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Abstract: The fusion of infrared and visible light images is a crucial technology for enhancing visual
perception in complex environments. It plays a pivotal role in improving visual perception and
subsequent performance in advanced visual tasks. However, due to the significant degradation
of visible light image quality in low-light or nighttime scenes, most existing fusion methods often
struggle to obtain sufficient texture details and salient features when processing such scenes. This can
lead to a decrease in fusion quality. To address this issue, this article proposes a new image fusion
method called BMFusion. Its aim is to significantly improve the quality of fused images in low-light
or nighttime scenes and generate high-quality fused images around the clock. This article first designs
a brightness attention module composed of brightness attention units. It extracts multimodal features
by combining the SimAm attention mechanism with a Transformer architecture. Effective enhance-
ment of brightness and features has been achieved, with gradual brightness attention performed
during feature extraction. Secondly, a complementary fusion module was designed. This module
deeply fuses infrared and visible light features to ensure the complementarity and enhancement of
each modal feature during the fusion process, minimizing information loss to the greatest extent
possible. In addition, a feature reconstruction network combining CLIP-guided semantic vectors
and neighborhood attention enhancement was proposed in the feature reconstruction stage. It uses
the KAN module to perform channel adaptive optimization on the reconstruction process, ensuring
semantic consistency and detail integrity of the fused image during the reconstruction phase. The
experimental results on a large number of public datasets demonstrate that the BMFusion method
can generate fusion images with higher visual quality and richer details in night and low-light
environments compared with various existing state-of-the-art (SOTA) algorithms. At the same time,
the fusion image can significantly improve the performance of advanced visual tasks. This shows the
great potential and application prospect of this method in the field of multimodal image fusion.

Keywords: image fusion; brightness attention unit; cross-modal information enhancement; semantic
perception guidance

1. Introduction

Due to technical limitations and the diversity of shooting environments, it is often
difficult to fully describe complex scenes from images captured by a single camera de-
vice [1,2]. Therefore, image fusion technology has become a key tool to solve this problem.
Image fusion generates fused images that provide a more comprehensive description of
the scene by combining information from multiple source images. Infrared and visible
light fusion is of great importance in the field of image fusion [3]. Visible light images are
known for their rich texture information and excellent visual adaptation. Infrared images,
on the other hand, are good at capturing thermal radiation information and can highlight
important targets, such as vehicles and pedestrians, in complex lighting or harsh environ-
ments. However, infrared images may not provide enough detailed information due to
their single-band nature. Visible light images can also be limited in their performance under
special circumstances, such as at night or when the atmosphere is heavily polluted. By
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fusing infrared and visible images, the limitations of the respective images can be overcome,
making the final fused image more informative and recognizable. Infrared and visible
light fusion technology is widely used in many fields, providing more comprehensive and
accurate information for various application scenarios.

The development of infrared and visible light image fusion techniques has attracted
widespread attention, especially in application areas such as military surveillance [4],
target detection [5], and vehicle navigation [6]. To date, the proposed methods for IR and
visible image fusion can be broadly classified into two categories: traditional methods
and deep learning-based methods. Traditional methods rely on specific mathematical
transformations to extract and fuse features in the source image. These include multi-scale
transforms [7–10], sparse representations [11–13], significance analysis [3,14,15], subspace
analysis [5,16], mixture models [17,18], and so on. However, traditional image fusion
methods often require manually designed feature extraction [19–22]. This may lead to
insufficient or inaccurate feature extraction when dealing with complex and variable scenes,
limiting the fusion effect [23–25].

In contrast, deep learning-based methods use a data-driven approach for feature
extraction and fusion. These methods utilize complex neural network models to learn and
extract valuable information from the source images. The feature representation is better
adapted to different scenarios through end-to-end learning and automatic learning. Deep
learning methods have an excellent ability to model non-linear relationships and data-
driven learning. It makes its performance in the image fusion task more flexible and has
strong generalization ability, which brings significant advantages for improving the image
fusion effect. Deep learning-based fusion methods are mainly classified into strategies based
on CNN [26–34], GAN [35–38], and AE [28,39–43]. Among them, CNN methods achieve
effective fusion through their excellent feature-processing capabilities. GAN methods
enhance the realism of fused images through the generative adversarial mechanism. In
addition, AE methods process feature information through the self-encoder mechanism
and combine it with specific fusion strategies. This, in turn, achieves the comprehensive use
of information. These different deep learning strategies together advance the development
of image fusion technology. Therefore, it can show better performance in a variety of
application scenarios.

Currently available algorithms perform well in many application scenarios. However,
in low-light environments, these fusion methods face greater challenges. As illustrated
in Figure 1, visible images tend to be under-informative in low-light conditions. While
infrared images can highlight thermal targets, they are underperforming in terms of texture
and structural details. Most of the existing algorithms focus only on how to fuse, without
considering how to fuse in extreme environments. In low-light environments, previous
algorithms ignore the degradation that occurs in visible light images at night. In the end,
not only do they lose a lot of texture details in the visible light image, but they also fail to
bring out the salient targets. This makes it difficult to properly obtain high-quality fused
images, let alone improve the brightness and visual perception of the entire scene.

To intuitively address the problem of image fusion in low-light environments, the
visible light images are preprocessed and enhanced using advanced low light enhancement
algorithms [44,45]. Then, fusion techniques are applied to merge the enhanced visible and
infrared images. However, processing image enhancement and fusion as independent
steps often leads to incompatibility problems between them. This, in turn, affects the
fusion results. This indicates the need for a more integrated approach that handles both
enhancement and fusion tasks simultaneously to achieve better quality fusion results.

In order to overcome the challenges in the process of fusing infrared and visible
light images, this study proposes an innovative approach that combines visual enhance-
ment techniques with image fusion techniques. The method aims to achieve all-weather
brightness enhancement alongside high-quality image fusion, ensuring that fused im-
ages are both informative and visually pleasing. It also provides a seamless transition
from enhancement to fusion. This greatly simplifies the whole process and effectively
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solves the incompatibility problem between the two. Meanwhile, it avoids the tedious
operation of frequently switching between different algorithm models in day and night
scenes. This improves the generalisation ability and adaptability of the model. To this
end, this study first combines Retinex theory [46], unsupervised brightness enhancement
algorithm [47], and Simple Attention Module (SimAm) that can efficiently pay attention
to the overall brightness features of the image [43]. A Brightness Attention Unit (BAU)
module is designed for brightness adjustment. Meanwhile, the Mutually Reinforce Fusion
(MRF) module was designed to enhance the fusion of cross-modal information, considering
the essential differences between different modal information. Subsequently, semantic
features are extracted from the visible image using an image perceptron and integrated
into the feature reconstruction process. This makes the final fused image richer in semantic
information and content understanding. Finally, satisfactory results are obtained by a fine
loss function to guide the training in stages. Specifically, the contributions of this paper are
as follows:

1. We propose an end-to-end converged network with brightness adjustment capable
of solving the problem of fusing infrared-visible images under different brightness
conditions in all-weather scenarios. The proposed BAU module is embedded in
the network, allowing the network to learn more accurate brightness information.
The MRF module is also embedded in the network, enabling the network to fuse
information from different modalities more adequately.

2. We introduce adaptive learnable parameters to the traditional mathematical theory,
addressing the problem of over-adjustment of brightness in the network during the
fusion process. The BAU module is designed to achieve accurate scene brightness
adjustment during fusion.

3. Recognizing that features of different modalities have distinct characteristics, we
design the MRF module to utilize the unique properties of infrared and visible light
information. The features of different modalities are supplemented and enhanced
during the fusion process, reducing information loss and improving the quality of the
fused image.

