
Citation: Raciborski, M.; Cariow, A.;

Bandach, J. The Development of Fast

DST-I Algorithms for Short-Length

Input Sequences. Electronics 2024, 13,

5056. https://doi.org/10.3390/

electronics13245056

Academic Editor: Costas Psychalinos

Received: 30 November 2024

Revised: 17 December 2024

Accepted: 18 December 2024

Published: 23 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Development of Fast DST-I Algorithms for Short-Length
Input Sequences
Mateusz Raciborski 1,* , Aleksandr Cariow 2,* and Jakub Bandach 2

1 Faculty of Computer Science and Telecommunications, Maritime University of Szczecin, Wały Chrobrego 1-2,
70-500 Szczecin, Poland

2 Faculty of Computer Science and Information Technology, West Pomeranian University of Technology,
Żołnierska 49, 71-210 Szczecin, Poland

* Correspondence: m.raciborski@pm.szczecin.pl (M.R.); atariov@wi.zut.edu.pl (A.C.)

Abstract: The subject of this paper is the development of rationalized algorithms of discrete sinu-
soidal transform of type I for short sequences of length N = 2, 3, 4, 5, 6, 7, and 8. Here, by the
word “rationalization”, we mean the reduction of the number of arithmetic operations required
to implement the algorithms. The arithmetic complexity of the developed algorithms is presented
in the final table. For each algorithm, we also provide data flow graphs demonstrating the space–time
structure of the computational processes. The algorithms were tested to verify their validity using
MATLAB software (version R2023).

Keywords: complexity theory; digital signal processing; discrete sine transform; DST-I; matrix
decomposition; signal processing algorithms

1. Introduction

Discrete trigonometric (sine and cosine) transforms [1–3] are used today in many
digital signal processing applications [4–15]. There are eight types of cosine and eight types
of sine transforms. A list of all 16 types of discrete cosine and sine transforms can be found,
for example, in [3,16]. Undoubtedly, the most popular are discrete cosine transforms.
Discrete sine transforms are less popular. Nevertheless, many articles are devoted to the use
of discrete sine transforms [2]. It is well known that any linear transform can be represented
as a matrix–vector product. Computing this product directly takes a long time because
the multiplicative complexity of this operation is proportional to the square of the order
of the matrix. Multiplication is the most expensive of all arithmetic operations, apart from
division, and therefore, developers of efficient algorithms are focused on reducing the
number of multiplication operations. Traditionally, algorithms with reduced computational
complexity are called fast algorithms. Over five decades, many fast algorithms for the
efficient computation of one-/two-dimensional discrete trigonometric transform have been
developed [17–24].

Among other things, the development of efficient algorithms for the implementa-
tion of small-sized discrete trigonometric transforms is of particular interest. Algorithms
for some types of small-size discrete trigonometric transforms have already been devel-
oped [25–28]. Among other discrete trigonometric transforms, the discrete sine transform
type I (DST-I) [29] is also an important tool in signal analysis and data processing, such
as noise estimation and image denoising [5,6], discrete multi-tone systems [4,30,31], audio
watermarking [11], EEG signal classification [12], and noisy speech enhancement [32], and
others [33,34]. However, the purpose of our paper is not to justify the application of DST-I.
We believe that since it has been defined, its feasibility has already been proven and is be-
yond doubt [2]. We focus on rationalizing the computation of this transform for the case
of short input data sequence lengths. Thus, this paper is devoted to the design of DST-I

Electronics 2024, 13, 5056. https://doi.org/10.3390/electronics13245056 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13245056
https://doi.org/10.3390/electronics13245056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5298-6719
https://orcid.org/0000-0002-4513-4593
https://doi.org/10.3390/electronics13245056
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13245056?type=check_update&version=3

Electronics 2024, 13, 5056 2 of 22

algorithms with reduced multiplicative complexity for input data sequences of length
N = 2, 3, 4, 5, 6, 7, 8.

2. Materials and Methods

First, we would like to present the sources we used while working on the solutions for
the discrete sine transform type I (DST-I) algorithms presented here. We believe that they
will help us better understand the essence of DST-I and the methodology for constructing
our solutions.

DFT, DCT, MDCT, DST, and Fourier spectrum analysis of the signal were performed
in [35]. An excellent description of the DCT and DST digital signal processing algorithms
has been provided by Nirajan Pant [36]. An extensive description of the different types
of DFT, DCT, and DST was given by Perera [37]. The paper in [38] presents a systematic
methodology for deriving and classifying fast algorithms for linear transformations.

Our methodology, which we use to achieve the solutions presented in this paper, is
based on specific matrix structures. These structures are included in “Table 3. The specific
structures of N × N matrix patterns” in the paper [39]. Our research work is to analyze the
matrix that we want to rationalize, and then set the values in that matrix so that the best
possible matrix pattern can be applied to it.

Moreover, in the literature on the subject, we found many different ways of writing
the expression for DST-I [3,18,40–42]. We found the DST-I notation method most similar
to the one we use in the work of [43]. So, DST-I can be expressed as follows:

yk =

√
2

N + 1

N−1

∑
n=0

xn sin
(

π(k + 1)(n + 1)
N + 1

)
(1)

where
k = 0, 1, . . . , N − 1,
yk—the output data after performing DST-I,
xn—input data, and
N—number of signal samples.

Using matrix notation, we can write DST-I as follows:

YYYN×1 = CCCNXXXN×1 (2)

where
YYYN×1 = [y0, y1, ..., yN−1]

T, XXXN×1 = [x0, x1, ..., xN−1]
T,

CCCN =

c0,0 c0,1 · · · c0,N−1
c1,0 c1,1 · · · c1,N−1

...
...

. . .
...

cN−1,0 cN−1,1 · · · cN−1,N−1

, (3)

ck,n =

√
2

N + 1
sin

(
π(k + 1)(n + 1)

N + 1

)
, for k, n = 0, 1, . . . , N − 1. (4)

DST-I in matrix notation is as takes after

y0
y1
...

yN−1

 =

√
2

N + 1

sin
(

π
N+1

)
sin

(2π
N+1

)
· · · sin

(
Nπ

N+1

)
sin

(2π
N+1

)
sin

(
4π

N+1

)
· · · sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
· · · sin

(
N2π
N+1

)

x0
x1
...

xN−1

. (5)

We use the following notation in our work: [39,44]:

• IN—is an order N identity matrix;

Electronics 2024, 13, 5056 3 of 22

• H2—a 2×2 Hadamard matrix;
• ⊗—the Kronecker product of two matrices; and
• ⊕—direct sum of two matrices.

An empty cell in matrix means that there is a zero there. Multipliers are denoted
as s(N)

m . In the graphs, we do not enter a superscript in order to maintain their clarity
and elegance.

