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Abstract: MLP-based weakly supervised crowd counting approaches have made significant advance-
ments over the past few years. However, owing to the limited datasets, the current MLP-based
methods do not consider the problem of region-to-region dependency in the image. For this, we
propose a weakly supervised method termed SR2. SR2 consists of three parts: scale-reasoning module,
scale-ranking module, and regression branch. In particular, the scale-reasoning module extracts and
fuses the region-to-region dependency in the image and multiple scale feature, then sends the fused
features to the regression branch to obtain estimated counts; the scale-ranking module is used to
understand the internal information of the image better and expand the datasets efficiently, which
will help to improve the accuracy of the estimated counts in the regression branch. We conducted
extensive experiments on four benchmark datasets. The final results showed that our approach has
better and higher competing counting performance with respect to other weakly supervised counting
networks and with respect to some popular fully supervised counting networks.

Keywords: weakly supervised counting; MLP; graph neural networks; ranking mechanism

1. Introduction

Crowd counting is a classical computer vision task employed to generate an estimated
count in an image or a dynamic video sequence. In scenes such as tourist attractions and
public gatherings, overcrowding can cause crowd crushing, blockages, and even stampedes.
Thus, accurately determining the number of people in a crowd in an image or video has
become an increasingly important application [1].

Because of heavy occlusions and multiscale variations in heads in crowds, crowd
counting is a challenging task. In recent years, there have been many algorithms [2,3] for
crowd counting, the density-estimation methods being the mainstream ones. For example,
the MCNN [2] adopted three columns with different receptive fields to capture the scale
variations of heads in crowds. CSRNet [3] adopted dilated convolutional layers with
different dilated rates, which can capture useful information about the context to better
distinguish between the foreground and the background. However, these methods require
fine-grained point-level annotations, which require much human effort.

In order to reduce the dependence on fine-grained point-level annotations, some works
have made full use of weakly supervised learning paradigms to calculate the number of
people in an image. For example, Liang et al. [4] proposed Transcrowd, which explored
the potential of the vision Transformer [5] for weakly supervised crowd counting. Savner
et al. [6] adopted the pyramid vision Transformer [7] with count-level annotations to
capture the multiscale information. However, Transformer requires a great amount of
computational resources, making it challenging for real applications.

Since 2020, some scholars have explored more diverse models beyond convolutional
neural networks and Transformer models. Recently, the re-emergence of multilayer percep-
trons (MLPs) has achieved excellent classification performance, benefiting from the inherent

Electronics 2024, 13, 471. https://doi.org/10.3390/electronics13030471 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030471
https://doi.org/10.3390/electronics13030471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5744-9605
https://doi.org/10.3390/electronics13030471
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030471?type=check_update&version=1


Electronics 2024, 13, 471 2 of 15

advantages of the underlying fully connected layers: much more global receptive fields
than the CNN model and simpler Self-Attention layers than in the Transformer model.
Meanwhile, the potential of the MLP model in regression tasks has not been fully explored.
Wang et al. [8] proposed a weakly supervised crowd-counting network, CrowdMLP, by
constructing a multi-particle MLP regulator to capture global information.

However, the CrowdMLP network has the following limitations: (1) CrowdMLP
ignores the dependencies between regions. It uses multiple columns to predict different
densities of regions independently. Effectively, different densities of areas are correlated in
the scenes. In congested scenarios, there are certain configuration rules for an approximately
constant density of crowds per square meter in the physical world. This configuration rule
is a constant approximate change in density along the direction away from the camera. The
density distribution in many scenes (e.g., streets, squares, stadiums, etc.) is governed by the
configuration rules. These rules can be used to further improve the capabilities of crowd
counting. (2) CrowdMLP [8] introduces the ranking mechanism and designs auxiliary
branches to improve the accuracy of predicting counts, but these auxiliary branches are cut
in the original images and put into the basic network, which is equivalent to computing
the model three times in parallel for each training, which inadvertently increases the
computational load of the network.

