray wolf optimization
algorithm is exerted to solve the electric load scheduling to achieve RES utilization. In
the upper layer, the alternating direction method of the multipliers (ADMM) algorithm
is utilized to optimize the energy dispatching problem. The framework of the energy
management strategy for interconnected microgrid systems is shown in Figure 3.

The upper and bottom layer two objective functions are solved hierarchically. The
bottom-layer objective function is addressed independently to optimize the internal load
scheduling of each microgrid. Based on it, upper-layer objective function is applied to
the interconnected microgrids to achieve a cost-minimized operation considering energy
sharing and carbon trading. The solving of upper-layer objective function is dependent on
bottom layer objective function. The upper-layer optimization relies on the outcomes of the
lower-layer optimization, that is, the scheduling electric load.

The bottom layer 

Electric load scheduling within each microgrid

  Input predicted solar and wind power generation, 

electric load demands of each MG

Electric load scheduling model

• 

• 

Objective: minimum RES 

surplus cost [Eqs. (41) (42)]

Condition constrains: Model of 

E-load [Eqs. (21--29), (38--40)]

Electric load scheduling

Improved grey wolf optimization solver

Scheduling results

The actual electric load after the first stage, 

surplus RES cost
 Heat load demands, gas price, oil price

Carbon trading, multi-energy sharing: 

energy-carbon joint dispatch

Use ADMM algorithm to solve the system 

dispatching problem

Obtain the optimal power output: the decision 

variables V

Dispatching problem for system

• 

• 

The upper layer

Objective: minimum system social 

cost [Eqs. (59--62)]

Condition constrains: constraints for 

energy balance and model of PV, 

WT, ES, CG, CHP, GB, LOAD 

[Eqs. (1--20), (30--37)]

Energy dispatching for interconnected microgrids

Figure 3. Dual-layer joint optimization of energy management framework consisted of load schedul-
ing and energy dispatching for interconnected microgrids.
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3.1. Electric Load Scheduling of Demand Side in Bottom Layer

The electric load scheduling can increase the utilization of renewable energy sources
and thus reduce the surplus RES cost in the bottom layer of the interconnected micro-
grids network.

Meta-heuristic algorithms can effectively solve this class of optimization problems.
Compared to other optimization algorithms such as Particle Swarm Optimization, Ant
Colony Optimization, and Genetic Algorithms, the Gray Wolf Optimization algorithm
stands out for its straightforward structure and simplicity in implementation. It requires the
adjustment of fewer parameters, making it more accessible and efficient for solving complex
optimization problems. However, the original gray wolf optimization algorithm suffers
from slow convergence and the tendency to fall into local optimal solutions when solving
for complex decision variables. Therefore, in this paper, a gray wolf optimization (IGWO)
algorithm, improved by introducing a backward learning strategy, Cauchy variance, and
the nonlinear convergence factor, is proposed to overcome the above problems.

3.1.1. Problem Description and Objective Function

The initial surplus renewable energy is defined as follows [32]:

Psur
sys,t =

N

∑
i=1

Pres
i,t −

N

∑
i=1

POload
i,t (38)

When the transfer optimization of the electric load is carried out, the actual electric
load at each moment t is follows:

PAload
i,t = POload

i,t − Psche,out
i,t,s + Psche,in

i,t,s

=
(

1 − ρout
i,t,s + ρin

i,t,s

)
POload

i,t

(39)

where PAload
i,t and POload

i,t denote the actual electrical load after the bottom layer scheduling

and the initial electrical load, respectively. Psche,out
i,t,s and Psche,in

i,t,s represent the electrical
power of the i th microgrid scheduled in or out at time slot t. ρout

i,t,s and ρin
i,t,s represent the

transfer in or out factor, respectively.
At the same time, we define the actual surplus renewable energy as follows:

PAsur
sys,t =

N

∑
i=1

Pres
i,t −

N

∑
i=1

PAload
i,t (40)

The optimization objective of the bottom-layer load scheduling is to maximize the
utilization of RES and minimize user dissatisfaction and surplus RES cost. Therefore, the
objective function for the bottom layer is as follows:

min f 1 = minCBottomLayer =
T

∑
t=1

Cres
sys,t +

T

∑
t=1

Cdissatisfaction
sys,t

=
T

∑
t=1

Cres
sys,t + ∑

t∈Φflex
i

λdis(POload
i,t − PAload

i,t ∆(t))2

=
T

∑
t=1

λsurPAsur
sys,t + ∑

t∈Φflex
i

λdis(POload
i,t − PAload

i,t ∆(t))2

(41)