3. Two-Point DST-I Solution

The following is the matrix form expression for two-point DST-I:

YYY2×1 = CCC2XXX2×1 (6)

where
YYY2×1 = [y0, y1]

T, XXX2×1 = [x0, x1]
T,

CCC2 =

[
a2 a2
a2 −a2

]
, a2 = 0.7071.

Presently, we are able determine the final expression for DST-I for N = 2:

YYY2×1 = HHH2DDD(0)
2 XXX2×1 (7)

where

HHH2 =

[
1 1
1 −1

]
, DDD(0)

2 = diag
(

s(2)0 , s(2)1

)
, s(2)0 = s(2)1 = a2.

The data flow graph for our solution for two-point DST-I is shown in Figure 1.
The naive, direct computation requires 2 additions and 4 multiplications. As can be ob-
served, our solution uses 2 additions and 2 multiplications, reducing the number of multi-
plications from 4 to 2.

Figure 1. The proposed solution’s data flow graph for two-point DST-I computation.

4. Three-Point DST-I Solution

The following is the matrix form expression for three-point DST-I:

YYY3×1 = CCC3XXX3×1 (8)

where
YYY3×1 = [y0, y1, y2]

T, XXX3×1 = [x0, x1, x2]
T,

CCC3 =

 a3 b3 a3
b3 0 −b3
a3 −b3 a3

, a3 = 0.5, b3 = 0.7071.

Now, we will divide the matrix CCC3 into two parts:

CCC3 = CCC(a)
3 +CCC(b)

3 (9)

where

CCC(a)
3 =

 a3 a3

a3 a3

, CCC(b)
3 =

 b3
b3 −b3

−b3

.

Electronics 2024, 13, 5056 4 of 22

Matrix CCC(a)
3 after omitting terms equal to zero is as takes after

CCC′
2 =

[
a3 a3
a3 a3

]
. (10)

Presently, we are able determine the final expression for DST-I for N = 3:

YYY3×1 = WWW(1)
3 DDD3WWW(0)

3 XXX3×1 (11)

where

WWW(0)
3 =

 1 1
1

1 −1

, DDD3 = diag
(

s(3)0 , s(3)1 , s(3)2

)
,

s(3)0 = a3, s(3)1 = s(3)2 = b3, WWW(1)
3 =

 1 1
1

1 −1

.

The data flow graph for our solution for three-point DST-I is shown in Figure 2.
The naive, direct computation requires 5 additions and 4 multiplications. As can be ob-
served, our solution uses 4 additions and 2 multiplications, reducing the number of addi-
tions from 5 to 4 and the number of multiplications from 4 to 2.

Figure 2. The proposed solution’s data flow graph for three-point DST-I computation.

5. Four-Point DST-I Solution

The following is the matrix form expression for four-point DST-I:

YYY4×1 = CCC4XXX4×1 (12)

where

YYY4×1 = [y0, y1, y2, y3]
T,

XXX4×1 = [x0, x1, x2, x3]
T,

CCC4 =

a4 b4 b4 a4
b4 a4 −a4 −b4
b4 −a4 −a4 b4
a4 −b4 b4 −a4

,
a4 = 0.3717,

b4 = 0.6015.

Now, we swap the columns and rows in matrix CCC4 to group the a4 and b4 terms so that
the obtained matrix is consistent with the matrix pattern [39]:[

AAA2 BBB2
BBB2 −AAA2

]
where AAA2 =

[
a4 a4
a4 −a4

]
, BBB2 =

[
b4 b4
b4 −b4

]
.

This is accomplished by the permutation π
(0)
4 :

π
(0)
4 =

(
1 2 3 4
1 4 3 2

)
. (13)

Considering this, we may obtain the following expression for the first stage of decom-
position:

YYY4×1 = PPP
(π

(0)
4)

4 WWW4×6DDD(0)
6 WWW6×4PPP

(π
(0)
4)

4 XXX4×1 (14)

Electronics 2024, 13, 5056 5 of 22

where

PPP
(π

(0)
4)

4 =

1

1
1

1

, WWW6×4 =

1
1

1
1

1 1
1 1

,

DDD(0)
6 =

 FFF2
GGG2

BBB2

, FFF2 = AAA2 −BBB2, GGG2 = −AAA2 −BBB2,

WWW4×6 =

1 1

1 1
1 1

1 1

.

The matrices FFF2 and GGG2 take after

FFF2 =

[
a4 − b4 a4 − b4
a4 − b4 −a4 + b4

]
, GGG2 =

[
−a4 − b4 −a4 − b4
−a4 − b4 a4 + b4

]
.

As we can see above, these matrices do not require any operations to reduce complexity,
because they both follow this pattern: [

a a
a −a

]
.

Presently, we are able determine the final expression for DST-I for N = 4:

YYY4×1 = PPP
(π

(0)
4)

4 WWW4×6DDD(1)
6 WWW(0)

6 WWW6×4PPP
(π

(0)
4)

4 XXX4×1 (15)

where

WWW(0)
6 = HHH2 ⊕HHH2 ⊕HHH2 =

 HHH2
HHH2

HHH2

, DDD(1)
6 = diag

(
s(4)0 , s(4)1 , ..., s(4)5

)
,

s(4)0 = s(4)1 = a4 − b4, s(4)2 = s(4)3 = −a4 − b4, s(4)4 = s(4)5 = b4.

The data flow graph for our solution for four-point DST-I is shown in Figure 3.
The naive, direct computation requires 12 additions and 16 multiplications. As can be ob-
served, our solution uses 12 additions and 6 multiplications, reducing the number of multi-
plications from 16 to 6.

Figure 3. The proposed solution’s data flow graph for four-point DST-I computation.

Electronics 2024, 13, 5056 6 of 22

6. Five-Point DST-I Solution

The following is the matrix form expression for five-point DST-I:

YYY5×1 = CCC5XXX5×1 (16)

where
YYY5×1 = [y0, y1, y2, y3, y4]

T, XXX5×1 = [x0, x1, x2, x3, x4]
T,

CCC5 =

a5 b5 c5 b5 a5
b5 b5 0 −b5 −b5
c5 0 −c5 0 c5
b5 −b5 0 b5 −b5
a5 −b5 c5 −b5 a5

,

a5 = 0.2887,

b5 = 0.5,

c5 = 0.5774.

Now, we swap the columns and rows in matrix CCC5 to be able to perform operations
that are beneficial to us. This is accomplished by the permutation π

(0)
5 for the columns and

permutation π
(1)
5 for the rows:

π
(0)
5 =

(
1 2 3 4 5
1 5 3 4 2

)
, π

(1)
5 =

(
1 2 3 4 5
1 4 3 5 2

)
. (17)

After permutations, we divide the matrix CCC5 into two parts:

CCC5 = CCC(a)
5 +CCC(b)

5 (18)

where

CCC(a)
5 =

a5 a5 b5 b5
b5 −b5 b5 −b5

a5 a5 −b5 −b5
b5 −b5 −b5 b5

, CCC(b)
5 =

c5

c5 c5 −c5
c5

.