To overcome the above two issues, we designed a scale-reasoning module based on the
graph convolutional network and a scale-ranking module based on the ranking mechanism,
respectively. The role of the scale-reasoning module is to capture the dependencies between
the regions in the image, and the role of the scale-ranking module is to solve the overfitting
of complex networks due to limited datasets. For the scale-reasoning module, we consid-
ered graph neural networks [9], which have been demonstrated to be a suitable way for
relational modeling and inference, which contain nodes and edges, where the nodes stand
for the pixels in the image and the edges represent the tightness of the relationship between
the nodes.

For the scale-ranking module, instead of using the ranking mechanism directly to
process the original images, we directly applied the ranking mechanism to the final ex-
tracted feature maps. We used the scale-ranking module as an auxiliary branch to im-
prove the accuracy of the estimated counts in the images. Based on the proposed scale
reasoning and ranking modules, we propose a novel weakly supervised MLP-based crowd-
counting network, termed SR2, which contains the scale-reasoning module, scale-ranking
module, and regression branch. Finally, we performed extensive experiments on the
popular crowd-counting datasets. Compared with other outstanding approaches, our
proposed SR2 achieved promising counting results on ShanghaiTech [2], UCF-QNRF [10],
JHU-CROWD++ [11], and NWPU-Crowd [12]. For more details, please visit our code which
has been released at https://github.com/MingfangDeng/GRMlpCrowd-main (accessed
on 18 December 2022).

Broadly speaking, our efforts can be summarized as the following three aspects:

• We designed a scale-reasoning module fusing the information of the region-to-region
dependencies that can capture the multiscale information by the pyramid nodes.

• We propose a scale-ranking module fusing the tightness of the whole image with the
selected region and reducing the computational load.

• SR2 provides higher accuracy compared to either the fully supervised counting
method or the weakly supervised counting method.

2. Related Works
2.1. Counting with Fully Supervised Paradigm

Convolution neural networks: With the blisteringly fast growth of deep learning for com-
puter vision [5,13–16], a number of methods [2,17–27] based on the CNN have been intro-
duced to generate the predicted density maps that can be regressed to obtain the estimated
counts. Among these methods based on the CNN, Zhang et al. proposed a multiple-column
convolutional neural network with three branches containing convolutional kernels of

https://github.com/MingfangDeng/GRMlpCrowd-main
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different sizes, namely the MCNN [2]. However, the MCNN does not effectively capture
multiscale information in the image. The work of [17] proposed a density classifier called
Switch CNN [17], which was used to select the Optimum Regressor from three different
branches adaptively to complement the inadequacy of the MCNN. However, these models
have the problem of a large number of parameters, so some scholars have lightened the
models. For example, PDDNet [22] adopted a lightweight network with different dilated
convolutional layers to capture different scales. To address the scale variation and complex
backgrounds effectively, Sun et al. [23] proposed a novel Multi-Scale Guided Self-Attention
network that utilizes Self-Attention mechanisms to capture multi-scale contextual infor-
mation for crowd counting. Dong et al. [24] proposed a multi-scale dilated convolution
network based on crowd density map estimation. They used dilated convolution to expand
the receptive field and extract high-level semantic information. Yan et al. [25] proposed to
predict the density map at one resolution, but measure the density map at multiple reso-
lutions. They formulated the crowd counting task as a probability maximization problem
and derived the optimization loss for the deep learning model by maximizing the posterior
probability. Liu et al. [26] designed a supervision target reassignment strategy for training
to reduce ranking inconsistency and proposed an anchor pyramid scheme to adaptively
determine the anchor density in each image region. Ge et al. [27] propose a neural Attention
Learning approach (NEAL), which helps the RPN attend to objects and enables the classifier
to pay more attention to the premier positive samples.
Transformer architecture networks: To address the limitation of the convolution kernel,
many scholars tried to utilize the Transformer models for counting tasks, which can obtain
global information. For example, CCTrans [28] captured multiscale information based
on Twins [29] to obtain the sharp density maps. Gao et al. [30] combined a Swin Trans-
former encoder [16] and an FPN decoder to generate more-accurate density maps. Lin
et al. [31] proposed a novel Self-Attention that replaces the Self-Attention in the Vision
Transformer [5] to generate more-accurate density maps. However, both the CNN models
and Transformer models ignore the region-to-region dependencies in the images, and such
dependencies can improve the counting accuracy.
Graph neural networks: To overcome the limitations of the CNN and Transformer models,
researchers have introduced graph convolutional networks (GCNs) [9] into crowd count-
ing. GCNs exhibit robust performance in modeling and inferring relationships among
different regions, effectively addressing the challenges associated with region-to-region
dependencies in crowd counting tasks. Luo et al. [32] proposed a HyGnn, which incorpo-
rates a hybrid graph that jointly represents task-specific feature maps at different scales
as nodes, aiming to capture the multiscale information. Compared with HyGnn, which
uses the different sizes of Global Average Pooling (GAP) operations, we designed a novel
module (scale-reasoning module) using different dilated rates to capture multiscale infor-
mation rather than the GAP operations, which lose the detailed information of the images.
However, point-level annotations are both time-consuming and laborious.

