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Abstract

:

Decentralized control offers a more effective way to avoid the complexities and coordination challenges encountered in centralized control. In the decentralized design of additional controllers for multi-infeed DC transmission systems, it is crucial to focus on the interactions among the controllers. To solve this problem, this paper primarily discusses an enhanced damping characteristic method for hybrid AC-DC systems based on an improved Effective Relative Gain Array (ERGA) index. Initially, feedback signals with better control effects on existing oscillation modes are pre-screened. Subsequently, the ERGA-based interaction index is utilized to pair these feedback signals with control locations, aiming to identify the optimal pairing scheme with the minimum index value, indicating the least interaction effect. This approach minimizes the mutual influence between loops and reduces adverse interactions among controllers. Simulations of multi-DC additional damping controllers designed using the multi-stage Linear Quadratic Regulator (LQR) method in a multi-DC system demonstrate that the optimal pairing scheme significantly outperforms both uncontrolled and poorly paired schemes in controlling low-frequency oscillations, thereby validating the optimality of the proposed method. Furthermore, various disturbances are introduced to verify the effectiveness and robustness of the proposed control strategy against low-frequency oscillations.
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1. Introduction


Low-frequency oscillation (LFO) is an inherent characteristic of power systems, and persistent oscillation can limit the transmission capacity of power lines, potentially leading to system separation in severe cases. The frequency range of low-frequency oscillation is generally 0.1 to 2.5 Hz. It includes oscillations between generators within a power plant and other parts of the grid, known as local oscillations (approximately 1 to 2.5 Hz), and oscillations between multiple generators across different regions, referred to as inter-area oscillations (approximately 0.1 to 1 Hz) [1,2].



The most commonly adopted measure to suppress LFO is to equip the excitation regulators of synchronous generators with Power System Stabilizers (PSSs), which counteract the negative damping produced by Automatic Voltage Regulators (AVRs) that only adjust for voltage deviations [3]. By providing positive damping torque to the generators, PSS can decrease the LFO risk greatly.



However, studies have shown that PSS is not always effective for low-frequency oscillation, especially for inter-area oscillation. At present, the primary function of PSS is still to suppress local oscillation. For example, the more than 30 PSSs installed on critical units in the China Southern Grid are only used to damp local oscillations [4].



With the rapid development of power electronics technology in recent years, High Voltage Direct Current (HVDC) systems have been widely used to increase line transmission capacity, reduce line losses, and improve the stability and security of power systems. In addition, their supplementary damping controls have also been extensively studied, particularly in the aspect of damping inter-area oscillations, where they offer more flexible control methods and faster response speeds compared to traditional damping controls [5,6]. Under normal conditions, the rectifier side employs constant DC current control, while the inverter side uses constant DC voltage control to regulate the transmission power of the DC system. Generally, the oscillation damping of the AC system can be enhanced by modulating the DC current reference value at the rectifier side, or by adjusting the voltage value at the inverter side. HVDC transmission lines can either be located within a single AC system or form a non-synchronous interconnection between two AC systems. For both types of HVDC transmission lines, supplementary control can effectively increase system damping and reduce system oscillations.



Thanks to the maturity of the Wide Area Measurement System (WAMS), not only can observable electrical signals such as voltage and current values, active and reactive power values, rotor angular velocity, and system frequency serve as input signals for DC supplementary control, but also various signal differences can be utilized. A judicious selection of feedback signals can reduce control costs, isolate the interaction between controllers and dominant poles, and thereby enhance control performance [7,8,9,10]. Therefore, the choice of feedback signals is of paramount importance [11].