The matrix CCC(a)
5 after omitting terms equal to zero is as follows:

CCC4 =

a5 a5 b5 b5
b5 −b5 b5 −b5
a5 a5 −b5 −b5
b5 −b5 −b5 b5

.

The matrix CCC4 matches the matrix pattern:[
AAA2 BBB2
AAA2 −BBB2

]
where AAA2 =

[
a5 a5
b5 −b5

]
, BBB2 =

[
b5 b5
b5 −b5

]
.

Having stated this, we can write down the following expression for the first stage
of rationalization:

YYY5×1 = PPP
(π

(1)
5)

5 WWW5×7WWW7×6DDD(2)
6 WWW6×7WWW(0)

7×5PPP
(π

(0)
5)

5 XXX5×1 (19)

where

Electronics 2024, 13, 5056 7 of 22

PPP
(π

(0)
5)

5 =

1

1
1

1
1

, WWW(0)
7×5 =

1
1

1
1

1
1

1

,

WWW6×7 =

 III4
1

1 1 −1

, DDD(2)
6 =

AAA2

BBB2
c5

c5

, WWW7×6 =

WWW4

1
1

1

,

WWW4 = HHH2 ⊗ III2, WWW5×7 =

1 1

1
1

1 1
1

, PPP
(π

(1)
5)

5 =

1

1
1

1
1

.

Next, matrices AAA2 and BBB2 have structures that correspond to matrix patterns that are
beneficial to us. We will immediately derive the final expression for DST-I for N = 5:

YYY5×1 = PPP
(π

(1)
5)

5 WWW5×7WWW7×6DDD(3)
6 WWW(1)

6 WWW6×7WWW(0)
7×5PPP

(π
(0)
5)

5 XXX5×1 (20)

where

WWW(1)
6 =

 HHH2
HHH2

III2

, DDD(3)
6 = diag

(
s(5)0 , s(5)1 , ..., s(5)5

)
,

s(5)0 = a5, s(5)1 = s(5)2 = s(5)3 = b5, s(5)4 = s(5)5 = c5.

The data flow graph for our solution for five-point DST-I is shown in Figure 4.
The naive, direct computation requires 16 additions and 9 multiplications. As can be ob-
served, our solution uses 12 additions and 3 multiplications, reducing the number of addi-
tions from 16 to 12 and the number of multiplications from 9 to 3.

Figure 4. The proposed solution’s data flow graph for five-point DST-I computation.

7. Six-Point DST-I Solution

The following is the matrix form expression for six-point DST-I:

YYY6×1 = CCC6XXX6×1 (21)

Electronics 2024, 13, 5056 8 of 22

where
YYY6×1 = [y0, y1, y2, y3, y4, y5]

T, XXX6×1 = [x0, x1, x2, x3, x4, x5]
T,

CCC6 =

a6 b6 c6 c6 b6 a6
b6 c6 a6 −a6 −c6 −b6
c6 a6 −b6 −b6 a6 c6
c6 −a6 −b6 b6 a6 −c6
b6 −c6 a6 a6 −c6 b6
a6 −b6 c6 −c6 b6 −a6

,

a6 = 0.2319,

b6 = 0.4179,

c6 = 0.5211.

Now, we swap the columns and rows in matrix CCC6 to match the matrix pattern:

[
AAA3 AAA3
BBB3 −BBB3

]
where AAA3 =

 a6 b6 c6
b6 −c6 a6
c6 a6 −b6

, BBB3 =

 c6 −a6 −b6
b6 c6 a6
a6 −b6 c6

.

This is accomplished by the permutation π
(0)
6 for the columns and permutation π

(1)
6 for

the rows:

π
(0)
6 =

(
1 2 3 4 5 6
1 2 3 6 5 4

)
, π

(1)
6 =

(
1 2 3 4 5 6
1 5 3 4 2 6

)
. (22)

Considering this, we may obtain the following expression for the first stage of decom-
position:

YYY6×1 = PPP
(π

(1)
6)

6 DDD(4)
6 WWW(2)

6 PPP
(π

(0)
6)

6 XXX6×1 (23)

where

PPP
(π

(0)
6)

6 =

III3

1
1

1

,

WWW(2)
6 = HHH2 ⊗ III3,

DDD(4)
6 = AAA3 ⊕BBB3,

PPP
(π

(1)
6)

6 =

1
1

1
1

1
1

.

Now, we focus on the matrices AAA3 and BBB3. We define the permutation π
(0)
3 as follows:

π
(0)
3 =

(
1 2 3
1 3 2

)
. (24)

Now, we swap the rows in matrix AAA3 using the π
(0)
3 permutation. Furthermore, we will

change the signs in the first column and first row of this matrix. After these operations, the
matrix has the following form:

AAA′
3 =

 a6 −c6 −b6
−b6 a6 −c6
−c6 −b6 a6

.

Next, we apply a circular convolution [44] to the AAA′
3 matrix. Below are the expressions

to calculate the circular convolution values for a matrix of size 3. h0 h2 h1
h1 h0 h2
h2 h1 h0

,
s0 = 1

3 (h0 + h1 + h2), s2 = h1 − h2,

s1 = h0 − h2, s3 = 1
3 (h0 + h1 − 2h2).

Electronics 2024, 13, 5056 9 of 22

So, for AAA′
3, we have

s(6)0 =
a6 − c6 − b6

3
, s(6)1 = a6 + c6, s(6)2 = −b6 + c6, s(6)3 =

a6 − b6 + 2c6

3
. (25)

The calculation procedure for matrix AAA3 is as follows:

AAA3 = PPP(1)
3 TTT(1)

3 AAA3×4DDD(0)
4 AAA4×3TTT(0)

3 PPP(0)
3 (26)

where

PPP(0)
3 =

 −1
1

1

, TTT(0)
3 =

 1 1 1
1 −1

1 −1

, AAA4×3 =

1

1
1

1 1

,

DDD(0)
4 = diag

(
s(6)0 , s(6)1 , s(6)2 , s(6)3

)
, AAA3×4 =

 1
1 −1

1 −1

,

TTT(1)
3 =

 1 1
1 −1 −1
1 1

, PPP(1)
3 =

 −1
1

1

.

In the matrix BBB3, we will change the signs in the third column and third row. After
these operations, the matrix has the following form:

BBB′
3 =

 c6 −a6 b6
b6 c6 −a6
−a6 b6 c6

.