2.2. Counting with Weakly Supervised Paradigm

Convolution neural networks: Lie et al. [33] presented the weakly supervised crowd
counting model MATT, which has a few point-level annotations and a large number of
count-level annotations. Yang et al. [34] proposed a sorting network that directly returns
to counts without point-level annotations. However, CNN architectures have contextual
limitations due to the shape of the convolution kernel, which can impact the ability to
distinguish the foreground and impact the accuracy of counting.
Transformer architecture networks: With the development of the Transformers, many
researchers have found that the Transformer model is a good solution to the limitations
on the size of the convolutional receptive fields. Aiming at better extraction of global
information, some researchers have extended the Transformer architecture into the field of
weakly supervised counting. For instance, the work of [4] employed the ViT [5] model and
eventually acquired the estimated counts using an operation of GAP. The work of [35] used
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the Swin Transformer [16] combined with the convolutional network and directly summed
the generated feature vectors to obtain the estimated counts. The work of [6] adopted
PVT [7] as the basic network, obtained multiscale information by extracting and fusing its
middle information, and directly obtained the estimated counts by GAP. However, there
are some problems such as the slowness of the Transformer models in processing images
and increasing the computational load.
MLP architecture networks: In order to solve the problems of the Transformer models and
capture the global information in the images, recently, Wang et al. [36] triggered a series
of studies utilizing the inherent advantages of MLPs. Although MLPs perform well in
image classification, their potential in regression remains to be explored. However, only
a few researchers have proposed the methods based on MLPs. Wang et al. [8] proposed
the multi-branch MLP encoder to add information on token embeddings. This method
introduces the ranking mechanism and designs auxiliary branches to improve the accuracy
of predicting counts, but these auxiliary branches are cut in the original images and put
into the basic network, which is equivalent to computing the model three times in parallel
for each training, which inadvertently increases the computational load.

3. Method

SR2 consists of the MLP encoder, scale-reasoning module, scale-ranking module, and
the regression branch, as illustrated in Figure 1. Specifically, given an imported image, it
is firstly fed into the MLP encoder, which has a tokenizer, which can extract the initial
features, the convolution stage, which improves the connectivity of the space, and two
MLP stages for extracting global features FM. Then, the features FM are fed into the scale-
reasoning module. The scale-reasoning module adopts the different dilated rates to capture
the multiscale information. Furthermore, the scale-reasoning module has a graph neural
network that contains nodes and edges, where the nodes stand for the pixels in the image
and the edges represent the tightness of the relationship between the nodes. Thus, the scale-
reasoning module can fuse the region-to-region dependency in the images. Then, the fused
feature maps are sent to the regression branch and scale-ranking module, respectively.