4. During the feature reconstruction phase, channel features are enhanced through
specific knowledge guidance, making the reconstruction stage more adaptive and
intelligent. This approach better preserves the feature advantages of multimodal
fusion compared to other methods that simply use convolutional reconstruction.
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Figure 1. An example of an illumination imbalance. From left to right: IR image, visible image, fusion
results of various algorithms and our proposed BMFusion. Existing methods ignore the problem
of nighttime illumination degradation, leading to detail loss and thermal target degradation. Our
algorithm can enhance the brightness while integrating meaningful information, mining a large
amount of information lost in the dark.

The rest of the paper is organized as follows. Section 2 discusses deep learning-based
methods for fusion of infrared and visible light images. It also focuses on the algorithmic
study in low light scenes. The network architecture, loss function, and training details are
described in Section 3. Section 4 demonstrates a comprehensive qualitative and quantitative
evaluation of BMFusion, comparing it with some state-of-the-art methods. The algorithm
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is also validated to drive the algorithm in advanced visual tasks. Finally, conclusions are
given in Section 5.

2. Related Work

In this section, existing methods for image fusion of IR and visible light are reviewed.
They are CNN, GAN, and Auto-Encoder (AE)-based image fusion methods. In addi-
tion, some existing image fusion algorithms for low-light environments are focused on
comparative analysis. The advantages of this paper’s method over these methods are
systematically discussed.

2.1. Deep Learning-Based Fusion Methods

Deep learning-based fusion methods mainly include three architectures based on
CNN, GAN, and AE. The quality of fused images is improved by adaptively extracting
multilevel features through the deep network structure.

CNN-based methods use the local connectivity and weight-sharing properties of con-
volutional layers to automatically extract and fuse information from different source images.
In ICCV2017, Prabhakar [26] et al. used a CNN-based approach to solve the exposure
fusion problem. However, the network is too simple to extract depth features effectively. To
solve this problem, Densefuse [28] added dense blocks to the coding network to retain more
useful information from the middle layer. PMGI [27] unifies the image fusion problem with
texture and intensity ratio maintenance. STDfusionNet [29] reduces redundant information
in fusion by significant target masks, labeling regions of human or machine interest. SeAFu-
sion [30] proposes semantic-aware real-time fusion networks. It improves the performance
of advanced vision tasks. DATFuse [31] designed an end-to-end fusion network based on a
dual attention Transformer. The Dual Attention Residual Module (DARM) and Transformer
Module were introduced to capture the tele-relationships. TCCFusion [32] constructed a
global feature extraction branch (GFEB) using three Transformer blocks to enhance global
perception. More effective long-range dependency capture was achieved. Article [33]
proposed a fusion network based on progressive semantic injection and scene fidelity. It
ensures that the fused features contain the complete information required for reconstruc-
tion. CDDfuse [34] proposes a relevance-driven feature decomposition fusion network. It
incorporates a two-branch Transformer-CNN framework, which is better adapted to the
multimodal medical image fusion task.

Generative Adversarial Networks (GANs) have received widespread attention in
image fusion due to their powerful generative capabilities. GAN continuously improves
the realism of generated images through adversarial loss, the game mechanism of gen-
erator, and discriminator. It effectively enhances the visual consistency of fused images.
FusionGAN [35] is a pioneer in using GAN for image fusion. It establishes an adversarial
game between generator and discriminator. The feasibility and advantages of GAN in
image fusion are explored. However, a single adversarial game easily leads to a fusion
imbalance. For this reason, the dual discriminator conditional generative adversarial net-
work DDcGAN [36] is proposed. A more balanced fusion is obtained by engaging both IR
and visible images in the adversarial game. GANMcC [37] further solves the problem of
unbalanced fusion through multi-classification constraints. The balance between infrared
and visible light information is improved. TarDAL [38], on the other hand, proposed a
two-layer optimization network to combine fusion and detection tasks. It improves the
MAP performance while enhancing the visual effect.

In image fusion, the self-encoder can effectively reconstruct the source image informa-
tion and remove the noise. It also learns useful features from unlabeled data. DenseFuse [28]
achieves efficient feature extraction through convolutional layers and dense blocks. How-
ever, there are limitations in remote dependency and global semantic information extraction.
This leads to difficulties in capturing cross-modal associations in complex scenes. For this
reason, Li et al. proposed NestFuse [39] and RFN-Nest [40]. NestFuse enhances multi-scale
feature extraction through nested connections. RFN-Nest, on the other hand, introduces
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detail preservation and feature enhancement loss functions to learn richer features. Jian
et al. [41] used an attentional mechanism to focus on salient targets and texture details.
It can be implemented to cope with the redundancy problem that may be introduced by
multi-scale features. DRF [42] enhances the interpretability of fusion techniques. However,
it does not fully address the interpretation of fusion rules. CSF [43] proposed a learnable
fusion rule by evaluating the importance of features to the classification results. Adaptive
learning of fusion rules was achieved.

2.2. Image Fusion Methods in Low-Light Environments

In recent years, image fusion tasks in low-light environments have faced many chal-
lenges such as complex light degradation, detail loss, and cross-modal feature alignment.
These problems make it difficult to achieve high-quality image fusion under extreme light-
ing conditions. In this regard, researchers have proposed a variety of solution ideas, and
representative works include PIAFusion [48], DIVFusion [49], and TEXT-if [50].

PIAFusion uses layer-by-layer fusion and channel weighting mechanisms. Infrared
and visible image fusion is performed by a specific feature extraction strategy. However,
there are limitations in the flexibility of feature selection and capture of long-range depen-
dencies. DIVFusion utilizes deep convolutional networks to decompose and reconstruct
features layer by layer in order to capture multilevel features. However, its generalization
ability is relatively weak due to the lack of explicit modeling of global features. TEXT-if
proposes an innovative approach that combines textual descriptions with image feature
alignment. The fusion process is guided with the help of textual semantics. However, its
high dependence on input text makes it perform limitedly in purely visual scenes without
textual assistance. In addition, the three methods usually rely on simple weighting or a
single-feature-based approach in fusion strategy, which lacks deep enhancement of specific
information. To solve the above problems, the BAU module and MRF module are designed
in this paper for brightness adjustment and feature fusion, respectively. A more refined and
efficient image fusion and enhancement is achieved. For the feature reconstruction stage,
semantic information of visible light images is extracted by Contrastive Language-Image
Pre-training (CLIP) [51].The semantic guidance is embedded into the image reconstruction
process. Thus, the expression of features is continuously enhanced. At the same time,
Kolmogorov-Arnold Network(KAN) [52] module is utilized for dynamic channel adjust-
ment. The neighborhood attention enhancement mechanism is incorporated. These enable
features to better adapt to environmental changes and improve reconstruction accuracy
and generalization ability in different scenes.

In particular, for brightness adjustment and feature fusion, PIAFusion relies on tradi-
tional feature-level image-enhancement operations. It lacks sufficient adaptivity in the face
of complex brightness variations. It is difficult to effectively handle local dark areas in low-
light environments. DIVFusion uses a global contrast stretching strategy. However, it tends
to introduce noise or lose local details when dealing with detail-rich regions, especially in
high-contrast areas.

TEXT-if performs brightness adjustment by text description. However, it is difficult
for the text to accurately express the brightness details in the image. This leads to the
deficiency of its enhancement effect in regions with an obvious contrast between light and
dark. In contrast, the BAU module proposed in this paper combines Retinex theory and
unsupervised brightness enhancement methods to optimize brightness enhancement in
low-light environments. SimAm is utilized to effectively focus on the overall brightness
characteristics of the image without limiting it to local regions, resulting in a stronger global
brightness adjustment capability. Transformer, on the other hand, equalizes the overall
brightness by capturing long-distance dependent information, enhancing the brightness
while ensuring global consistency and detail retention. The combination of SimAm and
Transformer enables the BAU module to achieve more natural and effective brightness
enhancement in low-light environments. The shortcomings of other methods, in detail
retention and global consistency, are avoided. In addition, the method in this paper has all-



Electronics 2024, 13, 5005 6 of 27

weather adaptability and maintains high performance under different lighting conditions.
The shortcomings of traditional methods in frequently switching or readjusting the model
in day and night scenes are avoided. It also significantly improves the convenience and
robustness of the model. In the MEF module, a complementary fusion strategy is adopted
to reduce feature loss in information fusion.