In the context of selecting feedback signals for DC control, several methods have been proposed in the literature. Reference [12] employs the Total Least Squares Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT) method to identify the weighted power angle curves of each generator under disturbance conditions, obtaining the quantitative values of DC control factors corresponding to different oscillation modes. It also considers the weighted average of multiple strongly correlated generators to determine the selection of feedback signals. Reference [13] introduces a dynamic impact factor related to the dynamic stability index of generator units, taking into account the influence of different generator inertia time constants on power angle changes, and quantitatively analyzes the intensity of the disturbance impact on each unit. Reference [14] proposes a method based on the system’s dominant oscillation mode information, using the TLS-ESPRIT algorithm to screen out generators with larger participation factors. Reference [15] introduces a primary mode ratio index calculation method aimed at maximizing damping with the cost of unit control, thus measuring the control cost versus the control effect and successfully screening feedback signals. Building on [15], Reference [16] proposes a quantitative index reflecting control sensitivity, with the objective of minimizing the required output for the unit damping effect while considering the influence of generator inertia time constants and other oscillation modes, thereby obtaining the optimal feedback signal. Reference [17] establishes a mathematical model for a multi-machine power system and proposes a control point allocation evaluation index based on singular value decomposition. It evaluates the contribution of each generator to oscillation modes by solving the maximum singular value of the transfer function, thereby identifying the best feedback signal.



With the proliferation of multi-input, multi-output (MIMO) systems, such as those with multiple DC systems and multiple FACTS systems, the selection of control locations for supplementary control has become more complex. The choice of control location is intimately linked to control effectiveness.



Regarding the selection of control locations, Reference [14] initially screens generator units with larger participation factor indices as candidates. It then examines the differences in speed changes among various units under different oscillation modes to identify the DC line that exhibits the highest control sensitivity to the dominant oscillation mode, thereby determining the optimal control location. Reference [18] applies the same disturbance to different DC lines to measure the changes in generator unit angles. The optimal control location in a multi-terminal DC system is selected using a disturbance testing method. Reference [19] employs the Matrix Pencil method to identify the power angle curves of each generator unit and extracts the amplitudes corresponding to the dominant oscillation mode. By calculating the sensitivity of each major generator to the DC line using quantitative indicators, the optimal generator unit for control settings is determined.



Before the interconnection of large power grids, traditional low-frequency oscillation suppression methods only considered local conditions and designed controllers for single targets. However, in systems with one or multiple DC systems, controllers designed in a decentralized manner for single targets may ignore the impacts of other devices or control loops. This not only fails to leverage global information to optimize control performance but also may lead to adverse interactions among controllers designed for single targets due to control loop coupling [20].



In the coordination of MIMO systems involving DC supplementary control technologies, the main focus is on the coordinated control of AC-DC systems (primarily the coordination between Power System Stabilizers (PSSs) and DC supplementary control) and the coordinated control of multi-DC systems. In systems with fewer DC links, the selection of control locations is less numerous and thus easier to manage; nonetheless, the feedback signals still involve a multitude of electrical quantities, making them complex. Additionally, the coordination between feedback signals and control locations requires further investigation. References [21,22] quantitatively analyze the interactions among different control loops in MIMO systems by calculating the Relative Gain Array (RGA) index, and selecting the scheme with the lowest interaction as the pairing scheme for feedback signals and control locations. Reference [23] proposes a quantitative analysis index for the interactions among multiple FACTS damping controllers. Reference [24] calculates the smallest modulus of the eigenvalues of the Jacobian matrix to determine the optimal pairing of variables. Reference [25] first establishes a full dynamic state–space mathematical model of the system and then computes its Gram determinant to quantitatively analyze the interactions in MIMO systems. References [26,27,28,29] use the Normalized Interaction (NI) method to analyze and pair the interactions among various loops, similar to RGA and often used in conjunction with it. Furthermore, there are hierarchical and decentralized coordinated control methods [30] for controller design in MIMO systems.