PAsur
sys,t =


∑N

i=1 Pres
i,t − ∑N

i=1 PAload
i,t , ∑N

i=1 PRES
i,t > ∑N

i=1 POload
i,t

0, ∑N
i=1 Pres

i,t ≤ ∑N
i=1 POload

i,t .
(42)
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In (41), λdis is the weight coefficient for user dissatisfaction cost, which represents the
dissatisfaction factor of the difference between the initial load and the actual load after the
load transfer. λsur represents the surplus price for RES, with the unit cost of the remaining
renewable energy set to 2.5 YUAN/kWh.

3.1.2. The IGWO Algorithm for Electric Load Scheduling

The gray wolf optimization algorithm simulates the characteristics of a gray wolf pack
during the pack hierarchy [33], by constantly searching and pursuing the prey, constantly
updating the location of the prey, and finally successfully hunting [34]. In the gray wolf
optimization algorithm, wolves are divided into α wolf, β wolf, δ wolf, and the rest of the
individual wolves ω in descending order of rank [35].

The α wolf is the leader wolf and plays a leadership and decision-making role in the
pack. The β wolf is a leader candidate and feeds information to the α wolf in the pack. The
δ wolf is responsible for the leadership of the ω wolf pack; the ω wolf searches for and
pursues its prey. The gray wolf obtains its prey in three steps:

S1: Surrounding the prey. The action of a gray wolf encircling its prey can be described
as follows [14]:

D =
∣∣C · Xp(l)− X(l)

∣∣ (43)

X(l + 1) = Xp(l)− A · D (44)

A = 2a · r1 − a (45)

C = 2r2 (46)

(43) represents the distance between the gray wolf and its prey; (44) is the action for
updating the position of the gray wolf. Xp(l) is the position of the prey at iteration l; X(l)
is the position of the gray wolf at iteration l, and X(l + 1) is the position of the gray wolf
at the next iteration. C, A are the coefficient vectors; a is the convergence factor, linearly
decreasing from 2 to 0; l is the number of current iterations; r1, r2 are random parameters
between [0, 1].

A backward learning strategy is proposed to improve the original gray wolf opti-
mization. In the original algorithm, the populations generated by the stochastic strategy
do not exploit the spatial information well enough. Therefore, the convergence speed is
unpredictable and the computation consumes much time. The main idea of the inverse
learning strategy is to increase the diversity of the population and increase the probability
of obtaining a better solution by searching the positive and negative directions of the space.
The calculation of the inverse solution is as follows [36]:

Xi+1(l)′ = rand(ub + lb)− Xi+1(l) (47)

where Xi+1(l) denotes the position of the (i + 1)th wolf in the solution space, Xi+1(l)′

denotes the inverse solution of Xi+1(l); rand is a random number, randomly taken at
[0, 1]; ub and lb represent the upper and lower bounds of the positions, respectively. After
obtaining the inverse solution, the better position can be selected from the original solution
and the inverse solution can be selected as the initial position of the next iteration.

In the original gray wolf optimization algorithm, the size of coefficient vector A
determines whether the gray wolf is globally searched or locally exploited, and it varies
with the convergence factor a. The linear variation h leads to a local optimum situation,
which is an obstacle to performing a global search. In interconnected microgrid load
scheduling, changing factor a from 2 linearly decreasing to 0 is difficult to adapt to the
actual situation, because this optimization problem is not a linear convergence problem.
For the algorithm to better balance the global and local search ability, a new formulation is
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proposed in this paper. The convergence factor a decreases nonlinearly with the number of
iterations, and the specific expression is as follows:

a = (amax − amin) cos

(
1

2w

(
l

Lmax

)λ

× π

)
(48)

where amax indicates the maximum value of convergence factor 2; amin is the minimum
value of convergence factor 0; l is the number of d current iterations; Lmax denotes the
maximum number of iterations. w and λ are the adjustment parameters. It can be seen
that the original slope is constant and decreases linearly, while the improved one maintains
a larger value slowly decreasing at the initial stage, and the reduced decay rate is more
conducive to the global search for the optimal solution. The later period increases its decay
rate, which can search the local optimal solution more accurately. This improvement can
ensure the exploration and development capability of the algorithm, which can balance the
performance of global search and local development.