In the feature reconstruction phase, PIAFusion, DIVFusion, and TEXT-if each have dif-
ferent implementations. However, all of them have obvious limitations. PIAFusion achieves
decoding by simple feature channel splicing. It leads to unbalanced information fusion
and is susceptible to dominant modalities, especially in complex environments. DIVFusion
uses layer-by-layer decoding. Although it has advantages in local feature preservation,
it does not introduce an explicit global attention mechanism in the reconstruction phase.
This makes it difficult to balance the expression of details and overall structure during
the reconstruction process. Especially when dealing with scenes with complex details or
obvious lighting contrasts, it may cause loss of local information or unnatural effects. The
semantic information in TEXT-if only plays a role in guiding the features in the early stage,
and does not have a continuous role in the reconstruction stage. Simple feature splicing
and decoding approaches are difficult to effectively reconstruct complete information when
there is no textual description of a purely visual scene. In contrast, the method in this paper
combines CLIP, KAN, and neighborhood attention enhancement. CLIP semantic vectors
continuously guide feature fusion during the reconstruction process. Meanwhile, KAN
adaptively weights the optimized channel features. Neighborhood attention enhancement
then strengthens the complementarity of neighboring features. These strategies ensure
semantic consistency, global balance, and detailed representation of the reconstructed
image. It significantly outperforms other methods.

3. Methods

In this section, BMFusion is described in detail. First, the overall network architecture
and network training strategy are given in Section 3.1. Then, the BAU module for bright-
ness adjustment, the MRF module, and the progressive semantic guidance reconstruction
network (PSRN) are described in Section 3.2. Finally, in Section 3.3, the loss function for
training is given.

3.1. Overall Network Architecture

In this section, the network architecture used for multimodal image fusion is described
in detail. As shown in Figure 2, the whole framework consists of an encoder module,
MRF, and PSRN. The encoder module contains the Brightness Attention Encoder and
Lossless Feature Extraction Encoder. The Brightness Attention Encoder is mainly used
for brightness enhancement and feature extraction for visible light images. The Lossless
Feature Extraction Encoder is used for lossless feature extraction of infrared images. MRF is
responsible for fusing IR and visible light features effectively. PSRN is used to reconstruct
the fused image to ensure that the information from each modality is retained.

In the training process, first, Brightness Attention Encoder and Lossless Feature
Extraction Encoder are trained separately. The Brightness Attention Encoder is stacked
by multiple BAUs. It gradually performs feature extraction and brightness adjustment for
visible light images. The specific calculation process of Transformer and simAM in the BAU
module is shown in Figure 3a and the structure of the BAUs is presented in Figure 3b. Each
BAU works together with the Transformer through SimAm. It ensures fine adjustment of
brightness features and capture of global information. This can enhance the naturalness
and consistency of image brightness. The Lossless Feature Extraction Encoder is dedicated
to IR modalities and requires only lossless feature extraction. The encoder consists of a
stack of multiple Transformer blocks. It uses the same activation function and channel
configuration as the Brightness Attention Encoder. This ensures that the original image
information is preserved as much as possible during the feature extraction process.
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feature extraction, attention, and multimodal fusion.

Afterwards, the multimodal features are fused by the MRF. In this process, the fea-
tures are optimized at multiple levels through alternate feature enhancement and fusion
operations. It can further highlight the importance and complementarity of different modal
features. The fused features have richer texture information and global semantic represen-
tation. This significantly enhances the expressive power of the fused image. These fused
features are finally fed into the PSRN. It ensures that the details and semantic information of
each modality are gradually integrated into the reconstruction process. Thus, high-quality
image reconstruction is achieved.
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Finally, in the feature reconstruction stage, PSRN is utilized to achieve finer fused
image generation. The reconstruction network consists of two convolutional layers and two
Transformer layers. The reconstruction of features is achieved in a layer-by-layer manner.
First, the convolutional layer is used to recover the local details of the base. It ensures the
accuracy of low-level features. The convolution operation efficiently processes the local
features of the fused image, making the image sharper in terms of visual details. Next, the
Transformer layer is used to capture the global dependencies and enhance the modeling of
long-range features and the maintenance of global consistency. It makes the fused image
more consistent in terms of structure and semantics. In each layer of the reconstruction
phase, the global semantic vector of the visible image extracted by the image perceptron
is used for semantic guidance. The image perceptron utilizes the principle of CLIP to
map the semantic information of the scene in the image to an embedding space, achieving
context-sensitive understanding of visual content. It ensures that high-level semantic
information can be preserved when fusing features layer by layer, and improves the
semantic consistency of reconstructed fused images. Specifically, the semantic information
extracted by CLIP is mapped to the feature space through KAN, and weighted fusion is
performed with features layer by layer. This achieves semantic enhancement for each layer
of features. In addition, in order to further optimize the fused feature representation, a
proximity attention mechanism is employed to match the fused features for local similarity.
This enables similar feature channels to be processed more consistently in the reconstruction
process. It reduces the noise effect and enhances the naturalness of the fusion result.

3.2. Important Components of the Network
3.2.1. BAU Module

The purpose of image fusion is to perceive the environment better. However, the fused
image still cannot well reflect the scene information of environments with extremely low
brightness. Therefore, this paper designs BAU, which combines SimAm and Transformer.
It adjusts the low illumination image features while extracting features. It achieves low
illumination enhancement while different modal images are fused.

According to Retinex theory, the low illumination observed image can be equal to the
dot product of a clear image and illumination, i.e.,

y = z ⊗ x (1)

where, denotes y low-light observation image, x denotes light, and z denotes a clear image.
When the input of the module is a low-light observation image and the output is a clear
image, the equation can be transformed to:

z = y ÷ x (2)

Since multiplication and division are reversible pairs of operations, the formula can be
rewritten as:

z = y ⊗ x′ (3)

Therefore, the process of restoring a low-light image to a clear image can be reduced
to the process of solving x’. In this paper, BAU is embedded in the encoder part. The
brightness adjustment is achieved along with feature extraction.

Define a low-light observation image extracted feature as ϕy Define a processed clear
feature as ϕz. Define a light feature as ϕx. In the forward propagation of the network, the
input of each layer is determined by the input image. In the backward propagation of
the network, the output of each layer is determined by real clear image labels. Then, the
features related to light intensity can be simplified to solve ϕx.

The brightness distribution of an image and the image itself are not independent of
each other. The low brightness features are used to estimate the lighting features. In the
estimation process, the previously hand-designed estimation method may have limitations
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and irrationality. However, if only a single convolutional kernel is used to learn the light
distribution features, it can only capture local features and lacks flexibility. Therefore, in
this paper, SimAm is used to replace the general convolution operation. SimAm learns the
spatial information weights of input features adaptively. It achieves dynamic estimation of
brightness features, avoiding the inflexibility and inaccuracy of hand-designed methods
and the localization limitations of convolution kernels. It enables the brightness adjustment
with higher global consistency and detail preservation. Such a design improves the model’s
ability to perceive light features. It is also able to enhance the brightness of low-light images
more efficiently and adapt them to complex lighting environments. Then, the light features
ϕx are transformed into a weight map generated through SimAm.

SimAm calculates the global mean and standard deviation for each channel, which are
used for the adjustment of brightness characteristics:

µc =
1

HW

H

∑
h=1

W

∑
w=1

ϕc,h,w (4)

σ2
c =

1
HW

H

∑
h=1

W

∑
w=1

(ϕc,h,w−µc)
2 (5)

Here, ϕc,h,w denotes the value of the feature map ϕ at the Cth channel and (h, w)
position. Additionally, H and W represent the height and width of the feature map.