Although previous research has made significant strides in the realm of AC-DC coordination strategies, a more comprehensive evaluation of the correctness and reasonableness between different control loops is still required. For instance, consider the Relative Gain Array (RGA) index; while it provides valuable insights by calculating the static gain of each control loop, it falls short in capturing the dynamic behavior of these loops. This limitation is particularly problematic given that the outputs of damping controllers are primarily concentrated during dynamic periods. Consequently, relying solely on the RGA index may lead to suboptimal or even inappropriate control decisions. Furthermore, this shortcoming is not unique to the RGA index; other static indices also suffer from similar deficiencies. To address these challenges and enhance the coordination of AC-DC damping controls, this paper introduces an improved index, termed the Enhanced Relative Gain Array (ERGA). The ERGA index not only considers static gains but also incorporates dynamic information, thereby providing a more holistic and accurate assessment of control loop performance.



The structure of the paper is as follows. Section 2 introduces the decentralized control method based on improved ERAG, Section 3 investigates the damping controller design method based on the Multi-Stage LQR method, Section 4 expresses the case study, and Section 5 concludes the paper.




2. The Decentralized Control Method Based on Improved ERAG


2.1. The RGA Theory


To minimize the interaction between control loops and avoid negative effects on the performance of additional controllers, quantitative analysis must be used to select appropriate feedback signals and control points for each controller.



For the design of decentralized controllers for the multi-input, multi-output system shown in Figure 1, the evaluation of interaction effects and the pairing of feedback signals and control points in the control loops need to consider the following principles:




	
If the controller’s design requirement is to be effective only in the low-frequency range, the evaluation of interaction effects between control loops should consider the limited bandwidth.



	
The pairing strategy should be widely applicable to various types of controllers.



	
The pairing strategy should consider both dynamic and static interactions in the frequency range of interest.



	
The pairing method must be simple and practical to meet engineering requirements.








In practice, the following two factors of the open-loop transfer function will affect the pairing results of feedback signals and control points. One is the steady-state gain, which reflects the impact of the control variable on the controlled variable. The other is the response speed, which reflects the sensitivity of the controlled variable to the control variable, i.e., its ability to resist the influence of other loops.



For the multi-input, multi-output stable system shown in Figure 1.
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Figure 1. Multi-input, multi-output control system. 






Figure 1. Multi-input, multi-output control system.
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The relative gain between an input ui and an output yi can be defined as follows:


   λ  i j   =   ∂  y i   /    ∂  u j  |   Δ  u k  = 0 , k ≠ j     ∂  y i   /    ∂  u j  |   Δ  y k  = 0 , k ≠ i      



(1)







In Equation (1), the molecular gain represents the static channel gain obtained when all control loops are in an open-loop state, with all channels except the uj → yi channel disconnected. The denominator gain represents the static channel gain between uj and yi when all other output variables yk (where k ≠ i) remain unchanged.



Furthermore, all the relative gains    λ  i j     can form a relative gain matrix    Λ  RGA    . The matrix operation formula is as follows:


   Λ  RGA   = G ( 0 ) ·   ( G   ( 0 )   − 1   )  T   



(2)




where   G  0  =        g  11    0       g  12    0     ⋯     g  1 n    0         g  21    0       g  22    0     ⋯     g  2 n    0       ⋮   ⋮      ⋮       g  n 1    0       g  n 2    0     ⋯     g  n n    0         



In Equation (2),  ·  represents the Hadamard product of matrices. A relative gain    λ  i j     closer to 1 indicates less coupling between different control loops. Based on this principle, corresponding control loops can be selected to form a regulatory system.




2.2. The Improved ERGA Index


Although the RGA reduces computational complexity by only calculating static gains, it fails to account for the dynamic information of the loops. Since response speed is proportional to bandwidth, bandwidth can be used to reflect the interaction from limited-bandwidth control and control loop selection in terms of response speed.



Let


   g  i j  0    j ω   =     g  i j     j ω      g  i j    0      



(3)







In the equation,    g  i j    0    denotes the steady-state gain, and    g  i j  0    j ω     represents the normalized frequency response of    g  i j     j ω    .