S2: Hunting for prey.
The distances between α, β, and δ wolves and their prey during predation are calcu-

lated by (49)–(51). ω wolves approach their prey based on the position of α wolf, β wolf,
and δ wolf. The direction and step length of ω wolves towards α wolf, β wolf, and δ wolf,
respectively, can be calculated from (52) to (54):

Dα = |C1Xα − Xω | (49)

Dβ =
∣∣C2Xβ − Xω

∣∣ (50)

Dδ = |C3Xδ − Xω | (51)

X1 = Xα − A1Dα (52)

X2 = Xβ − A2Dβ (53)

X3 = Xδ − A3Dδ (54)

The final position of the ω wolf is as follows:

Xω(l + 1) =
X1 + X2 + X3

3
(55)

where Dα, Dβ, and Dδ are the distances between the α, β, δ wolves, and ω wolves, respec-
tively; Xα, Xβ, and Vδ are the positions of α, β and δ wolf, respectively; X is the position of
ω wolf and X(l + 1) is the final position of the next ω wolf.

The original algorithm is improved by introducing a Cauchy variant. Cauchy variation
is applied to the locations of gray wolves. The variation operation selects individuals from
wolves α, β, and δ and mutates their locations, thus expanding the population size to obtain
more random positions. This can enhance the ability of the algorithm to go beyond the
local optimum to search for a better solution. The formula of the Cauchy mutation for the
leading wolf individual is as follows:

Xαnew = Xα + Xα · Cauchy (0, 1) (56)

Xβnew = Xβ + Xβ · Cauchy (0, 1) (57)

Xδnew = Xδ + Xδ · Cauchy (0, 1) (58)

where Cauchy (0, 1) denotes the standard Cauchy function, Xα, Xβ, and Xδ are the current
solution, and Xδnew, Xβnew, and Xαnew are the solutions after Cauchy variation. From (56)
to (58), it can be seen that the Cauchy variation of the solution is equivalent to a local search
around the optimal solution. The new solution generated by (56)–(58) is not necessarily
better than the original solution. Therefore, in the calculation, if the new solution has a
better fitness value, the original solution is replaced; otherwise, it remains unchanged.



Electronics 2024, 13, 4995 13 of 26

S3: Attacking the prey.
When the prey stops moving, the gray wolf completes the hunt by attacking. Or, as the

value of the approximation a to the prey gradually decreases, the corresponding |A| varies
within [−a, a]. When |A| < 1, the algorithm converges and the prey position is obtained.

3.2. Energy Dispatching with Energy Sharing and Carbon Trading in Upper Layer

The microgrids are connected to achieve their own and global cost optimization by
sharing multi-energy. Centralized optimization approaches require complete information
about each microgrid, which can lead to communication jams and microgrid privacy risks.
Therefore, in this paper, a distributed algorithm is developed for energy optimization
dispatch based on the alternating direction method of multipliers.

3.2.1. Problem Description and Objective Function

Based on the forecasted values of renewable energy generation and electrical and
thermal loads, the objective of the energy dispatching is to minimize the social operating
costs and carbon emissions of the interconnected microgrids. To make full use of renewable
energy, the curtailment cost for RES is introduced. The objective function and constraints
of the interconnected microgrids network are as follows:

min f 2 = minCUpperLayer

=
N

∑
i=1

T

∑
t=1

(
Ccg

i,t + Cgas
i,t + CcutRES

i,t

)
+

N

∑
i=1

CCO2
i + CBottomLayer

(59)

Ccg
i,t = λoilV

cg
i,t (60)

Cgas
i,t = λgasQgas

i,t (61)

CcutRES
i,t = λcut

i PcurtRES
i,t (62)

The total cost is the sum of CG fuel cost, gas cost, renewable energy curt cost, car-
bon trading cost, and electricity load optimization costs, as shown by (60)–(62). λoil ,
λ

gas
e , and λcut

i denote the diesel price, gas price, and RES shedding penalty price, respec-
tively. CBottomLayer is the optimized value achieved through the internal load scheduling
within each microgrid by (41), and is incorporated into (59). The decision variables are
V =

{
Pchp

i,t , Hchp
i,t , Pcg

i,t , Ppv
i,t , Pwt

i,t , Hgb
i,t , Pes,ch

i,t , Pes,dch
i,t , ues,ch

i,t , ues,dch
i,t , Pi−j,t, Hi−j,t

}
.