Next, the attention weights generated by SimAm are:

Attentionsimam(ϕ) = ϕ × Sigmoid
(

µc

σc + ε

)
(6)

where ε is a very small constant used to avoid a zero denominator.
In the primary stage of feature extraction, the input visible and infrared images are

subjected to preliminary convolution operations to extract their underlying features:

F(0)
vis = Conv3×3(Ivis) (7)

F(0)
ir = Conv3×3(Iir) (8)

where Ivis and Iir denote the input visible and infrared images, respectively, and Conv3×3
denotes a 3 × 3 convolutional kernel for initial feature extraction for subsequent deep
feature extraction.

Then, during feature extraction, the Transformer was introduced to capture remote
dependencies. It processes the feature map layer by layer. First, the feature map of the
previous layer is projected into the Query, Key, Value space:

Q = WQF(l−1) (9)

K = WKF(l−1) (10)

V = WV F(l−1) (11)

where WQ, WK and WV denote the projection matrices of queries, keys, and values, respec-
tively. FL−1 denotes the feature map of the previous layer. Next, the attention weights
are computed:

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (12)

F(l) = MLP(Attention(Q, K, V)) (13)



Electronics 2024, 13, 5005 10 of 27

Finally, the SimAm-adjusted features are further processed through the Transformer
to improve brightness consistency and preserve details:

Fbau = Trans f ormer(Attentionsimam(ϕ)) (14)

3.2.2. MRF Module

Encoder-based approaches typically rely on on-channel splicing or simple summa-
tion to fuse features from different modalities. However, such methods often overlook
the inherent characteristics of each modality. Infrared images excel at capturing thermal
radiation emissions, providing robust edge information, especially in low-light condi-
tions. In contrast, visible light images offer complex spatial distributions and fine-grained
background details, such as textures and colors. To address these differences and fully
leverage the strengths of each modality, the MRF module is proposed in this paper. First,
IR features are used to selectively enhance the critical regions in VL features, emphasizing
their important details. Then, the enhanced VL features and IR features are fused to form a
unified representation. Finally, a secondary enhancement process is applied to the fused
features, improving edge consistency and spatial alignment. The specific architecture of
the fusion module is illustrated in Figure 3c.

Visible light images usually have a more complex spatial distribution. During the
fusion process, infrared features spatially replace some visible light features. This fusion
rule causes some visible light information to be destroyed, resulting in the fused image
having less information. To avoid this, the spatial distribution of infrared features is used
to pre-enhance the visible light features before fusion. It counteracts the loss of visible light
information in fusion. The process of pre-enhancement can be defined as:

ϕEV = ϕV ⊕ (ϕV ⊗ S(ϕI) ) (15)

where, ϕEV denotes the augmented visible feature. ϕV denotes the visible feature obtained
by the encoder. ϕI denotes the infrared feature obtained by the encoder. S denotes the
Sigmoid function, which aims at constraining the value of the infrared feature to a value
between 0–1. The processed infrared features are used as weights to select the visible light
features for enhancement. The enhanced visible light features can be obtained. Next, the
enhanced visible features and infrared features are fused:

ϕF= concat(ϕEV , ϕI) (16)

where ϕF denotes the fused features. concat (·) denotes the splicing on the channel. In the
forward propagation process of fused features, the problem of losing edge information
cannot be ignored. In order to avoid this, this paper performs a secondary enhancement of
the fused features. The process of enhancement is formulated as:

ϕF′ = conv1(ϕF)⊗ (S(conv3(conv1(ϕF)))) + conv1(ϕF) (17)

where ϕF’ denotes a fused feature that has been secondarily enhanced. The process of
secondary enhancement can be divided into two parts: edge estimation and selective
enhancement. First, a simple network structure is used for feature extraction of the fused
features. This network consists of a convolution with kernel 1 and a convolution with kernel
3. This network provides a rough estimate of the spatial distribution of the fused features.
The estimated spatial distribution is then processed into weights using a Sigmoid function.
In the selection enhancement part, the fusion features are first spatially compressed using
a convolution with a convolution kernel of 1. It forces the fused features to have tighter
channel information. Next, the fusion features are spatially selected for enhancement using
spatially distributed weights. The selection of weights will put most of the information
while suppressing some of it, and the suppressed part may be continuously weakened
until it is lost during network propagation. Information loss is not allowed in image fusion,
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and a short-hopping connection can perfectly avoid this problem. Specifically, the fusion
features before enhancement and the fusion features after enhancement are summed up,
and it avoids the loss of weakened information. The MRF module is embedded as a fusion
module in the network to achieve lossless fusion of different modal features.

3.2.3. Progressive Semantic Guidance Reconstructing Network

In the feature reconstruction stage, the fused features are reconstructed layer-by-layer
by two-layer convolution and a two-layer Transformer. CLIP [49] and KAN [50] modules
are introduced for semantic guidance in this process.

First, the initial reconstruction of the fused features is carried out using the convolu-
tion operation:

F(1)
cnn = ReLU(Conv3×3(Ff used)) (18)

F(2)
cnn = ReLU(Conv3×3(F(1)

cnn)) (19)

where, Ff used is the fused feature map with two layers of convolution to gradually recover
the image details.

In the next two-layer Transformer module, the remote-dependent features are captured
layer by layer. The feature map is projected to the query, key, and value space by the
following steps:

Q(l)
cnn = W(l)

Q F(l−1)
cnn (20)

K(l)
cnn = W(l)

K F(l−1)
cnn (21)

V(l)
cnn = W(l)

V F(l−1)
cnn (22)

Attentiontrans(Q
(l)
cnn, K(l)

cnn, V(l)
cnn) = so f tmax

(
Q(l)

cnnK(l)T
cnn√

dk

)
V(l)

cnn (23)

F(l)
trans = MLP(Attentiontrans(Q

(l)
cnn, K(l)

cnn, V(l)
cnn)) l = 3, 4 (24)

In order to enhance the semantic consistency of the reconstructed features, the semantic
information of the visible images is extracted using the CLIP model:

Fclip = CLIP(Ivis) ∈ R1×512 (25)

Fclip denotes the 512-dimensional semantic vector extracted by CLIP. It is used to guide
the reconstruction of the fused features.

Next, the CLIP features are projected by a learnable linear transformation:

Fproj
clip = WclipFclip (26)

Semantic information is then embedded into the fusion features through element-by-
element dot productions to form semantically guided features:

Fkan = Ff used ⊗ σ(Fproj
clip ) (27)

where σ is the activation function. ⊗ denotes the element-by-element product. The semantic
information is incorporated into the feature reconstruction process layer by layer through
this operation.

In addition, the weighting of the fused features is adjusted by introducing a neighbor-
hood attention mechanism to enhance the semantic similarity. First, weighting is computed
for each channel of the fused features:

Sc =

 Ff used[c] · Fclip∣∣∣∣∣∣Ff used[c]
∣∣∣∣∣∣·∣∣∣∣∣∣Fclip

∣∣∣∣∣∣
 for c = 1, 2, . . . , C (28)
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Fweighted[c] = Sc · Ff used[c] for c = 1, 2, . . . , C (29)

Some of the features that are similar to the CLIP vectors are enhanced by this process.
Finally, by finding the other channels that are most similar to each channel and fusing

them further:
KNN(c) = argj∈{1,2,...,c},j ̸=cmin

∣∣∣∣∣∣Ff used[c]− Ff used[j]
∣∣∣∣∣∣ (30)

Fupdated[c] =
1
k ∑

j∈KNN(c)
Ff used[j] (31)

The expression of the fused features is further refined by the fusion of neighbor-
ing features.

In PSRN, the combination of convolutional strategies and Transformer mechanisms
creates a robust framework for image reconstruction by leveraging their complementary
strengths. Convolutions are particularly effective at recovering fine-grained local details
and ensuring textures and edges are faithfully reconstructed. Transformers, on the other
hand, are adept at capturing the global context and modeling long-range dependencies,
enabling the reconstruction process to account for relationships across the entire image.
Together, these methods allow the reconstructed image to strike an ideal balance between
localized detail and global coherence.