To simultaneously consider both the steady-state gain and the response speed in the evaluation of control loop interactions, the effective relative gain can be defined as follows:


   e  i j   =  g  i j    0     ∫ 0   ω   B ,  i j         g  i j  0  ( j ω )   d ω     



(4)







In the equation,    ω  B , i j    ,   i , j = 1 , 2 , ⋯ , n   is the bandwidth of the frequency response    g  i j  0    j ω    , and      g  i j  0  ( j ω )     denotes the absolute value of the frequency response    g  i j  0    j ω    .



   e  i j     is the effective energy output of    g  i j     j ω    , and the improved ERGA (Effective Relative Gain Array) can be defined as follows:


  E =        e  11        e  12      ⋯     e  1 n          e  21        e  22      ⋯     e  2 n        ⋮   ⋮      ⋮       e  n 1        e  n 2      ⋯     e  n n          



(5)







To simplify the calculation, the integral area can be approximately treated as a rectangle, i.e.,


   e  i j   ≈  g  i j    0   ω  B , i j    



(6)






  E = G  0  ⊗ Ω  



(7)




where   Ω =        ω  B , 11    0       ω  B , 12    0     ⋯     ω  B , 1 n    0         ω  B , 21    0       ω  B , 22    0     ⋯     ω  B , 2 n    0       ⋯   ⋯   ⋯   ⋯       ω  B , n 1    0       ω  B , n 2    0     ⋯     ω  B , n n    0         



Since    e  i j     represents the energy of the closed-loop channel    u j  →  y i    relative to other channels, the larger the value of    e  i j    , the more dominant the role of this loop is.



Replacing the static gain array   G  0    in Equation (2) with the effective gain array  E , and we define the effective relative gain    Φ  i j   =     e  i j       e ^   i j        to represent the gain between the control variable    u j    and the controlled variable    y i   . Here,     e ^   i j     is the gain between the input variable    u j    and the output variable    y i    when all other loops are closed. By calculating the effective gain values for various combinations, we can define the Effective Relative Gain Array as follows:


  Φ = E ⊗  E  − T   =        ϕ  11        ϕ  12      ⋯     ϕ  1 n          ϕ  21        ϕ  22      ⋯     ϕ  2 n        ⋮   ⋮      ⋮       ϕ  n 1        ϕ  n 2      ⋯     ϕ  n n          



(8)







According to the definitions above, ERGA has similar properties to RGA as follows:




	
   ϕ  i j     can assess the effective mutual interactions between the loops formed by the control variable    u j    and the controlled variable    y i   .



	
The sum of the elements in any row and any column of ERGA is 1, i.e.,     ∑  i = 1  n    ϕ  i j   =     ∑  j = 1  n    ϕ  i j   =   1  .



	
If    ϕ  i j     is negative, then the change in    y i    due to a change in    u i   , with all other loops open, will be in the opposite direction to the change in    y i    due to the same change in    u i   , with all other loops closed.








In conclusion, the pairing criteria for controller feedback signals and control locations based on ERGA are as follows: If    ϕ  i j     is closer to 1, the mutual interaction between different loops is smaller, and large values of    ϕ  i j     should be avoided, where    ϕ  i j     should be above zero.



It can be seen that ERGA, which takes into account both dynamic and static interactions at critical frequencies, has two advantages compared to RGA.




	
ERGA combines the bandwidth and steady-state gain of the transfer function to assess the mutual interactions between loops, making it more accurate than RGA.



	
ERGA only utilizes information from the open-loop transfer function, making it widely applicable to various types of controllers.