The regression branch can obtain the estimated counts by GAP. The scale-ranking
module adopts the ranking mechanism, selecting a random resolution rectangular region
(I1) from the input features FM, and obtains sub-rectangular regions (I2, I3) at a certain
downsampling rate, followed by the GAP to obtain the part estimated counts, as illustrated
in Figure 1. Finally, the scale-ranking module uses the ranking loss to improve the accuracy
of the estimated counts in the regression branch.
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3.1. Problem Formulation

We define the crowd-counting method of weak supervision according to [4,33]. The
input image I is putinto the counting networks, and the acquired feature map is returned
to the estimated counts Ĉi using the GAP method. More specifically, the estimated counts
Ĉi are modeled as follows:

Fm = F (Ii),

Ĉi = Pool(Fm),
(1)

where Ĉi represents the estimated counts of the i-th input image Ii. F stands for the
crowd-counting network. Pool(·) represents the GAP. Fm is the feature map following the
counting network.

The counting method learns the drift among the estimated counts and the ground
truth counts of the i-th image. We opted for the L1 loss to improve the precision of the
crowd-counting network. The L1 is defined as:

L1 =
1
N

N

∑
i=1

|Ci − Ĉi|, (2)

where Ci is a ground truth count from the i-th input image.

3.2. The MLP Encoder

The MLP encoder consists of the convolution tokenizer, the convolution stage, the
MLP stage, and the graph stage. Next, we will introduce these parts.

3.2.1. Convolution Tokenizer

Unlike other Transformer-based models, we adopted the convolution tokenizer to
extract the preliminary feature maps. It comprises triple convolutional blocks. Each block
comprises a 3 × 3 convolution and normalization and activation functions. The tokenizer
is succeeded by the maximum pooling layer.

3.2.2. Convolution Stage

To decrease the calculations and optimize the connectivity of the space, we used a pure
convolution stage after tokenization, which can produce a feature map. The convolution
stage has three blocks, where each block consists of two 1 × 1 convolution layers having
a 3 × 3 convolution layer in the center. As stated, we adopted the convolution stage to
augment the connectivity of the space.

3.2.3. MLP Stage

Most current MLP-based models use the spatial MLP approach, which has constraints
on the visual representation. Spatial MLP accepts only fixed-resolution inputs, making it
difficult to transfer to downstream tasks. To reduce the input dimensionality constraints,
we adopted an MLP stage, which contains only the channel MLP, which means allowing
feature extraction between different channels. However, using only the channel MLP
ignores the spatial information in the feature map. Therefore, we added a 3 × 3 depth-
wise convolution in each MLP stage to compensate for the missing spatial interactions.
Meanwhile, inspired by the use of the linear layer-based patch-merging method in the
Swin Transformer to downsample the feature maps to obtain the overlap of the spatial
information, we introduced the down convolution blocks, aiming to improve the regression
accuracy by obtaining the overlap of spatial information in the dense population. The
down convolution block uses a 3 × 3 convolutional layer with a stride of 2 to replace the
Swin Transformer’s patch merging. Compared with the Swin Transformer’s patch merge,
our down convolution block introduces only a few parameters.
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3.3. Scale-Reasoning Module

Meanwhile, we designed the scale-reasoning module to capture the multiscale infor-
mation and mixture of the region-to-region dependency in the images. In our approach,
the scale-reasoning module is described as a function fθ : X → M, with the arguments θ;
the input space X reflects the space of the input images; the target M is the relation map,
which contains the relationship of the heads and the background, specifically the input
feature map x ∈ X, and we study the mapping function fθ , which can deduce the relation
map m ∈ M. We represent the extracted multiple scales features V = {v1, v2, . . . , vn} with
a directed graph G = (V , ε), where ε represents the edges among the V . For each node vi in
V , we learn its renewable representation, called v(t)i , by assembling the representations of
its neighbors. Finally, the renewable features are merged to yield a final relation map.
Multiple scale nodes: Given the feature maps FM, we employed different dilated rates for
the dilated convolution and, then, extracted multiple scale features characterizing the same
modality (n scale) as the initial node by convolutional and interpolation layers, obtaining a
total of N = n nodes. Their original node denotations v(0)i ∈ Rh×w×c can be calculated as:

v(0)i = Gh×w(Conv(H(FM; si))), (3)

where H(·; si) stands for the dilated convolution operation with a rate of si. Gh×w(·)
denotes the interpolation operation to ensure that multiscale feature maps have the same
dimensions h × w.