The reconstruction process is divided into four distinct stages, in which features at
each layer are progressively refined and guided by semantic vectors derived from CLIP.
These semantic vectors embed high-level contextual information, ensuring that the fused
image retains a coherent and meaningful representation throughout the reconstruction. By
incorporating CLIP guidance at every layer, the method ensures that global semantics are
preserved without sacrificing critical local features.

A key component of this process is the KAN module, which introduces a neighborhood
attention mechanism to refine spatial relationships and enhance contextual relevance.
This module dynamically adapts to feature distribution at each stage, ensuring that the
reconstruction process maintains spatial and semantic alignment between the different
modalities. The KAN module also addresses potential conflicts between IR and VL features
by selectively emphasizing complementary information and smoothing inconsistencies.

The layer-by-layer approach ensures that the reconstruction evolves in a structured and
semantically consistent manner. By combining CLIP-guided semantic vectors with KAN’s
spatial attention, the reconstruction process is able to progress in a steadily improving
trajectory. This iterative refinement ensures that the final fused image not only captures
sharp local details and rich textures but also exhibits a high degree of global semantic
coherence, making it suitable for both visual analysis and downstream tasks.

Overall, this multi-stage, guided framework exemplifies how the integration of convo-
lution, Transformer modeling, semantic guidance, and neighborhood attention mechanisms
can collectively drive substantial improvements in both the visual quality and semantic
integrity of the reconstructed image.

3.3. Detailed Design of the Loss Function

In the task of infrared and visible fusion, a set of complex loss function combination
strategies are designed in order to obtain high-quality fused images in low-light environ-
ments. These include Structure Similarity (SSIM) loss, VGG perceptual loss, gradient loss,
and pixel loss. These loss functions are used for integrative constraints between different
levels and types of features. It ensures the overall quality, detail clarity, perceptual effect,
and semantic consistency of the image.

To measure the structural similarity between infrared and visible images, we have
used SSIM loss to maintain the integrity of local structural information. The formula for
SSIM is as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(32)
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x and y denote the reconstructed fused image f and the original input image (visible
image v or infrared image i) respectively, µx and µy are the mean of images x and y, σ2

x and
σ2

y are the variance of images σ2
y and y, σxy denotes the covariance of images x and y. C1

and C2 are constants used to avoid the denominator being zero.
SSIM losses are defined as:

Lssim(v, i, f ) = 1 − SSIM( f , v)− SSIM( f , i) (33)

In the fusion task, SSIM ensures that the reconstructed fused image f maintains a
high structural similarity to the reference images v and i. This is particularly important for
enhancing edges and details in low-light conditions.

VGG perceptual loss is used to ensure that the reconstructed images are consistent in
terms of perceptual quality. This helps to maintain the semantic features of the visible and
infrared images during the fusion process. Specifically, high-level features of the fused and
reference images are extracted by a pre-trained VGG network. The Euclidean distance is
computed on these features:

Lvgg(v, i, f ) = ∑
l
||ϕl( f )− ϕl(v)||22 + ∑

l
||ϕl( f )− ϕl(i)||22 (34)

where: ϕl(·) denotes the feature mapping extracted through layer lth of the VGG network.
Here, the features of visible v and infrared v are compared simultaneously. It ensures that
the fused images are consistent in visual perception.

The introduction of VGG perceptual loss effectively addresses the high-level semantic
information that may be missing from fused images. It enables semantic consistency to
be maintained under low light conditions. Especially in the presence of complex lighting
variations, it ensures the comprehensibility of the image.

To improve the retention of edge and texture information, gradient loss is introduced.
For infrared and visible images, the gradient loss is effective in keeping them complemen-
tary in terms of edge information. It is defined as follows:

Lgrad(v, i, f ) =
∣∣∣∣∣∣∇ f −∇v

∣∣∣∣∣∣1+∣∣∣∣∣∣∇ f −∇i
∣∣∣∣∣∣

1
(35)

where ∇ denotes the gradient computed by Sobel’s algorithm. The gradient loss conforms
the edge characteristics of the reconstructed image to the original input image by con-
straining it. This improves the clarity and detail representation of the edges after image
fusion.

Pixel loss is used as a direct measure of the difference between the reconstructed image
and the input image at the pixel level and is defined as follows:

Lpix(v, i, f ) =
∣∣∣∣ f − v

∣∣∣∣1+∣∣∣∣ f − i
∣∣∣∣

1 (36)

Pixel loss by constraining the pixel space similarity between the fused image and the
input visible and infrared images.

It ensures that the fused image is consistent in brightness and color and is particularly
effective in enhancing the overall brightness performance in low-light scenes.

Combining the above three loss functions to cope with the various challenges in the
fusion task under low-light conditions, the brightness modulation loss function Lb and the
low-light brightness modulation loss function LEN

b are obtained comprehensively.

Lb(v, i, f ) = α1Lssim(v, i, f ) + α2Lvgg(v, i, f )+
α3Lgrad(v, i, f ) + α4Lpix(v, i, f ) (37)

LEN
b (ven, i, f ) = µ1Lssim(vEN , i, f ) + µ2Lvgg(vEN , i, f )+

µ3Lgrad(vEN , i, f ) + µ4Lpix(vEN , i, f ) (38)
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where vEN refers to the high brightness reference image used to provide high brightness
adjustment under night conditions after an advanced low light enhancement algorithm [43].
Here, we will briefly introduce the algorithm. It establishes a cascaded lighting learning
process with weight sharing by developing a new self-calibrating lighting learning frame-
work, which can quickly, flexibly, and robustly brighten images in low light scenes and
various complex scenes in the real world. Through this algorithm, we can obtain high
brightness labels. This article utilizes prior knowledge of this type, combined with the
proposed BAU module, to achieve gradual brightness adjustment. αi and µi (i = 1, 2, 3, 4)
are hyperparameters that measure the importance of individual losses.

The final integrated fusion loss function L(v, i, f ) is:

L(v, i, f ) = θ · Lb(v, i, f ) + (1 − θ)LEN
b (vEN , i, f ) (39)

where θ is a parameter used for the dynamic adjustment of the day and night scenes, taking
θ = 1 when the input image is a daytime scene and θ = 0 for a nighttime scene.

This loss function is designed with full consideration of the characteristics of infrared
and visible image fusion in low-light environments. Through the combination of structural
similarity, perceptual loss, gradient loss, and pixel loss, the consistency of the fused images
in terms of local details, global perception, and edge features is ensured. The dynamically
adjusted loss function weights are adaptive to different lighting conditions. It is able to
generate high-quality fused images in both day and night environments. Meanwhile, the
historical brightness adjustment loss function is introduced. It enables the model to better
recover the lighting and detail information in the night scene. More comprehensive quality
assurance is provided for multimodal fusion.

4. Experimental Results

In this section, we first present the experimental configuration and implementation
details of network training. Then, we verify the superiority of the algorithm through
comparison and generalization experiments. In addition, we not only visualize the feature
maps after mutual reinforcing fusion but also conduct some ablation studies to verify the
effectiveness of our design. The ablation targets include BAU and MRF as well as VGG
loss and gradient loss. Finally, the potential and effectiveness of our algorithm in advanced
visual tasks is demonstrated in target detection experiments.

4.1. Experimental Configuration

The LLVIP dataset is particularly suited for vision tasks in low-light environments [53].
It contains aligned infrared and visible light images captured in night road scenes. Using
the LLVIP dataset [54], we conducted a series of experiments on BMFusion. Both qualitative
and quantitative analyses are included to assess its performance in all aspects. To further
validate the generalizability of BMFusion, we also utilized the MSRS dataset [48]. It covers
scenes under different lighting conditions at night with a spatial resolution of 480×640.
Fifty typical nighttime image pairs were selected from the MSRS dataset for generalization
analysis. Our results are compared with nine state-of-the-art (SOTA) fusion algorithms.
These include five CNN-based methods, i.e., SDnet [55], U2Fusion [56], SuperFusion [57],
SeAfusion, and UMF-CMGR [58], two GAN-based methods, i.e., FusionGAN and GanMcC,
and two selfencoder-based methods, i.e., RFN-Nest and CSF [43]. All the above image
fusion algorithms are publicly available, and we set the same parameters as reported in the
original paper.