2.3. The Impact of Time Delay on the Static Coupling Degree Between Controllers


If the system shown in Figure 1 is a simple two-input, two-output system, under steady-state conditions,


    Δ  y 1  =  g  11   Δ  u 1  +  g  12   Δ  u 2      Δ  y 2  =  g  21   Δ  u 1  +  g  22   Δ  u 2     



(9)







If the delay is not considered for the feedback signal, the relative gain of the control loop    u 1  →  y 1    is


   λ  11   =     g  11    g  22      g  11    g  22   −  g  12    g  21       



(10)







If the delay is considered for the feedback signal, then we have   Δ  u 1 ’  =  e  − s  τ 1    Δ  u 1   ,   Δ  u 2 ’  =  e  − s  τ 2    Δ  u 2   , and the resulting relative gain of the control loop is


   λ  11  ’  =  λ  11    



(11)







Therefore, the delay in the feedback signal does not affect the static coupling degree between control loops.





3. The Damping Controller Design Method Based on Multi-Stage LQR


3.1. Linear Quadratic Optimal Control Theory [31]


Firstly, let us introduce the Linear Quadratic Optimal Control Theory and consider the following system:


   x ˙  = A x + B u  



(12)







In the equation,   x   is the n-dimensional state vector,   u   is the r-dimensional control vector, and   A   and   B   are n × n and n × m matrices, respectively.



Determine the optimal control vector K in (13) which minimizes the value of Equation (14).


   u = − K x   



(13)








    J =     ∫  0  ∞       x   T    Q x +    u   T    R u        d t    



(14)





In the equation,   Q   is a positive-definite (or semi-definite) Hermitian matrix or real symmetric matrix, and   R   is a positive-definite Hermitian matrix or real symmetric matrix.



Substituting Equation (13) into Equation (14), we obtain the following:


   J =     ∫  0  ∞       x   T    Q x +    x   T     K   T    R K x        d t =     ∫  0  ∞     x   T      Q +    K   T    R K     x      d t   



(15)







After a series of simplifications, we can obtain the following:


    A   T    P + P A +    [  T K −        T   T        − 1      B   T    P  ]   T   [  T K −        T   T        − 1      B   T    P  ]  − P B    R    − 1      B   T    P + Q = 0   



(16)







In the equation,   P   is a positive-definite Hermitian matrix or real symmetric matrix, and   T   is a non-singular matrix.



If     x   T     [  T K −        T   T        − 1      B   T    P  ]   T   [  T K −        T   T        − 1      B   T    P  ]  x    takes the minimum value, then   J   achieves the minimum value. Hence


   K =    T    − 1          T   T        − 1      B   T    P =    R    − 1      B   T    P   



(17)







Finally, by solving the Riccati equation     A   T    P + P A − P B    R    − 1      B   T    P + Q =  0  , the matrix   P   can be obtained.




3.2. The Design Principle of a Multi-Stage LQR


The design principle of the Multi-Stage LQR controller involves the concept of dominant states. When the system obtains gain values   K   through preset   Q  , and   R   matrices, these values are added to the system feedback. This process is repeated continuously until all states that have deviated from the expected values return to their desired levels. This iterative process of configuring the LQR controller at multiple stages continues until the controller’s performance meets the requirements. Once the desired performance is achieved, the repetition stops, and the Multi-Stage LQR controller is obtained.



(1) The first-stage LQR controller design.



Obtain the gain     K  1    based on the initial semi-definite matrix     Q  1    and the positive-definite matrix     R  1   .



After incorporating the feedback     K  1   , a new state matrix     A  1    is obtained, where     A  1   = A  −  B  ×   K  1   . By examining the eigenvalues of the matrix, the oscillation characteristics of the system can be observed. Based on these eigenvalues of     A  1   , the matrices     Q  2    and     R  2    for the next stage are established. In the formula, Q is a positive-definite (or semi-positive definite) Hermitian or real symmetric matrix, and R is a positive-definite Hermitian or real symmetric matrix. The second term is introduced to account for the energy cost of the control signal. The matrices Q and R determine the relative importance of the error and the energy cost. Usually, the Q and R can be set as the identity matrix.



(2) The second-Stage LQR controller design.