3.2.2. The ADMM Algorithm for Energy Dispatching Strategy

As the energy sharing balance constraints are multiply coupled between all micro-
grids, the auxiliary variables Pj−i,t and Hj−i,t are introduced. A double coupling model
is developed:

Pj−i,t + Pi−j,t = 0

Hj−i,t + Hi−j,t = 0
(63)

The model has multi-coupling variables. In (63), Pi−j,t indicates that the amount of
electricity MG i expects to share with MG j. Pj−i,t indicates that the amount of electricity
MG j expects to share with MG i. Hi−j,t indicates that the amount of thermal energy MG
i expects to share with MG j. Hj−i,t indicates that the amount of thermal energy MG j
expects to share with MG i. When Pi−j,t = −Pj−i,t and Hi−j,t = −Hj−i,t, it indicates that the
energy-sharing consensus is reached between MG i and MG j.

The optimal solution to the problem (59) can be achieved by iterating the original
objective function decision variables V, Lagrange multipliers, and auxiliary variables



Electronics 2024, 13, 4995 14 of 26

alternatively. After completing the decoupling transformation, the specific steps of the
distributed solution based on the alternating direction method of multipliers (ADMM)
algorithm are as follows: The initial energy dispatching problem is a scheduling problem
presented in (59).

step 1: Construct an extended Lagrangian function.
The original optimization problem min f in which f contains the decision variable V.

f is defined as fi(xi, t), where i represents the ith MG, and xi denotes the optimal variables,
and t indicates scheduling timescale one hour. Therefore, the Lagrangian function for the
problem (59) is established as follows:

LρH
i ,ρP

i
(Pj−i, Hj−i, λP

i,t, λH
i,t) = CUpperLayer+

I
∑

j

T

∑
t=1

λP
i−j,t

(
Pi−j,t + Pj−i,t

)
+

I
∑

j

T

∑
t=1

λH
i−j,t

(
Hi−j,t + Hj−i,t

)
+

I
∑

j

ρP
i

2

T

∑
t=1

∥∥Pi−j,t + Pj−i,t
∥∥2

2+

I
∑

j

ρH
i
2

T

∑
t=1

∥∥Hi−j,t + Hj−i,t
∥∥2

2

(64)

In (64), the λ is the Lagrange multiplier and ρ is the penalty parameter.
step 2: Update auxiliary and optimization variables.
Each MG updates its energy-sharing policy via local computing between MGs, and

only information about energy sharing is exchanged between MGs. Let k denote the
number of iterations. MG i updates its decision Pj−i,t(k + 1) and Hj−i,t(k + 1) according to
(65) and (66). {

Pi−j,t(k + 1) = arg min Li
(
λi−j(k), Pi−j,t(k), Pj−i,t(k)

)
Hi−j,t(k + 1) = arg min Li

(
λi−j(k), Hi−j,t(k), Hj−i,t(k)

) (65)

{
Pj−i,t(k + 1) = arg min Li

(
λi−j(k), Pi−j,t(k + 1), Pj−i,t(k)

)
Hj−i,t(k + 1) = arg min Li

(
λi−j(k), Hi−j,t(k + 1), Hj−i,t(k)

) (66)

According to the update rules above, the optimization variables as well as the auxiliary
variables in the original problem can be solved for each iteration.

step 3: Update the Lagrange multiplier.
The Lagrange multiplier is updated according to (67).