In terms of quantitative assessment, this study uses six metrics to objectively evaluate
the image fusion effect. Mutual Information (MI) [59] is used to quantify the degree of
information sharing between the fused image and the source image. It reflects the effective
transfer of information. Average gradient (AG) [60] evaluates the richness of texture details
in an image, indicating clarity and texture information. Entropy (EN) [61] Measures the
amount of information in the fused image from an information theory perspective. Standard
Deviation (SD) [62] Used to statistically analyze the contrast and brightness distribution
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of the fused image. Visual Information Fidelity (VIF) [63] evaluates image quality from
the perspective of the human visual system. Finally, the Spatial Frequency (SF) [64] metric
reflects the rate of change of the image gray scale, which is closely related to the clarity and
texture details of the image. A comprehensive evaluation of these metrics can fully reflect
the performance of image fusion algorithms. The higher the score of the fusion algorithm
on these metrics, the better its fusion performance.

4.2. Implementation Details

We selected the LLVIP dataset to train the fusion network proposed in this paper.
Specifically, we selected 100 image pairs from the LLVIP dataset. The image pairs were
then cropped into 4000 pairs of chunks of size 128 as the training set. In the training of the
network, the hyperparameters were set to 10, 50, 4, and 1, respectively. (1) was set to 10, 40,
10, and 5, respectively. The batch size was set to 32, the number of training rounds was set
to 30, the initial learning rate was set to 0.0001, and the training was performed using the
Adam optimizer. The entire code in this paper was implemented using Pytorch 2.0. All
experiments were performed on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz CPU and
an NVIDIA P100 GPU. The Intel CPU was sourced from Intel Corporation, headquartered
in Santa Clara, CA, USA. The NVIDIA GPU was sourced from NVIDIA Corporation,
headquartered in Santa Clara, CA, USA.

4.3. Fusion Performance Analysis

In order to fully evaluate the performance of our method and illustrate the advantages
of the method, we performed a comprehensive comparison of fusion performance with
nine SOTA fusion methods on the LLVIP dataset.

4.3.1. Qualitative Results

The core objective of good nighttime low-light enhanced image fusion algorithms is
to deal with illumination degradation in nighttime images. Such algorithms endeavor to
extract valuable information from the original low-light image and enhance the visibility
and details of the image through fusion techniques. In order to visualize the fusion
performance of different algorithms on the LLVIP dataset, three pairs of infrared and visible
light images were selected. The visualization results are shown in Figure 4. In the figure,
we select two regions for magnification, as shown by the red and green boxes. As can
be seen in Figure 4(a1–l1), none of the nine algorithms, except ours, can clearly see the
outline of the manhole cover. The whole manhole cover disappears into the darkness, not
to mention the texture details of the manhole cover. That is, as shown by the red box. In
the green box, the fonts in FusionGan, SDnet, SeAFusio, SuperFusion, and UMF-CMGR are
all very blurred and cannot be clearly rendered. The fonts in CSF, GANMcC, RFN-Nest,
and U2Fusion can be rendered. However, the overall darkness makes it impossible to
see the content of the fonts clearly at a glance. In contrast, our algorithm has a better
overall visual experience and is relatively bright. It allows one to see the information
conveyed in the image effortlessly at a glance. In Figure 4(a2–l2), the sewer covers in all the
algorithmic scenes are submerged in darkness, except for our algorithm, which is shown
in the green box. In the red box, it can be seen that only our algorithm can clearly see the
color and texture details of the curb cables. Compared to the other algorithms, our results
all contain more prominent targets and richer and clearly presented texture information. It
also provides a visually brighter, high-contrast scene. Even the information about objects
that have been mostly lost in the darkness can be shown clearly, more similar to a scene
in daylight.
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Figure 4. Qualitative comparison of BMFusion with 9 state-of-the-art methods in different scenes on
LLVIP datasets.

4.3.2. Quantitative Results

We further performed a quantitative comparison of 50 pairs of images from the LLVIP
dataset, as demonstrated in Table 1. Our method scored first place in all five metrics and
third place in the MI comparison. This achievement proves the efficiency of our method.
The performance in MI illustrates the advantages of our fusion results in information shar-
ing. Although our method is slightly inferior to SeAFusion and SuperFusion in the metric
of MI. However, our method significantly outperforms the other comparison algorithms
in terms of brightness reinforcement and scene clarity. This strategy of increasing the
overall scene brightness, however, affects the linear correlation with the source image, thus
dropping the ranking to third on MI. However, this ranking is still within acceptable limits,
given the clear advantage of our method in terms of visual effect. The high score for AG
shows the superiority of our method in detail information retention. The best performance
in EN reflects the rich information content of the fused images. In addition, our high scores
on SD and VIF further confirm the improved image contrast and optimized visual quality.
The excellent performance of SF, on the other hand, demonstrates a significant improve-
ment in image sharpness and texture details. Overall, our method achieves significant
results in enhancing the overall brightness of the scene. This enables the fused images
to outperform other methods in terms of clarity and visual effect. Finally, we arbitrarily
selected 20 pairs of images from the LLVIP dataset and made a line graph after counting
the corresponding metrics, as shown in Figure 5.
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Table 1. Comparison of metrics on LLVIP. The red font indicates the best indicator, the blue font
indicates the second best indicator, and the green font indicates the third best indicator.

SD MI VIF AG EN SF

CSF 9.0574 2.5046 0.7940 2.5753 6.6975 0.0322
FusionGAN 8.3254 2.8171 0.5319 1.9468 6.3083 0.0271
GANMcC 9.0199 2.6817 0.7152 2.1229 6.6899 0.0267
U2Fusion 8.1659 2.2748 0.7158 3.2891 6.3597 0.0433
RFN-Nest 9.2655 2.5545 0.8198 2.1579 6.8624 0.0248

SDNet 8.9246 2.9725 0.6534 3.4387 6.6800 0.0474
SeAFusion 9.4885 3.7725 0.9882 3.8317 7.2353 0.0514

SuperFusion 9.4757 4.0397 0.8982 3.1196 7.1280 0.0437
UMF-CMGR 8.0539 2.6817 0.5796 2.5041 6.4620 0.0389

Ours 10.0742 3.7399 1.3379 6.1919 7.3673 0.0814
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Figure 5. Quantitative results of six metrics, i.e., SD, MI, VlF, AG, EN, and SF, on any 20 image pairs
from the LLVIP dataset. Nine SOTA methods are used for comparison.

4.4. Generalisation Experiments

In the field of deep learning, the generalization ability of a model is a key metric for
assessing its performance. Therefore, we selected 50 pairs of nighttime infrared and visible
images from the MSRS dataset. Generalization tests were performed on our BMFusion
model. In particular, it is noted that the BMFusion model was trained only on the LLVIP
dataset. It has not been evaluated on the MSRS dataset without any specific tuning or
optimization of that dataset directly. The generalization experiments demonstrate the
adaptability and stability of our model when dealing with different data sources.