Based on the gain     K  1    obtained from step 1, the new system with feedback     K  1    is given by       A  1     ,      B  1     ,      C  1     ,      D  1     , where     A  1  =  A  −  B  ×   K  1   ,     B  1   = B   ,     C  1  =  C  −  D  ×   K  1   , and     D  1  =  D   . Using the LQR method, a new gain     K  2    = lqr  (   A  1  ,   B  1  ,   Q  2  ,   R  2  )   is obtained for the new system state–space representation, where     Q  2    and     R  2    are chosen based on the eigenvalues of     A  1   . This process is illustrated in Figure 2. Specifically, consider the following system:


          x ˙  =    A  1   x +    B  1   u         y =    C  1   x +    D  1   u         



(18)







Determine the optimal control vector     K  2    in Equation (19) and minimize the value in Equation (20).


   u = −    K  2   x   



(19)








     J  2   =     ∫  0  ∞       x   T     Q  2   x +    u   T     R  2   u        d t    



(20)





The second-stage gain     K  2    and the first-stage gain     K  1    together provide a larger feedback gain for the system, which not only satisfies the quadratic performance index but also moves the eigenvalues further away from the imaginary axis, thereby improving the system’s performance.



(3) The Multi-Stage LQR controller design.



Based on steps (1) and (2), we obtain     K  3    = lqr  (   A  2  ,   B  2  ,   Q  3  ,   R  3  )  , where     A  2  =   A  1  −   B  1  ×   K  2    is determined. From     K  3   , we derive     A  3  =   A  2  −   B  2  ×   K  3   . The number of iterations and the values of the semi-definite matrix     Q  4    and the positive-definite matrix     R  4    are then selected based on the oscillation characteristics indicated by the eigenvalues of     A  3   . It should be noted that this Multi-Stage LQR method does enhance the control method, but if the stages increase to three, the stable margin will be decreased. Such that the stages should better be below three.





4. Case Study


Based on actual power grid planning data, a power grid model is built in PSCAD 4.6 software [32], with the system topology shown in Figure 3. For the PSCAD model of the actual power grid, focusing on nodes 3 and 7 that directly affect the DC system, the surrounding power plants and loads that have a significant impact on these nodes are mainly retained on the DC rectifier side. On the DC inverter side, a constant voltage source is used to represent the external grid. The first DC line has a rated voltage of ±660 kV and a rated transmission power of 4000 MW, while the second DC line has a rated voltage of ±800 kV and a rated transmission power of 8000 MW. In this model, the selection and pairing of additional control signals are carried out, and the controller is designed accordingly.



4.1. Controllers Design and Control Loop Pairing


For the system shown in Figure 3, the steps for pairing the feedback signals of the additional damping controller with the control locations are as follows: Based on the analysis of system oscillation characteristics and the functional positioning of the controller, the feedback signals for the DC additional damping controller to suppress weak damping oscillations can be initially selected from the speed difference in the generators and the active power of the AC interconnection lines. And based on the DMR index, using the rotor speed deviation of plant 1, plant 2, plant 1, and plant 8 as the potential feedback signals for the DC additional damping controller can maximize the system damping for a unit control output of the controller.



The system’s damping controller will form a two-input, two-output system as shown in Figure 4. Based on the various initially selected pairing schemes for the additional damping control feedback signals, the TLS-ESPRIT algorithm is used to identify the transfer functions of the    u 1  →  y 1   ,    u 1  →  y 2   ,    u 2  →  y 1   , and    u 2  →  y 2    channels. To further select the suitable feedback signals, the ERGA matrix is then calculated to select the optimal pairing of feedback signals and control points. The ERGA calculation results can be found in the following Table 1.