λP
i−j,t(k + 1) = λP

i−j,t(k) + ρP
i,t
(

Pi−j(k + 1) + Pj−i(k + 1)
)

λH
i−j,t(k + 1) = λH

i−j,t(k) + ρH
i,t
(

Hi−j(k + 1) + Hj−i(k + 1)
) (67)

The three steps repeat sequentially until the following stop condition (68) is met:

T

∑
t=1

I
∑
i=1

∥∥Pi−j,t(k + 1)− Pi−j,t(k)
∥∥2

2 ≤ ϵ1

T

∑
t=1

I
∑
i=1

∥∥Hi−j,t(k + 1)− Hi−j,t(k)
∥∥2

2 ≤ ϵ2

(68)

where ϵ1 and ϵ2 are sufficient small values. Note that the left-hand side of (68) represents
the raw residuals of the distributed algorithm.
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Following the above iterative steps, the power optimization of each MG is completely
decoupled and can be solved independently. The information transfer during the solution
process occurs only between neighboring MGs without any global information interaction,
which greatly reduces the communication cost. In addition, the communication does not
involve the internal operation state of each MG, which can effectively protect privacy.

4. Numerical Simulation and Analysis

For interconnected microgrids consisting of three microgrids (MG1, MG2, MG3), the
energy optimization simulation of multiple microgrids is validated in this section. The
proposed dual-layer energy management strategy is well evaluated in the simulation.
In this case, each microgrid has a similar structure but a different energy composition.
The sharing of electrical and thermal energy between microgrids is considered. This can
increase the viability of the system and reduce the social operation cost. Specifically, the
energy cost unit in this paper is converted into the RMB unit, YUAN.

The parameters of ES for each microgrid energy device and the parameters of CGs,
CHPs, and GBs are shown in Table 1. By participating in transactions, each microgrid
has the capacity to sell its surplus renewable energy to other microgrids. Conversely, if
a microgrid experiences a deficit in energy, this demand will incentivize it to engage in
energy trading to meet its needs. We consider the utilization of renewable energy and the
unit cost of the remaining renewable energy to be 2.5 YUAN/kWh. The price of natural
gas at the national gas plant is fixed at 2.2 YUAN/kWh at all time instants, and the price
of diesel fuel burned by conventional power generation equipment is 7 YUAN/kWh [37].
The convergence accuracy of the optimization algorithm is predefined as 0.1 kW.

Table 1. Parameters of interconnected microgrids system controllable equipment.

Equipments Capacity Parameters

CHP Pchp
i,max = 1000 kW, Qchp

i,max = 500 kW η
e,chp
i = 0.6, η

h,chp
i = 0.8

GB Qgb
i,max = 600 kW η

h,gb
i = 0.9

ES Es = 500 KW, Pes,ch
i,max, Pes,dch

i,max = 400 kW, Pes,ch
i,min, Pes,dch

i,min = 100 kW ηes,c
i = 0.93, ηes,d

i = 0.95
CG PCG

i,max = 800 kW η
cg
i = 0.24

To reduce carbon emission, carbon trading is introduced for the interconnected micro-
grids in this paper. The carbon trading is not conducted for free but occurs within a market
framework where a trading price is established. The unit cost of carbon emission, carbon
emission factors, and carbon quota of three MGs are given in Table 2 [37]. In the carbon
trading market, the price of the purchasing carbon quota is 6 YUAN/kWh and the price of
the selling carbon quota is 4 YUAN/kWh. Meanwhile, the parameters of the dual-layer
algorithm are shown in Table 3.

Table 2. Carbon trading parameters of interconnected microgrids system, including the carbon quota
and emission rate of gas and CG.

MG Gas Quota Rate CG Quota Rate Res Quota

MG1 0.233 0.19 0.71 1.07 0.094
MG2 0.234 0.20 0.72 1.07 0.093
MG3 0.232 0.21 0.73 1.17 0.095
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Table 3. Algorithm parameter settings.

ADMM Parameter

Maximum iterations 500
Tolerant 0.01
Rho e 1 × 10−3

Rho h 1 × 10−3

Iterations 1000
Population size 500

4.1. Raw Data

The predicted output data of PV and WT of the microgrid for the three islands are
given in Figure 4a,b, respectively. The data of PV and WT of the microgrid for the three
islands are described in [38,39] and shown in Figure 4a,b, respectively. The electrical and
thermal loads reported in [40] are utilized, as shown in Figure 4c,d. For realizing the
day-ahead scheduling, LSTM network [41] is utilized to predict the renewable energy and
user load for the following day based on the historical data in dataset. To reduce carbon
emissions, natural gas consumption is given priority, and diesel consumption is selected
later. The price of natural gas from national gas plants is fixed at 2.2 YUAN/kWh for all
periods [42]. The price of diesel fuel burned by CG is 7 YUAN/kWh [43].
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Figure 4. Photovoltaic, wind power generation, electric loads, and heat loads of the three microgrids.