And again, a circular convolution matrix will be used:

s(6)4 =
c6 + b6 − a6

3
, s(6)5 = c6 + a6, s(6)6 = b6 + a6, s(6)7 =

c6 + b6 + 2a6

3
. (27)

The calculation procedure for matrix BBB3 is as follows:

BBB3 = PPP(2)
3 TTT(1)

3 AAA3×4DDD(1)
4 AAA4×3TTT(0)

3 PPP(2)
3 (28)

where

PPP(2)
3 =

 1
1

−1

, DDD(1)
4 = diag

(
s(6)4 , s(6)5 , s(6)6 , s(6)7

)
.

In regard to this, we can determine the final expression for DST-I for N = 6:

YYY6×1 = PPP
(π

(1)
6)

6 PPP(2)
6 AAA(2)

6 AAA6×8DDD(0)
8 AAA8×6AAA(1)

6 PPP(1)
6 WWW(2)

6 PPP
(π

(0)
6)

6 XXX6×1 (29)

where

PPP(1)
6 =

[
PPP(0)

3

PPP(2)
3

]
, AAA(1)

6 =

[
TTT(0)

3

TTT(0)
3

]
, AAA8×6 =

[
AAA4×3

AAA4×3

]
,

DDD(0)
8 =

[
DDD(0)

4

DDD(1)
4

]
, AAA6×8 =

[
AAA3×4

AAA3×4

]
, AAA(2)

6 =

[
TTT(1)

3

TTT(1)
3

]
,

Electronics 2024, 13, 5056 10 of 22

PPP(2)
6 =

[
PPP(1)

3

PPP(2)
3

]
.

The data flow graph for our solution for six-point DST-I is shown in Figure 5. The naive,
direct computation requires 30 additions and 36 multiplications. As can be observed, our
solution uses 28 additions and 8 multiplications, reducing the number of additions from 30
to 28 and the number of multiplications from 36 to 8.

Figure 5. The proposed solution’s data flow graph for six-point DST-I computation.

8. Seven-Point DST-I Solution

The following is the matrix form expression for seven-point DST-I:

YYY7×1 = CCC7XXX7×1 (30)

Electronics 2024, 13, 5056 11 of 22

where
YYY7×1 = [y0, y1, y2, y3, y4, y5, y6]

T, XXX7×1 = [x0, x1, x2, x3, x4, x5, x6]
T,

CCC7 =

a7 b7 c7 d7 c7 b7 a7
b7 d7 b7 0 −b7 −d7 −b7
c7 b7 −a7 −d7 −a7 b7 c7
d7 0 −d7 0 d7 0 −d7
c7 −b7 −a7 d7 −a7 −b7 c7
b7 −d7 b7 0 −b7 d7 −b7
a7 −b7 c7 −d7 c7 −b7 a7

,

a7 = 0.1913,

b7 = 0.3536,

c7 = 0.4619,

d7 = 0.5.

Now, we swap the columns and rows in matrix CCC7. For this purpose, we define the
permutation π

(0)
7 and π

(1)
7 as follows:

π
(0)
7 =

(
1 2 3 4 5 6 7
1 6 3 4 7 2 5

)
, π

(1)
7 =

(
1 2 3 4 5 6 7
1 2 3 4 7 6 5

)
. (31)

Permute columns of matrix CCC7 according to π
(0)
7 and rows according to π

(1)
7 . Moreover,

we need to change the sign in row 6 and sign in column 2. These operations are described
as follows:

CCC′
7 = PPP

(π
(1)
7)

7 PPP(1)
7 CCC7

(
PPP
(π

(0)
7)

7 PPP(0)
7

)T

(32)

where

PPP(0)
7 =

1
−1

1
1

1
1

1

, PPP

(π
(0)
7)

7 =

1
1

1
1

1
1

1

,

PPP(1)
7 =

1
1

1
1

1
−1

1

, PPP

(π
(1)
7)

7 =

1
1

1
1

1
1

1

,

The matrix CCC′
7 is as takes after:

CCC′
7 =

a7 b7 c7 d7 a7 −b7 c7
b7 −d7 b7 −b7 −d7 −b7
c7 b7 −a7 −d7 c7 −b7 −a7
d7 −d7 −d7 d7
a7 −b7 c7 −d7 a7 b7 c7
−b7 −d7 −b7 b7 −d7 b7
c7 −b7 −a7 d7 c7 b7 −a7

.

Now we will divide the matrix CCC′
7 into two parts:

CCC′
7 = CCC(a)

7 +CCC(b)
7 (33)

Electronics 2024, 13, 5056 12 of 22

where

CCC(a)
7 =

a7 b7 c7 a7 −b7 c7
b7 −d7 b7 −b7 −d7 −b7
c7 b7 −a7 c7 −b7 −a7

a7 −b7 c7 a7 b7 c7
−b7 −d7 −b7 b7 −d7 b7
c7 −b7 −a7 c7 b7 −a7

,

CCC(b)
7 =

d7

−d7
d7 −d7 −d7 d7

−d7

d7

.

The matrix CCC(b)
7 has one element in the first, third, fifth, and seventh rows and four

elements with the same value in the fourth row, which allows us to reduce the number
of operations without the need for further transformations. The matrix CCC(a)

7 after removing
terms equal to zero is as follows:

CCC6 =

a7 b7 c7 a7 −b7 c7
b7 −d7 b7 −b7 −d7 −b7
c7 b7 −a7 c7 −b7 −a7
a7 −b7 c7 a7 b7 c7
−b7 −d7 −b7 b7 −d7 b7
c7 −b7 −a7 c7 b7 −a7

.

Now, we can see that the matrix CCC6 matches the following matrix pattern:[
AAA3 BBB3
BBB3 AAA3

]
where

AAA3 =

 a7 b7 c7
b7 −d7 b7
c7 b7 −a7

, BBB3 =

 a7 −b7 c7
−b7 −d7 −b7
c7 −b7 −a7

.

Considering this, we may obtain the following expression for the first stage of decom-
position:

YYY7×1 = PPP
(π

(1)
7)

7 PPP(1)
7 WWW7×11WWW11×8DDD(1)

8 WWW8×11WWW11×7PPP
(π

(0)
7)

7 PPP(0)
7 XXX7×1 (34)

where

WWW11×7 =

1
1

1
1

1
1

1
1

1
1

1

,

WWW8×11 =

 HHH2 ⊗ III3
1

1 −1 −1 1

,

DDD(1)
8 =

FFF3

GGG3
d7

d7

,

FFF3 = (AAA3 +BBB3)/2, GGG3 = (AAA3 −BBB3)/2,

Electronics 2024, 13, 5056 13 of 22

WWW11×8 =

HHH2 ⊗ III3
1
−1

1
−1
1

, WWW7×11 =

1 1
1

1 1
1

1 1
1

1 1

.