4.4.1. Qualitative Results from the MSRS Dataset

The results of the qualitative comparison of the MSRS dataset are shown in Figure 6.
As can be seen in Figure 6(a1–l1), our algorithm is able to better highlight pedestrians on
the far side of the road. This is due to the BAU module that we have designed to improve
the overall contrast of the image. As a result, there is a significant improvement in the
salient targets compared to other algorithms, i.e., shown in the green box. The texture of
the leaves submerged in the darkness is well revealed in the red box. This can be seen by
zooming in and looking at the stone pillars at the bottom of the roadside intersecting with
power lines and tree trunks in Figure 6(a2–l2) and the entrance to the building and the
motorbike vehicles on the road in Figure 6(a3–l3). In very dark scenes, the fusion results
of other algorithms have been completely unable to present the fusion results well. The
fusion results of some algorithms even lose many texture details in the visible image while
failing to highlight the significant targets. On the contrary, our method mines out a large
amount of scene information hidden in the darkness. It contains both the high contrast of
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infrared images and the rich texture details of visible light images. Compared to the LLVIP
dataset, the images in the MSRS dataset have lower brightness, contrast, and sharpness.
The problem of illumination degradation in nighttime images is even more difficult to solve.
This is more demanding on the performance, robustness, and applicability of our algorithm.
Even so, our method has a better overall visual perception. This further illustrates the
superiority of our proposed algorithm.
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4.4.2. Quantitative Results for the MSRS Dataset

We performed a quantitative comparison of 50 pairs of images from the MSRS dataset.
The results of the comparison of the different algorithms for the six metrics are shown
in Table 2. Our method achieved first place on all six metrics. On the MI metric, our
method demonstrates excellent information-sharing ability. The high score of AG reflects
the rich texture details of the image. The excellent performance of EN reveals that the
fused image contains a large amount of information. In SD and VIF, our method also
performs excellently. It shows significant improvement in image contrast and excellent
visual perception performance. The high score of SF further proves the effectiveness of
our method in improving image clarity. In summary, our method shows strong fusion
capabilities both in terms of image detail retention, information content, visual quality, and
clarity. This is confirmed by the performance on the MSRS dataset. Similarly, we arbitrarily
selected 20 pairs of images from the MSRS dataset and made a line graph after counting
the corresponding metrics, as shown in Figure 7.
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Table 2. Comparison of metrics on MSRS. The red font indicates the best indicator, the blue font
indicates the second best indicator, and the green font indicates the third best indicator.

SD MI VIF AG EN SF

CSF 5.1253 1.9904 0.5467 1.1249 4.5089 0.0173
FusionGAN 4.6643 1.7124 0.3565 0.9617 4.8367 0.0123
GANMcC 7.1819 2.2346 0.6971 1.4717 5.6018 0.0173
U2Fusion 4.2689 1.8005 0.4188 1.2306 3.9947 0.0219
RFN-Nest 5.7250 2.0711 0.6357 1.1042 5.0092 0.0156

SDNet 4.0533 1.4478 0.2737 1.4639 4.2654 0.0216
SeAFusion 6.4184 3.1782 0.9227 2.0949 5.6790 0.0293

SuperFusion 6.3411 3.0876 0.8915 1.9017 5.5546 0.0286
UMF-CMGR 4.5016 1.7318 0.2157 1.3277 4.8857 0.0191

Ours 9.4120 4.6922 1.1587 4.2865 7.2781 0.0464
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4.5. Efficiency Comparison

In order to provide an overall evaluation of the different algorithms, we give the
average running time and model size of the different methods in Table 3 The average
runtime here refers to the average time taken by the network to generate a fused image.
The model size refers to the amount of memory required to store the model parameters.
These parameters include weights, biases, and other necessary structural elements in the
model architecture.

Table 3. Comparison of operational efficiency. The red font indicates the best indicator, the blue font
indicates the second best indicator.

Speed/s Model-Size/MB

CSF 14.4062 4.0673
FusionGAN 0.6257 7.248
GANMcC 1.0622 10.9472
U2Fusion 0.4897 2.5878

1RFN-Nest 0.838 28.7265
SDNet 0.2041 0.7148

SeAFusion 0.1925 0.6513
SuperFusion 1.7092 22.4628
UMF-CMGR 0.344 7.2255

Ours 0.34 1.86

As can be seen, CSF indicates whether a pixel needs to be fused into the result by
evaluating the contribution/significance of each pixel in the feature map. This is very
time consuming. In the field of image fusion, the use of smaller deep learning models has
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significant advantages. First, smaller models enable faster data processing and inference,
which is particularly critical for real-time image fusion applications. Second, these models
have a lower demand for computational resources. This makes them suitable for running on
resource-limited devices, such as mobile and embedded systems. In addition, small models
are easier to deploy and maintain, reducing the risk of overfitting. In short, small models
bring the dual benefits of flexibility and efficiency to image fusion tasks while maintaining
reasonable performance. SeAFusion has been designed to be lightweight in terms of
network design, taking into account the real-time requirements of preprocessing operations.
It is the fastest algorithm for all datasets. The squeeze decomposition network designed in
SDNet is also a lightweight network. Our average runtime and model size are second only
to SeAFusion and SDNet. Our network combines the two tasks of brightness reinforcing
and image fusion. A reasonable fusion strategy is designed according to the characteristics
of different modal information itself. In order to achieve good results, it needs to consume
a certain amount of time. However, our method still has comparable operation efficiency.
This fully demonstrates the excellent computing efficiency and adaptability of our method.

4.6. Mutually Enhanced Fusion Visualization

In the framework proposed in this study, we carefully design the l loss function. They
achieve precise control of the image reinforcing, feature extraction, feature selection, and
image reconstruction processes under low-light conditions. Figure 8 shows some of the
feature maps after processing by the MRF module. It is obvious from these images that
the network successfully preserves the texture features of the enhanced visible image.
It effectively integrates the salient target features in the infrared image into the fused
feature maps. A strong validation of the efficiency of our network model in performing
feature fusion.
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Figure 8. Visualized results of images and feature maps. The first column presents the infrared
image, visible image, and fused image, respectively. The next five columns show the feature maps
corresponding to the infrared, visible, and fused images in various channel dimensions.

4.7. Ablation Experiment
4.7.1. BAU and MRF Ablation Analyses

The important components of our fusion model are the brightness modulation unit
module and the cross-modal mutual reinforcing fusion module. Therefore, we also per-
formed ablation experiments on these two modules, and the experimental results are shown
in Figure 9. After removing the BAU module, the visible light features are extracted with
Transformer blocks alone and then fused. The experimental results can be observed that
there is an obvious imbalance in the brightness adjustment between the headlights and the
zebra crossing in the fused image. On the contrary, our fusion results in a high-contrast
scene with good visual perception. After removing the MRF module, we simply splice
the IR and visible features extracted by the encoder on the channel and feed them into the
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reconstruction network. The experimental results show that the whole fused scene is rela-
tively smooth, with less gradient variation and a less vivid texture structure. Meanwhile, by
observing the vehicles in the fused image, the stains on the windows, and the pedestrians
on the road, it can be found that the significant target information in the infrared image
is not well complemented into the fused image. There is even a situation in which the
information in the IR image is lost. This situation further highlights the importance of
the MEF module in integrating salient target information and background texture. This
experiment shows that the designed BAU module as well as the MEF module achieved the
equalization of the scene color distribution. It successfully maintains the texture details of
the background area as well as the saliency of the salient targets. The ability to maintain
image quality under low-light conditions is demonstrated, especially the effectiveness in
retaining critical visual information.
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4.7.2. Fusion Loss Function Ablation Analysis

In order to investigate the specific effects of VGG loss and gradient loss on the quality
of fused images in the fusion stage, we perform ablation experiments on VGG loss and
gradient loss, respectively. It can further understand the role of each loss function in image
fusion. VGG loss focuses on the overall consistency and coherence of the scene content.
Gradient loss aims to optimize the network to ensure that the texture information of the
source image is preserved in the fused image. As shown in Figure 10, removing VGG loss
weakens the global information representation of the scene. The lack of gradient loss leads
to a lack of detail representation in the fused image.