4.2. The Analysis of Load Scheduling Using IGWO

The comparative area of RES and load of interconnected microgrids system before and
after the load scheduling is shown in Figure 5. From this figure, it can be seen that after
load scheduling, the interconnected microgrids system can consume a portion of RES to the
maximum extent and improve the utilization of renewable energy. The convergence result
of the improved gray wolf algorithm is presented in Figure 6. The improved gray wolf
algorithm converges faster and has a smaller fitness value than the original algorithm. It can
be seen that in the bottom layer, the surplus RES cost after load scheduling by the improved
gray wolf algorithm is 11,291.67 YUAN. Figure 7 shows the comparison of the renewable
energy surplus before and after load scheduling for each microgrid. The “before” refers
to the operational outcomes of the system without employing the scheduling algorithm
presented in this paper, and the system operation is generally rule-based [44]. It can be
seen that the remaining renewable energy for each MG decreases to a large extent. The
RES utilization rate before load scheduling is 74.2%, and the RES utilization rate after load
scheduling is 91.6%. Therefore, it can be seen from the simulation results that the maximum
RES utilization algorithm based on the improved gray wolf optimization algorithm (IGWO)
can overcome the deficiency of insufficient RES utilization.
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(a) The load and renewable energy source before load scheduling.

(b) The load and renewable energy source after load scheduling.

kW kW kW
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Figure 5. Comparison of renewable energy utilization before and after load scheduling. (a) The load
and renewable energy source before load scheduling; (b) the load and renewable energy source after
load scheduling.
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Figure 6. Comparison of convergence curves of the original gray wolf algorithm and the improved
gray wolf algorithm for load scheduling after 500 iteration rounds.
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Figure 7. The total residual RES before and after the load scheduling of the MGs.
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4.3. Energy Dispatching Results Using ADMM

In the stopping condition (68), the residuals are set to 0.001 and 0.01. We verify the
convergence performance of the alternating direction method of the multipliers-based
distributed algorithm. As shown in Figure 8, the convergence process and operation cost
of the interconnected microgrids are shown based on the distributed algorithm of the
alternating direction method of multipliers. Figure 8 illustrates the variation in f2 cost
during the iterative optimization process. Because the solving iterations are not coupled
between bottom optimization and top optimization layer, there are different tendencies
between Figures 6 and 8. Figure 8 shows that the iterative convergence cost of MG1 is
6.0908 YUAN and the iterative convergence cost of MG2 is 7.1234 YUAN. The iterative
convergence cost of MG3 is 8.2136 YUAN. The coalition of interconnected microgrids energy
scheduling based on the ADMM distributed algorithm can converge to the optimal value of
20.8950 YUAN after about the 30th iteration. This indicates a relatively fast convergence of
the algorithm. At the same time, these results demonstrate the effectiveness of the proposed
distributed algorithm in solving the interconnected microgrid energy dispatching problem.
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Figure 8. Convergence curves of running cost per MG and social running cost of the interconnected
microgrids system.

4.4. Multi-Energy Sharing Results

The result of electric energy sharing is shown in Figure 9, and the result of thermal
energy sharing is shown in Figure 10. From the resulting figures, we can find that the
energy shared by electric energy and thermal energy is balanced at each time slot t (1 h).
The alliance between microgrids for multi-energy sharing can solve the problem of the
weak viability of individual MGs. All MGs are on islands and disconnected from the main
grid. To meet the supply–demand balance of the system and to achieve economic efficiency,
energy is shared among the three MGs through internal coordination.
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Figure 9. The electricity power sharing between interconnected microgrids.
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Figure 10. The thermal power sharing between interconnected microgrids.