The matrices FFF3 and GGG3 are as takes after:

FFF3 =

 a7 b7 c7
b7 −d7 b7
c7 b7 −a7

+

 a7 −b7 c7
−b7 −d7 −b7
c7 −b7 −a7

2

=

 a7 c7
−d7

c7 −a7

, (35)

GGG3 =

 a7 b7 c7
b7 −d7 b7
c7 b7 −a7

−

 a7 −b7 c7
−b7 −d7 −b7
c7 −b7 −a7

2

=

 b7
b7 b7

b7

. (36)

Now, we will divide the matrix FFF3 into two parts:

FFF3 = FFF(a)
3 +FFF(b)

3 (37)

where

FFF(a)
3 =

 a7 c7

c7 −a7

, FFF(b)
3 =

 −d7

.

The matrix FFF(a)
3 after removing terms equal to zero is as follows:

FFF2 =

[
a7 c7
c7 −a7

]
and matches the matrix pattern

[
a b
b −a

]
.

The calculation procedure for matrix FFF3 is as follows:

FFF3 = WWW3×4DDD(2)
4 WWW4×3 (38)

where

WWW4×3 =

1

1
1 1

1

, DDD(2)
4 = diag

(
s(7)0 , s(7)1 , s(7)2 , s(7)3

)
, s(7)0 = a7 − c7,

s(7)1 = −a7 − c7, s(7)2 = c7, s(7)3 = −d7, WWW3×4 =

 1 1
1

1 1

.

The calculation procedure for matrix GGG3 is as follows:

GGG3 = WWW3×2DDD(1)
2 WWW2×3 (39)

Electronics 2024, 13, 5056 14 of 22

where

WWW2×3 =

[
1 1

1

]
, DDD(1)

2 = diag
(

s(7)4 , s(7)5

)
, s(7)4 = s(7)5 = b7, WWW3×2 =

 1
1

1

.

In regard to this, we can determine the final expression for DST-I for N = 7:

YYY7×1 = PPP
(π

(1)
7)

7 PPP(1)
7 WWW7×11WWW11×8WWW(1)

8 DDD(2)
8 WWW(0)

8 WWW8×11WWW11×7PPP
(π

(0)
7)

7 PPP(0)
7 XXX7×1 (40)

where

WWW(0)
8 =

 WWW4×3
WWW2×3

III2

, DDD(2)
8 =

 DDD(2)
4

DDD(1)
2

DDD(2)
2

,

DDD(2)
2 = diag

(
s(7)6 , s(7)7

)
, s(7)6 = s(7)7 = d7, WWW(1)

8 =

 WWW3×4
WWW3×2

III2

.

The data flow graph for our solution for seven-point DST-I is shown in Figure 6.
The naive, direct computation requires 37 additions and 32 multiplications. As can be ob-
served, our solution uses 23 additions and 5 multiplications, reducing the number of addi-
tions from 37 to 23 and the number of multiplications from 32 to 5.

Figure 6. The proposed solution’s data flow graph for seven-point DST-I computation.

9. Eight-Point DST-I Solution

The following is the matrix form expression for eight-point DST-I:

YYY8×1 = CCC8XXX8×1 (41)

Electronics 2024, 13, 5056 15 of 22

where

YYY8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]
T, XXX8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]

T,

CCC8 =

a8 b8 c8 d8 d8 c8 b8 a8
b8 d8 c8 a8 −a8 −c8 −d8 −b8
c8 c8 0 −c8 −c8 0 c8 c8
d8 a8 −c8 −b8 b8 c8 −a8 −d8
d8 −a8 −c8 b8 b8 −c8 −a8 d8
c8 −c8 0 c8 −c8 0 c8 −c8
b8 −d8 c8 −a8 −a8 c8 −d8 b8
a8 −b8 c8 −d8 d8 −c8 b8 −a8

,

a8 = 0.1612,

b8 = 0.3030,

c8 = 0.4082,

d8 = 0.4642.

Now, we swap the columns and rows in matrix CCC8 to match the following matrix
pattern: [

AAA4 AAA4
BBB4 −BBB4

]
where

AAA4 =

a8 b8 c8 d8
b8 −d8 c8 −a8
c8 c8 0 −c8
d8 −a8 −c8 b8

, BBB4 =

d8 a8 −c8 −b8
c8 −c8 0 c8
b8 d8 c8 a8
a8 −b8 c8 −d8

.

This is accomplished by the permutation π
(0)
8 for the columns and permutation π

(1)
8 for

the rows:

π
(0)
8 =

(
1 2 3 4 5 6 7 8
1 2 3 4 8 7 6 5

)
, π

(1)
8 =

(
1 2 3 4 5 6 7 8
1 7 3 5 4 6 2 8

)
. (42)

Considering this, we may obtain the following expression for the first stage of decom-
position:

YYY8×1 = PPP
(π

(1)
8)

8 DDD(3)
8 WWW(2)

8 PPP
(π

(0)
8)

8 XXX8×1 (43)

where

PPP
(π

(0)
8)

8 =

III4

1
1

1
1

,
WWW(2)

8 = HHH2 ⊗ III4,

DDD(3)
8 = AAA4 ⊕BBB4,

PPP
(π

(1)
8)

8 =

1
1

1
1

1
1

1
1

.

Electronics 2024, 13, 5056 16 of 22

Now, we will deal with matrices AAA4 and BBB4. Permute rows of AAA4 according to π
(0)
4 ,

change the sign in row 1 and 4 and change the sign in column 4. These operations are
described in the expression below:

AAA′
4 = PPP(1)

4 PPP
(π

(0)
4)

4 AAA4PPP(0)
4 (44)

where

PPP(0)
4 =

1

1
1

−1

, PPP
(π

(0)
4)

4 =

1

1
1

1

, PPP(1)
4 =

−1

1
1

−1

.

As a result of the above Equation (44), matrix AAA′
4 looks like the following:

AAA′
4 =

−a8 −b8 −c8 d8
d8 −a8 −c8 −b8
c8 c8 0 c8
−b8 d8 −c8 −a8

.

Now, we will divide the matrix AAA′
4 into two parts:

AAA′
4 = AAA(a)

4 +AAA(b)
4 (45)

where

AAA(a)
4 =

−a8 −b8 d8
d8 −a8 −b8

−b8 d8 −a8

, AAA(b)
4 =

−c8
−c8

c8 c8 c8
−c8

.

The matrix AAA(a)
4 after removing terms equal to zero is as follows:

AAA3 =

 −a8 −b8 d8
d8 −a8 −b8
−b8 d8 −a8

 and takes the form of a circular convolution matrix.