From Table 1, it can be observed that the results obtained from the RGA (Relative Gain Array) index calculations are very close, making it almost impossible to compare the advantages and disadvantages of the two pairing schemes. However, the ERGA (Extended Relative Gain Array) index provides a clearer indication that the interaction between channel   Δ  ω 1  → Δ  u   HVDC 1      and   Δ  ω 6  → Δ  u   HVDC 2      is weaker than the other interaction channels. Therefore, the second pairing scheme for control locations and feedback signals is chosen, in which the transfer function G11, G12, G12, and G22 are as follows.


     G  11   =    − 0  . 0003276   s 7  + 0  . 09269   s 6  − 3.365  s 5  − 5.267  s 4  − 104.7  s 3  − 139.3  s 2  − 412 s − 199.2    s 7  + 12  . 89   s 6  + 104.8  s 5  + 915.1  s 4  + 2334  s 3  + 13020  s 2  + 9718 s + 2334         G  12   =    − 0  . 0002059   s 5  + 0.005939  s 4  − 0.002  s 3  + 0.2946  s 2  + 0.2175 s + 0.2282    s 5  + 2.241  s 4  + 77.19  s 3  + 97.17  s 2  + 1148 s + 787.3         G  21   =    2  . 43   s 7  + 770  . 25   s 6  − 46710  . 98   s 5  + 55389  . 3  0  s 4  − 1212098.34  s 3     s 7  + 17.54  s 6  + 276.89  s 5  + 1594.26  s 4  + 14906.31  s 3                  +    3051026.55  s 2  + 43381062.56 s + 22844722.23   29697.84  s 2  + 190725.98 s + 56845.00         G  22   =    3  . 303   s 4  − 7.509  s 3  − 18610  s 2  + 1025 s − 908800    s 4  + 15.54  s 3  + 480.8  s 2  + 468.2 s + 9141       












4.2. Case 1


In this case, at 0.5 s and 12 s, the current setpoint of the constant current controller on the rectifier side of DC line 1 is reduced from 1 p.u. to 0.98 p.u and added from 0.98 p.u. to 1.02 p.u, respectively. The suppression effects of low-frequency oscillations without any controller, with the well-paired Scheme (Power Plant 1—DC 1, Power Plant 6—DC 2), and with the poorly paired Scheme (Power Plant 2—DC 1, Power Plant 8—DC 2) are shown in Figure 3.



From Figure 5a,b, it can be observed that Scheme, which is a well-paired scheme, has better control performance than both the case with no control and the relatively poorly paired Scheme. Furthermore, the relatively poorly paired Scheme performs even worse than the case with no controller in subsequent oscillations, indicating that poor pairing leads to detrimental effects. This demonstrates that Scheme, with its poorly chosen pairing, has a negative control effect, thereby proving the importance and effectiveness of proper pairing.




4.3. Case 2


In this case, at the moments of 0.5 s and 12 s, the current setpoint of the constant current controller on the rectifier side of DC line 2 is reduced from 1 p.u. to 0.95 p.u. and then increased from 0.95 p.u. to 0.97 p.u., respectively. The suppression effects of low-frequency oscillations under three conditions—without any controller, with the well-paired Scheme (Power Plant 1—DC 1, Power Plant 6—DC 2), and with the poorly paired Scheme (originally Power Plant 2—DC 1, Power Plant 8—DC 2)—are illustrated in Figure 6.



From Figure 6a,b, it is evident that Scheme, which is a well-paired control scheme, exhibits superior control performance compared to both the case with no control and the relatively poorly paired Scheme. Furthermore, Scheme, with its suboptimal pairing, performs even worse than having no controller at all during subsequent oscillations, leading to a more hazardous situation. This aligns with the findings from Scenario 1, where the poorly paired Scheme also demonstrated a negative control effect. Together, these results underscore the importance and effectiveness of proper pairing in control system design.



The simulation results from both Scenario 1 and Scenario 2 consistently show that well-paired Scheme outperforms poor paired Scheme, further validating the correctness of the signal pairing. This confirms that the choice of pairing significantly impacts the control performance and stability of the system. Therefore, careful consideration and analysis are crucial in selecting the appropriate pairing to achieve optimal control effects and ensure system safety.