The energy dispatching results for each microgrid are shown in Figures 11 and 12. The
power dispatch results for the power outputs of CG, CHP, ES, PV, and WT of MG1, MG2,
and MG3 are shown in Figure 11. In Figure 12, the thermal power dispatch results for the
power output of CHP, GB, and thermal energy sharing of MG1, MG2, and MG3 are shown.
The power output of thermal energy mainly comes from CHP and GB and thermal energy
sharing from other microgrids. The power output of electricity is mainly from renewable
energy, CHP, and CG. Analyzing the dispatch results, it can be seen that the CGs of MG1
and MG2 do not produce power. Only the CG of MG3 output power in the evening hours.
This is because the price of diesel required for CG power generation is higher than the
price of natural gas for gas-based equipment and the microgrid prefers to use natural gas
equipment for electricity generation.
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Figure 11. Electricity dispatching results of the three microgrids, including the electrical power
output of renewable energy sources (PV, WT), combined heat and power units (CHP), conventional
generators (CG), the charging and discharging of energy storage systems (ES), and electricity sharing
in time slot t. (a) The results of MG1; (b) the results of MG2; (c) the results of MG3.
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Figure 12. Thermal dispatching results of these three microgrids, including the thermal power output
of combined heat and power units (CHP), gas boilers (GB), and thermal sharing in time slot t. (a) the
results of MG1; (b) the results of MG2; (c) the results of MG3.

4.5. Comparison of Dispatching Results Under Different Scenarios

Four different scheduling methods are considered to analyze the performance of the
proposed energy management strategy:

Method 1: No electric load scheduling of demand side and electricity–thermal energy
sharing among microgrids.

Method 2: Electric load scheduling of demand side and no electricity–thermal energy
sharing among microgrids.
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Method 3: Electricity–thermal energy sharing without considering electric load schedul-
ing of demand side among microgrids.

Proposed method: Electric load scheduling of demand side and electricity–thermal
energy sharing among microgrids.

The comparison of renewable energy abandonment, carbon emission, and social cost
for the three scenarios is presented in Table 4. It can be seen that the carbon emission,
social cost, and renewable energy abandonment are the lowest for the dual-layer renewable
energy utilization and multi-energy dispatching joint optimization strategy proposed in
this paper.

Table 4. Comparison of different dispatching methods: Method 1, Method 2, Method 3, and the
proposed method. The table shows the comparison of three targets: RES curtailment, carbon emission,
and operation costs, under four scheduling methods. The proposed strategy performs best in
the targets.

MG Methods RES Curtailment Carbon Emission (kg) Operation Costs (RMB)

MG 1 Method 1 9306 7706 87,188
Method 2 5733 7299 80,511
Method 3 6032 7235 72,354

Proposed method 1638 3291 60,980

MG 2 Method 1 9609 8451 90,123
Method 2 6249 8058 83,775
Method 3 6789 7692 78,323

Proposed method 3343 4321 71,234

MG 3 Method 1 8101 9166 81,354
Method 2 6432 8849 78,531
Method 3 7122 7633 77,342

Proposed method 3760 5323 72,136

4.6. The Analysis of Carbon Trading and Emission

In this section, the carbon emission of different scenarios are analyzed, and the results
are shown in Figures 13 and 14. Comparing the two figures, it can be found that the
carbon emissions of the three microgrids are significantly lower with the proposed method.
This is due to the introduction of the dual-layer energy management strategy, which can
effectively reduce carbon emission. It can seen that MG1 has fewer carbon emissions in
general. Because the MG1 has the most renewable energy and allocates more free carbon
quota. The carbon emission of MG2 and MG3 are somewhat lower in the midday hour
compared to other hours. This is because there is more renewable photovoltaic electricity
production at midday.

The carbon emissions under different carbon trading prices are given in Figure 15. The
change in carbon trading price directly affects the scheduling strategy of interconnected
microgrids. The effect of the carbon quota trading price on carbon trading cost is examined.

(b) (c)(a)

Figure 13. Carbon emission of three microgrids in the interconnected microgrids network without
the dual-layer strategy. (a) MG1; (b) MG2; (c) MG3.
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(a) (b) (c)

Figure 14. Carbon emission of three microgrids in the interconnected microgrids network with the
proposed dual-layer strategy. (a) MG1; (b) MG2; (c) MG3.
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Figure 15. The carbon trading costs under different trading prices with the proposed dual-layer
strategy and without the proposed dual-layer strategy.