So, we can again use the properties of a circular convolution matrix:

s(8)0 =
−a8 + d8 − b8

3
, s(8)1 = −a8 + b8, s(8)2 = d8 + b8, s(8)3 =

−a8 + d8 + 2b8

3
. (46)

The calculation procedure for matrix AAA4 is as follows:

AAA4 =

(
PPP(1)

4 PPP
(π

(0)
4)

4

)T

WWW(0)
4×7WWW(1)

7×5WWW5×6DDD(5)
6 WWW6×5WWW(1)

5×7WWW7PPP(0)
4 (47)

where

WWW7 =

1
1

1
1

1
1

1

,

WWW(1)
5×7 =

 TTT(0)
3

1
1 1 1

,

WWW6×5 =

[
AAA4×3

III2

]
,

Electronics 2024, 13, 5056 17 of 22

DDD(5)
6 = diag

(
s(8)0 , s(8)1 , ..., s(8)5

)
,

s(8)4 = s(8)5 = c8,

WWW5×6 =

[
AAA3×4

III2

]
, WWW(1)

7×5 =

TTT(1)

3
−1
−1

1
−1

,

WWW(0)
4×7 =

1 1

1 1
1

1 1

.

In matrix BBB4, change the sign in row 1 and change the sign in column 2. These
operations are described in the expression below:

BBB′
4 = PPP(3)

4 BBB4PPP(2)
4 (48)

where

PPP(2)
4 =

1

−1
1

1

, PPP(3)
4 =

−1

1
1

1

.

As a result of the above Equation (48), matrix BBB′
4 looks like this:

BBB′
4 =

−d8 a8 c8 b8
c8 c8 0 c8
b8 −d8 c8 a8
a8 b8 c8 −d8

.

Now, we will divide the matrix BBB′
4 into two parts:

BBB′
4 = BBB(a)

4 +BBB(b)
4 (49)

where

BBB(a)
4 =

−d8 a8 b8

b8 −d8 a8
a8 b8 −d8

, BBB(b)
4 =

c8

c8 c8 c8
c8
c8

.

The matrix BBB(a)
4 after removing terms equal to zero is as follows:

BBB3 =

 −d8 a8 b8
b8 −d8 a8
a8 b8 −d8

 and takes the form of a circular convolution matrix.

So, we can again use the properties of a circular convolution matrix:

s(8)6 =
−d8 + b8 + a8

3
, s(8)7 = −d8 − a8, s(8)8 = b8 − a8, s(8)9 =

−d8 + b8 − 2a8

3
. (50)

The calculation procedure for matrix BBB4 is as follows:

BBB4 = PPP(3)
4 WWW(1)

4×7WWW(2)
7×5WWW5×6DDD(6)

6 WWW6×5WWW(1)
5×7WWW7PPP(2)

4 (51)

where

Electronics 2024, 13, 5056 18 of 22

DDD(6)
6 = diag

(
s(8)6 , s(8)7 , ..., s(8)11

)
,

s(8)10 = s(8)11 = c8,

WWW(2)
7×5 =

TTT(1)

3
1

1
1
1

,

WWW(1)
4×7 =

1 1

1
1 1

1 1

.

Taking all the transformations together, we obtain the following expression for the fast
DST-I algorithm for N = 8:

YYY8×1 = PPP
(π

(1)
8)

8 PPP(1)
8 WWW8×14WWW14×10WWW10×12DDD12WWW12×10WWW10×14WWW14×8PPP(0)

8 WWW(2)
8 PPP

(π
(0)
8)

8 XXX8×1 (52)

where

PPP(0)
8 =

[
PPP(0)

4

PPP(2)
4

]
, WWW14×8 =

[
WWW7×4

WWW7×4

]
, WWW10×14 =

[
WWW(1)

5×7

WWW(1)
5×7

]
,

WWW12×10 =

[
WWW6×5

WWW6×5

]
, DDD12 =

[
DDD(5)

6

DDD(6)
6

]
, WWW10×12 =

[
WWW5×6

WWW5×6

]
,

WWW14×10 =

[
WWW(1)

7×5

WWW(2)
7×5

]
, WWW8×14 =

[
WWW(0)

4×7

WWW(1)
4×7

]
,

PPP(1)
8 =

(

PPP(1)
4 PPP

(π
(0)
4)

4

)T

PPP(3)
4

.

The data flow graph for our solution for eight-point DST-I is shown in Figure 7.
The naive, direct computation requires 52 additions and 60 multiplications. As can be ob-
served, our solution uses 40 additions and 12 multiplications, reducing the number of addi-
tions from 52 to 40 and the number of multiplications from 60 to 12.

Electronics 2024, 13, 5056 19 of 22

Figure 7. The proposed solution’s data flow graph for eight-point DST-I computation.

10. Results

The work shows how it is possible to reduce the number of multiplication operations
in DST-I algorithms of sizes two to eight. At the same time, the number of addition opera-
tions was slightly reduced. The number of addition operations was reduced by an average
of 21% and the number of multiplication operations was reduced by an average of 74%.
The achieved results are presented in the Table 1.

This allows for a significant reduction in the amount of resources used on a signal
processor, while speeding up work and allowing for easier operation in real time. A sig-
nificant reduction in multiplication operations contributes to this, because, due to their
characteristics, they are more expensive to use than addition operations.

Table 1. Comparison of the direct method with the proposed solutions.

Direct Method Proposed Solutions

N Additions Multiplications Additions Multiplications

2 2 4 2 2
3 5 4 4 2
4 12 16 12 6
5 16 9 12 3
6 30 36 28 8
7 37 32 23 5
8 52 60 40 12

Each proposed algorithm has been implemented in the MATLAB environment and
we are sure that they all work correctly. We have published the program code in an open
dataset repository, which we reference in the Data Availability Statement section.

Electronics 2024, 13, 5056 20 of 22

11. Discussion of Computational Complexity

For the direct DST-I calculation approach and suggested solutions, we first describe
how to determine the number of multiplication and addition operations. A bit shift can
be used in place of a multiplication operation for any number that is a power of two.
We do not count addition and multiplication operations for a value of zero.

The above appear in the following matrices: CCC3—one 0 and four values of 0.5; CCC5—four
0s and twelve values of 0.5; CCC7—five 0s and twelve values of 0.5; CCC8—four 0s. And in the
proposed solutions in diagonal matrices, we have the following: DDD3—one value of 0.5;
DDD(3)

6 —three values of 0.5; DDD(2)
8 —three values of 0.5; DDD8—one value 0.5.

Additionally, Table 2 provides a comparison with the results obtained by other re-
searchers of the topic we addressed. Yip and Rao used the sparse-matrix factorization
technique and Sun and Yip used the idea of split radix algorithm. However, these works
do not present the exact step-by-step achievement of the results, as we show for each
solution. Our solutions are transparent.