4.7.3. Overall Analysis of Ablation Experiments

In the ablation study we conducted when the BAU module is missing, there is a
significant imbalance in the brightness adjustment of the fused image. This leads to an
imbalance of important details and contrast in the scene. The overall visual effect of the
image is affected. This imbalance is especially prominent in areas with complex lighting
changes or extremely high contrast. As a result, the image appears visually too dark or too
bright, lacking the desired visual level and depth. On the other hand, the fusion process is
much less effective without the MEF module. This is manifested in the inadequate fusion
of information between the IR and visible images. It results in an ineffective combination of
critical hotspot information in the IR image and detailed texture information in the visible
image. The result is that the ability of the fused image to highlight important targets and
maintain environmental details is greatly reduced. This inadequate fusion will directly
affect the accuracy and reliability of the fused image. Therefore, the integration of the two
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modules, BAU and MEF, is essential to achieving high-quality fusion of IR and visible
images. This ensures excellent performance of the fused images in terms of brightness
balance, information integrity, and visual effect. When gradient loss is removed, we observe
a color imbalance across the scene. This resulted in the fused image tending to resemble
the enhanced infrared image more. The details and texture information of the visible light
image are lacking. This phenomenon indicates that gradient loss plays a crucial role in
maintaining the color balance and texture details of the image. On the other hand, when
VGG loss is removed, the overall sharpness of the image decreases. This is due to the fact
that VGG loss is essential for maintaining the structural integrity and sharpness of the
image. It ensures that the image does not lose important scene content during the fusion
process by enhancing the key features and structural information of the image. Each of the
two losses plays an integral role in maintaining color balance, enhancing texture details
and maintaining image sharpness. In addition, we also conducted a qualitative comparison
of ablation, and the specific results are shown in Table 4.
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Table 4. Quantitative comparison of ablation experiments.

SD MI VIF AG EN SF

Without_BAU 9.8232 3.6832 1.3112 6.0511 7.2856 0.0805
Without_MRF 9.7454 3.6644 1.3022 6.0001 7.2001 0.0798
Without_VGG 9.6856 3.6405 1.2904 5.9509 7.1508 0.0790

Without_Gradient 9.6179 3.6276 1.2854 5.9087 7.1001 0.0784
Ours 10.0742 3.7399 1.3379 6.1919 7.3673 0.0814

4.8. Applications in Target Detection

In order to further explore the contribution of BMFusion to advanced computer vision
tasks, we take the fused images as input. Pedestrian detection experiments were conducted
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using the SOTA detection model YOLOv5n. The detection results were compared with the
original infrared and visible light images and other different algorithms.

4.8.1. Qualitative Inorganic Experiment

We fed the infrared image, the visible light image, and the fusion results produced by
each type of fusion method directly into the YOLOv5n detector, respectively. The results
are shown in Figure 11. In the low-light environment, the visible image does not effectively
highlight all pedestrians, and some targets are missed. The infrared image emphasizes the
characters but lacks texture details, resulting in poor detection. This reflects the limitations
of the two images in dark lighting conditions. Complementary information, such as high
contrast, rich texture, and prominent targets in the image after fusing the two, helps to
detect pedestrians effectively. However, except for BMFusion, the remaining nine fusion
methods suffer from severe darkness, which weakens the complementary information of the
source image. This results in the detector not being able to accurately detect all pedestrians.
In contrast, BMFusion makes full use of the complementary information of infrared and
visible images. It successfully overcomes the challenges of low-light environments. With its
enhanced contrast and rich texture information, it provides brighter scene conditions with
rich semantic information for pedestrian detection, significantly improving the accuracy of
pedestrian detection.
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In our study, quantitative metrics such as precision, recall, and mean accuracy (mAP)
are used to evaluate the pedestrian detection task.
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As shown in Table 5, the precision metric measures the proportion of positive samples
correctly identified in the prediction results. Higher precision reflects fewer false detections.
Recall, on the other hand, focuses on the proportion of correct detections from all actual
positive samples. Higher recall means fewer missed detections. The mAP is the average
detection precision under a combination of different intersection and union ratio (IoU)
thresholds. It is an important indicator of the overall performance of the model. The closer
the mAP value is to 1, the better the pedestrian detection is. Our fusion method achieves
significant advantages in these metrics. Our fusion result, Precision’s value, is at the top of
the list. The value of recall is the highest. We also achieved a significant advantage in mAP.
It demonstrates higher overall detection accuracy. Overall, the network designed in this
paper effectively combines significant thermal target information in infrared images and
texture details in visible light images. It also significantly improves the overall brightness.
These properties result in higher stability of the fused images for target recognition. This
results in superior performance in advanced vision tasks for target detection.

In addition, although the proposed method has shown strong potential in multimodal
fusion tasks such as pedestrian re-identification, its applicability is limited due to the lack
of 3D modeling, temporal information, and robustness in complex environments. Further
adjustments, such as combining 3D or multi-perspective learning and improving computa-
tional efficiency [65], can significantly enhance the generalization ability and effectiveness
of this method for real-world scenarios. This is also one of our future improvement goals
in such tasks.

Table 5. Comparison of indicators of detection effectiveness. Bold content indicates the best indicators.

Precision Recall mAP@0.50 mAP@[0.5:0.95]

VI 0.899 0.819 0.889 0.459
IR 0.725 0.631 0.709 0.287

CSF 0.928 0.872 0.937 0.564
FusionGAN 0.935 0.861 0.932 0.566
GANMcC 0.938 0.874 0.938 0.569
U2Fusion 0.930 0.871 0.936 0.557
RFN-Nest 0.934 0.862 0.935 0.562

SDNet 0.926 0.886 0.943 0.572
SeAFusion 0.911 0.886 0.934 0.563

SuperFusion 0.922 0.875 0.933 0.546
UMF-CMGR 0.928 0.884 0.939 0.566

Ours 0.929 0.901 0.951 0.574

5. Conclusions

In this paper, an innovative network architecture for the fusion of infrared and visible
images under low light and complex lighting conditions is proposed. The designed fusion
framework is improved in several key aspects compared to existing image fusion methods.
It can be adapted to image fusion tasks in extreme lighting environments. The performance
of the fused images in terms of detail retention, brightness reinforcing, and multimodal
information integration achieves the desired results.

First, the BAU is designed to perform brightness adjustment and feature extraction on
visible light images layer by layer. It makes it possible to effectively capture and enhance
the brightness features of images in low-light environments. The BAU module adopts the
combined architecture of SimAm and Transformer. It makes full use of SimAm’s global
brightness focusing ability and Transformer’s long-range dependency modeling ability.
And it ensures that the extracted features contain both local details and global consistency.

Second, this paper introduces the MRF module in the feature fusion stage. The modal
features are interactively enhanced through channel-level and spatial-level attention mech-
anisms. It ensures that the complementary information between different modalities is
preserved and enhanced in the fusion process. This multi-level feature optimization effec-
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tively enhances the expressive power of the fused features. It provides a solid foundation
for the subsequent reconstruction stage.

Finally, in the feature reconstruction phase, a progressive semantically guided feature
reconstruction network is used. It combines a CLIP model, a KAN module, and a neighbor-
hood attention enhancement strategy to reconstruct the fused features layer by layer. The
CLIP model provides semantic guidance during the reconstruction process for each layer. It
ensures semantic consistency in the reconstruction process. The KAN module, on the other
hand, refines the fusion features through adaptive channel weighting. It further enhances
the complementarity and importance of different modal features. Neighbor Attention
Enhancement mines the relationship between features in the reconstruction process and
strengthens the detail information. It makes the fused image perform well in both global
and local aspects.

Numerous experimental results show that the fusion method proposed in this paper
achieves significant advantages over other state-of-the-art algorithms on publicly available
datasets. Especially in low-light and nighttime environments, the performance of fused im-
ages in terms of brightness, detail retention, and visual consistency is particularly outstanding.
Meanwhile, applications in advanced visual tasks also demonstrate the great potential of BM-
Fusion. Overall, in this paper, through the all-round optimization of brightness enhancement,
feature fusion, semantic guidance and detail reconstruction. A more stable and efficient fusion
of infrared and visible images in complex environments is achieved.
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