As the price of carbon quota trading increases, the total cost of carbon trading de-
creases as the price of carbon trading increases. The reason for this is that the use and
coordination of multiple energy sources allow for more flexible scheduling under carbon
quota trading. This reduces the need to purchase additional carbon quotas from external
carbon markets. Therefore, under carbon quota trading, the dispatching method to reason-
ably control the carbon emission of microgrids is more beneficial to improve the economy
of microgrid operation.

5. Conclusions

This paper presents an integrated energy management strategy for interconnected
microgrids, featuring bottom-layer load scheduling and upper-layer energy dispatch with
multi-energy sharing and carbon trading. Utilizing an enhanced gray wolf optimization
algorithm in the bottom layer for optimal load reallocation and minimizing renewable
energy waste, and a distributed alternating direction method of multipliers algorithm in
the upper layer for economic and environmental cost minimization, the strategy promotes
efficient renewable energy use and low-carbon operations. Simulations validate the ben-
efits of multi-energy sharing and carbon trading, which shows the proposed method’s
significant performance improvements in microgrid management, with an approximately
41.6% reduction in RES curtailment, about a 41.9% decrease in carbon emissions, and
around an 11.3% reduction in operational costs, thus enhancing microgrid economic and
environmental advantages.

Future work will be to investigate the impact of dynamic pricing mechanisms on
user behavior and grid stability, which have the potential to unlock more responsive
and efficient energy consumption patterns. Additionally, ensuring the scalability of our
proposed strategy for larger and more complex microgrid networks is a critical factor of
future research.
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Abbreviations
The following abbreviations and nomenclature are used in this manuscript:

RES Renewable energy source
PV Photovoltaic
WT Wind turbine
CHP Combined heat and power
GB Gas boiler
ES Energy storage system
SOC State-of-charge
CG Conventional generator
MG Microgrid
IGWO Improved gray wolf optimization
ADMM Alternating direction method of multipliers
Sets
N Set of participators
T Set of time intervals
S Set of transferable time
Parameters
η

e,chp
i /η

h,chp
i Efficiencies of electricity/heat production

for the CHP of microgrid i
Qchp

i,max Maximum gas consumption for the CHP

Qgb
i,max Maximum gas consumption for the GB

Qu,chp
i /Qd,chp

i Upper/lower bounds of ramp rate limit for the CHP of MG i
η

h,gb
i Efficiencies of heat production for the GB of MG i

Pcg
i,max Maximum amounts of electricity of CG of MG i

Pu,cg
i /Pd,cg

i Upper/lower bounds of ramp rate limit for the CG of MG i
η

es,cp
i /ηes,d

i Charging/discharging efficiencies for the storage ES of MG i
SOCes,min/SOCes,max Maximum/minimum SOCs
ρout

i,t,s/ρin
i,t,s Transfers out/in factor

Pi−j,t/Hi−j,t The electricity/thermal that MG i receives from MG j at time t
Variables
Wo

i,t Total carbon quota of MG i
Dgas/Dres Carbon quota of gas and res of MG i
WCO2

i,t Carbon emission of MG i
emgas

i /emoil
i Emission factors of gas and diesel

Pi−j,max/Hi−j,max Maximum electricity/thermal sharing
Csys Total social operating costs of system
λcut

i RES residual price
Qgas

i,t /Vcg
i,t Consumption of gas and diesel of MG

ε Carbon trading price
Psur

sys,t/PAsur
sys,t Initial/ actual surplus RES of ith MG

POload
i,t Initial electric load of MG i

Cres
sys,t The surplus RES costs of system
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PAload
i,t Actual electric load of MG i

PcutRES
i,t RES power cut of MG i at time step t

λoil Diesel fuel prices
CcutRES

i,t RES cut costs
Cdissatisfaction

sys,t User dissatisfaction of system
a IGWO nonlinear convergence factor
Cauchy() Cauchy function
CBottomLayer Optimization cost of the bottom layer

Pchp
i,t Electricity production for CHP

Hchp
i,t Heat production for the CHP

QGB
i,t Gas consumption for GB

Ppv
i,t PV power of ith MG at time t

Pwt
i,t WT power of ith MG at time t

Qchp
i,t Gas consumption for CHP

Pcg
i,t Electricity production for CG

Pes,ch
i,t Charging rates for ES

Pes,dch
i,t Discharging rates for ES

Psche,out
i,t,s /Psche,in

i,t,s Electrical power transferred out/in
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