In this regard, we note that both works in the table below do not include normalizing
coefficients in the number of multiplication operations. To the Yip and Rao solution for
N = 4, we have added four multiplication operations, which correspond to multiplications
by normalizing coefficients. Similarly, for the DST algorithms for N = 8, we have added
eight multiplication operations in both cases.

The rigorous mathematical derivation of the final computational procedures for each
case is presented in full. To ensure the correctness of these procedures, we have written
validation computer programs, which we have included in our paper. We do not claim that
the presented solutions are optimal. We show what we have obtained so far and would
be glad if someone publishes better solutions.

Table 2. Comparison of the proposed solutions with other algorithms.

N = 4 N = 8

Additions Multiplications Additions Multiplications

Yip and Rao [40] 4 2 + 4 22 8 + 8
Sun and Yip [45] - - 18 6 + 8

Our solutions 12 6 40 12

Author Contributions: Conceptualization, A.C.; methodology, A.C., J.B. and M.R.; software, M.R.;
validation, M.R.; formal analysis, A.C. and J.B.; investigation, J.B. and M.R.; writing—original draft
preparation, M.R. and A.C.; writing—review and editing, M.R.; supervision, A.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The MATLAB programming code implementing the developed algo-
rithms for DST-I is available at [46] (accessed on 28 November 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Britanak, V.; Yip, P.C.; Rao, K.R. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations;

Academic: Amsterdam, The Netherlands; Boston, MA, USA, 2007.
2. Yip, P.; Rao, K. On the computation and the effectiveness of discrete sine transform. Comput. Electr. Eng. 1980, 7, 45–55. [CrossRef]
3. Jain, A.K. A Sinusoidal Family of Unitary Transforms. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 356–365. [CrossRef]
4. Elhadad, M.; El-Dolil, S.A.; Albagory, Y.A. Application of trigonometric transforms in discrete multi tone systems. In Proceedings

of the 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, 14–16 December 2009; IEEE: Piscataway,
NJ, USA, 2010. [CrossRef]

5. Dhamija, S.; Jain, P. Comparative Analysis for Discrete Sine Transform as a suitable method for noise estimation. Int. J. Comput.
Sci. Issues 2011, 8, 162–164.

6. Malini, S.; Moni, R. Use of Discrete Sine Transform for A Novel Image Denoising Technique. Int. J. Image Process. (IJIP) 2014,
8, 204–213.

http://doi.org/10.1016/0045-7906(80)90018-X
http://dx.doi.org/10.1109/TPAMI.1979.4766944
http://dx.doi.org/10.1109/icces.2009.5383286

Electronics 2024, 13, 5056 21 of 22

7. Choi, J.w.; Kim, N.U.; Lim, S.C.; Kang, J.; Kim, H.Y.; Lee, Y.L. Shuffled Discrete Sine Transform in Inter-Prediction Coding. ETRI J.
2017, 39, 672–682. [CrossRef]

8. Zhou, X.; Wang, C.; Jiang, B. All Phase Inverse Discrete Sine Biorthogonal Transform and Its Application in Image Coding. J.
Commun. 2017, 12, 72–80. [CrossRef]

9. Joshi, R.; Reznik, Y.A.; Karczewicz, M. Efficient large size transforms for high-performance video coding. In Proceedings of the
Applications of Digital Image Processing XXXIII, San Diego, CA, USA, 7 September 2010; Tescher, A.G., Ed.; SPIE: Bellingham,
DC, USA, 2010. [CrossRef]

10. Saxena, A.; Fernandes, F.C. DCT/DST-Based Transform Coding for Intra Prediction in Image/Video Coding. IEEE Trans. Image
Process. 2013, 22, 3974–3981. [CrossRef]

11. Budiman, G.; Suksmono, A.B.; Danudirdjo, D.; Pawellang, S. QIM-Based Audio Watermarking with Combined Techniques of
SWT-DST-QR-CPT Using SS-Based Synchronization. In Proceedings of the 2018 6th International Conference on Information and
Communication Technology (ICoICT), Bandung, Indonesia, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

12. Ganesh, P.; Menaka, R. Use of Discrete Sine Transform in EEG signal classification for early Autism detection. In Proceedings of
the 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, Ramanathapuram,
India, 8–10 May 2014; IEEE: Piscataway, NJ, USA, 2014. [CrossRef]

13. Wang, Z.; Wang, L. Interpolation using the fast discrete sine transform. Signal Process. 1992, 26, 131–137. [CrossRef]
14. Wang, Z.; Jullien, G.; Miller, W. Interpolation using the discrete sine transform with increased accuracy. Electron. Lett. 1993,

29, 1918. [CrossRef]
15. Kim, M.; Lee, Y.L. Discrete Sine Transform-Based Interpolation Filter for Video Compression. Symmetry 2017, 9, 257. [CrossRef]
16. Püschel, M.; Moura, J.M.F. The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms. SIAM

J. Comput. 2003, 32, 1280–1316. [CrossRef]
17. Wang, Z. Fast discrete sine transform algorithms. Signal Process. 1990, 19, 91–102. [CrossRef]
18. Gupta, A.; Rao, K. A fast recursive algorithm for the discrete sine transform. IEEE Trans. Acoust. Speech Signal Process. 1990,

38, 553–557. [CrossRef]
19. Puschel, M.; Moura, J. The discrete trigonometric transforms and their fast algorithms: An algebraic symmetry perspective. In

Proceedings of the 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop,
Pine Mountain, GA, USA, 16 October 2002; IEEE: Piscataway, NJ, USA, 2002; DSPWS-02. [CrossRef]

20. Nikara, J.A.; Takala, J.H.; Astola, J.T. Discrete cosine and sine transforms—Regular algorithms and pipeline architectures. Signal
Process. 2006, 86, 230–249. [CrossRef]

21. Murty, M. Realization of prime-length discrete sine transform using cyclic convolution. Int. J. Eng. Sci. Technol. 2013, 5, 583–589.
22. Murty, M.N.; Padhy, B. Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform. Int. J. Eng. Res. Appl. 2015, 5, 9–15.
23. Yip, P.; Wang, F. A prime-factor decomposed algorithm for the discrete sine transform. Comput. Electr. Eng. 1990, 16, 43–49.

[CrossRef]
24. Tsmots, I.; Rabyk, V.; Kryvinska, N.; Yatsymirskyy, M.; Teslyuk, V. Design of the Processors for Fast Cosine and Sine Fourier

Transforms. Circuits Syst. Signal Process. 2022, 41, 4928–4951. [CrossRef]
25. Cariow, A.; Makowska, M.; Strzelec, P. Small-Size FDCT/IDCT Algorithms with Reduced Multiplicative Complexity. Radioelectron.