4.4. Case 3


At the time points of 0.5 s and 12 s, load fluctuations and a 0.02 s single-phase short-circuit to ground fault were introduced at the converter bus on the DC1 rectifier side. The suppression effect of low-frequency oscillation before and after the controller was added is shown in Figure 7.



As can be seen from Figure 7a,b, for the single-phase short-circuit to ground fault, the low-frequency oscillation is significantly suppressed after the controller is added, indicating that the controller has a good effect on large disturbances.





5. Conclusions


Based on the analysis above, the contribution of this work can be concluded as follows:




	
This paper primarily discusses the application of the control method based on the Extended Relative Gain Array (ERGA) in the analysis of interactions between AC and DC systems. By utilizing the proposed ERGA index, this paper aims to identify pairing strategies that minimize the interactive influences between different loops, thereby reducing the adverse effects among controllers.



	
The ERGA method provides a systematic approach to quantify the interactions between control loops in a multi-input, multi-output (MIMO) system. Through the calculation of the ERGA index, which reflects the relative gain changes between loops when one loop is perturbed, this paper identifies pairs of control loops that exhibit minimal cross-coupling. This allows for the design of controllers that are less susceptible to interference from other loops, leading to improved system stability and performance.



	
By selecting pairing strategies based on the ERGA index, the paper demonstrates that it is possible to significantly reduce the interactions between AC and DC systems, mitigating the negative impacts of controller interference. This approach is particularly relevant in complex power systems, where the interactions between different components can have significant effects on system stability and performance.



	
Simultaneously, a comparison of pairing schemes based on simulations demonstrates that the optimal pairing scheme exhibits significantly better control performance for low-frequency oscillations than both the case with no control and the poorer pairing schemes, thereby verifying the optimality of the method. Furthermore, various disturbances are introduced to validate the effectiveness and robustness of the control strategy proposed in this chapter for mitigating low-frequency oscillations.



	
Overall, this paper highlights the importance of considering interactions between control loops in the design of control systems for AC and DC systems. The proposed ERGA-based method provides a practical and effective tool for identifying optimal pairing strategies and improving system performance.
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Figure 2. Second-Stage LQR feedback control system. 
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Figure 3. The system for the case study. 
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Figure 4. Two-input/two-output closed-loop control system. 
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Figure 5. The control effects in different control situations. 
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Figure 6. The control effects in different control situations. 
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Figure 7. The control effects in different control situations. 
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Table 1. ERGA calculation results.






Table 1. ERGA calculation results.





	Paring Scheme
	RGA Value
	ERGA Value





	         Δ  y  Δ  ω 2          Δ  y  Δ  ω 6          =        G  11        G  12          G  21        G  22               Δ  ω 2        Δ  ω 6          
	         1.0137     − 0.0137       − 0.0137     1.0137         
	         1.0244     − 0.0244       − 0.0244     1.0244         



	         Δ  y  Δ  ω 1          Δ  y  Δ  ω 6          =        G  11        G  12          G  21        G  22               Δ  ω 1        Δ  ω 6          
	         1.0136     − 0.0136       − 0.0136     1.0136         
	         1.0012     − 0.0012       − 0.0012     1.0012         



	         Δ  y  Δ  ω 1          Δ  y  Δ  ω 8          =        G  11        G  12          G  21        G  22               Δ  ω 1        Δ  ω 8          
	         1.0138     − 0.0138       − 0.0138     1.0138         
	         1.0142     − 0.0142       − 0.0142     1.0142         



	         Δ  y  Δ  ω 2          Δ  y  Δ  ω 8          =        G  11        G  12          G  21        G  22               Δ  ω 2        Δ  ω 8          
	         1.0355     − 0.0355       − 0.0355     1.0355         
	         1.0754     − 0.0754       − 0.0754     1.0754         
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