Commun. Syst. 2019, 62, 559–576. [CrossRef]
26. Cariow, A.; Lesiecki, L. Small-Size Algorithms for Type-IV Discrete Cosine Transform with Reduced Multiplicative Complexity.

Radioelectron. Commun. Syst. 2020, 63, 465–487. [CrossRef]
27. Kolenderski, M.; Cariow, A. Small-Size Algorithms for the Type-I Discrete Cosine Transform with Reduced Complexity. Electronics

2022, 11, 2411. [CrossRef]
28. Bielak, K.; Cariow, A.; Raciborski, M. The Development of Fast DST-II Algorithms for Short-Length Input Sequences. Electronics

2024, 13, 2301. [CrossRef]
29. Murty, M. Algorithm for realization of Type-I Discrete Sine Transform. J. Ultra Sci. Phys. Sci. 2015, 27, 164–168.
30. Al-Fuhaidy, F.A.K.; Al-Sofy, K.A.; Alkamali, F.S. Discrete Sine Transform Based OFDMA System for Wireless Broadband

Communications. AASCIT Commun. 2019, 6, 13–21.
31. Al-kamali, F. New single-carrier transceiver scheme based on the discrete sine transform. J. Eng. 2014, 2014, 214–218. [CrossRef]
32. Li, X.; Xie, H.; Cheng, B. Noisy Speech Enhancement Based on Discrete Sine Transform. In Proceedings of the First International

Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06), Hangzhou, China, 20–24 June 2006; IEEE: Piscataway,
NJ, USA, 2006. [CrossRef]

33. Tseng, C.C.; Lee, S.L. Closed-form design of fixed fractional hubert transformer using discrete sine transform. In Proceedings
of the 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, Japan, 17–20 November 2014; IEEE:
Piscataway, NJ, USA, 2014; Volume 4, pp. 479–482. [CrossRef]

34. Alonso, P.; Bernabeu, M.O.; Vidal-Maciá, A.M., An Adaptive Interface for the Efficient Computation of the Discrete Sine Transform.
In Parallel Processing and Applied Mathematics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 89–98. [CrossRef]

35. Yaroslavsky, L.; Wang, Y. DFT, DCT, MDCT, DST and signal Fourier spectrum analysis. Eur. Signal Process. Conf. 2015, 2015, 1–14.
36. Pant, N. Discrete Sine and Cosine Transforms on Parallel Processors. Master’s Thesis, Tampere University of Technology,

Tampere, Finland, 2015.
37. Perera, S.M. Signal Flow Graph Approach to Efficient DST I-IV Algorithms. arXiv 2016, arXiv:1601.04662.

http://dx.doi.org/10.4218/etrij.17.0116.0867
http://dx.doi.org/10.12720/jcm.12.1.72-80
http://dx.doi.org/10.1117/12.862250
http://dx.doi.org/10.1109/TIP.2013.2265882
http://dx.doi.org/10.1109/icoict.2018.8528727
http://dx.doi.org/10.1109/icaccct.2014.7019355
http://dx.doi.org/10.1016/0165-1684(92)90059-6
http://dx.doi.org/10.1049/el:19931277
http://dx.doi.org/10.3390/sym9110257
http://dx.doi.org/10.1137/S009753970139272X
http://dx.doi.org/10.1016/0165-1684(90)90033-U
http://dx.doi.org/10.1109/29.106875
http://dx.doi.org/10.1109/dspws.2002.1231116
http://dx.doi.org/10.1016/j.sigpro.2005.05.014
http://dx.doi.org/10.1016/0045-7906(90)90007-3
http://dx.doi.org/10.1007/s00034-022-02012-8
http://dx.doi.org/10.3103/S0735272719110025
http://dx.doi.org/10.3103/S0735272720090022
http://dx.doi.org/10.3390/electronics11152411
http://dx.doi.org/10.3390/electronics13122301
http://dx.doi.org/10.1049/joe.2013.0189
http://dx.doi.org/10.1109/imsccs.2006.91
http://dx.doi.org/10.1109/apccas.2014.7032823
http://dx.doi.org/10.1007/978-3-540-68111-3_10

Electronics 2024, 13, 5056 22 of 22

38. Pueschel, M.; Moura, J.M.F. Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs. IEEE Trans.
Signal Process. 2008, 56, 1502–1521. [CrossRef]

39. Cariow, A. Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products. J. Signal Process.
Theory Appl. 2014, 3, 1–19. [CrossRef]

40. Yip, P.; Rao, K. A Fast Computational Algorithm for the Discrete Sine Transform. IEEE Trans. Commun. 1980, 28, 304–307.
[CrossRef]

41. Agarwal, N.; Solanki, R.; Khan, A. Application of Discrete Sine Transform in Image Processing. Int. J. Eng. Res. Technol. (IJERT)
NCETRASECT 2015, 3, 23. [CrossRef]

42. Olshevsky, A.; Olshevsky, V.; Wang, J. A comrade-matrix-based derivation of the different versions of fast cosine and sine
transforms. In Proceedings of the Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, San Diego,
CA, USA, 6–8 August 2003; Luk, F.T., Ed.; SPIE: Bellingham, DC, USA, 2003; Volume 5205, pp. 399–410. [CrossRef]

43. Madhukar, B.N.; Jain, S. A duality theorem for the discrete sine transform (DST). In Proceedings of the 2015 International
Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India, 29–31 October
2015; IEEE: Piscataway, NJ, USA, 2015. [CrossRef]

44. Blahut, R.E. Fast Algorithms for Signal Processing; Cambridge University Press: Cambridge, UK, 2010. [CrossRef]
45. Sun, C.; Yip, P. Split-radix algorithms for DCT and DST. In Proceedings of the Twenty-Third Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, CA, USA, 30 October–1 November 1989; IEEE: Piscataway, NJ, USA, 1989; pp. 508–512.
[CrossRef]

46. Raciborski, M. The Development of Software for Fast DST-I Algorithms for Short-Length Input Sequences; RepOD: Warszawa,
Poland, 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSP.2007.907919
http://dx.doi.org/10.7726/jspta.2014.1001
http://dx.doi.org/10.1109/TCOM.1980.1094656
http://dx.doi.org/10.17577/IJERTCONV3IS23018
http://dx.doi.org/10.1117/12.508161
http://dx.doi.org/10.1109/icatcct.2015.7456874
http://dx.doi.org/10.1017/cbo9780511760921
http://dx.doi.org/10.1109/acssc.1989.1200843
http://dx.doi.org/10.18150/3QZRGL

	Introduction
	Materials and Methods
	Two-Point DST-I Solution
	Three-Point DST-I Solution
	Four-Point DST-I Solution
	Five-Point DST-I Solution
	Six-Point DST-I Solution
	Seven-Point DST-I Solution
	Eight-Point DST-I Solution
	Results
	Discussion of Computational Complexity
	References