εt
a,b = Conv(g(vt

a; vt
b)), (4)

where vt
a and vt

b are nodes in V . g(·; ·) represents a function that binds the node embeddings
vt

b and vt
b. εt

a,b is the edge between the node a and the node b in set ε.

The edges are updated by all its neighboring nodes. The edge information i(t)a,b is
passed from all neighboring nodes va and vb, and the edge information function I(·; ·):

i(t)a,b = I(v(t−1)
a ; ε

(t−1)
a,b ) = sigmoid(ε(t−1)

a,b ) · v(t−1)
a , (5)

where i(t)a,b represents the edge information of node a and node b at t time.
Finally, we used the edge’s information to upgrade the information of nodes. The

node is updated by the following formula:

vt
a = GRU(v(t−1)

a , i(t−1)
a,b ), (6)

where GRU(·, ·) denotes the Gated Recurrent Unit [37].
Finally, we adopted the merge and interpolate operation to generate the final relation

map M:
M = UH×W(O(Fmerge{U (v(t)i )n

i=1})), (7)

where Fmerge(·) is the merge function, which comprises a connected layer after a 3 × 3
convolutional layer. O(·) indicates the readout function, which is used for mapping the
learned representations. The U is used to resize the generated results.

3.4. Regression Branch

The regression branch has an operation called GAP. Specifically, we concatenated
the relation map (M) and the output features of the MLP stages (J ), followed by a
regression head, which is the GAP operation to regress the estimated counts. The equation
is as follows:

Ĉi = Pool2D(M+ J ). (8)
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3.5. Scale-Ranking Module

The scale-ranking module is guided by the fact that a smaller region must have fewer
crowd numbers than or equal crowd numbers as a larger region. This fact led us to
understand the internal information of the image better and expand the datasets efficiently.
We randomly selected the initial rectangle area I1 in the feature map FM, followed by the
downsampling ratio r to obtain the subrectangle area I2 and I3. Finally, we adopted the
GAP to generate the part estimated counts. The equation is as follows:

Ĉj
i = Pool2D(DS(I1, r)), (9)

where DS(·, r) stands for the subrectangle regions with the following downsampling rate r.
The Ĉj

i is the part estimated counts of the j-th subrectangle areas (Ij) in the i-th images. I1 is
the first randomly selected region in the input image.

3.6. Loss Function

To train SR2, we directly improved the accuracy of the estimated counts by minimizing
the gap between the estimated counts and the ground truth. Specifically, we used the L1
loss and the rank loss in the regression branch and the ranking branch. The loss function L
is shown as:

L = L1 + γLrank, (10)

where the best experimentally analyzed γ is 0.7.
The rank loss Lrank is as follows:

ĉ(Ii) = Pool2D(Ii),

Lrank =
S

∑
j=1

S

∑
k=j+1

max(0, ĉj
i − ĉk

i + margin),
(11)

where S represents the amount of the selected patches.

4. Experiment

In this part, we first present the execution details and the setting of the experiment, and
we utilized the popular crowd counting datasets. Meanwhile, we measured our approach
against other superior approaches. Lastly, we carried out ablation tests to validate the
efficiency and effectiveness of every component included in our approach.

4.1. Execution Details

We applied the Adam optimizer, which was trained for 1000 epochs. We configured
the batch size as 8, the weight decay as 1 × 10−4, and the learning rate as 1 × 10−5, and
with more than 300 epochs of training, the rate of learning was decreased to 0.1-times the
original learning rate. Meanwhile, the weights pre-trained on the ImageNet dataset were
applied to initialize the MLP. Furthermore, the si in the regression branch was (4, 8, 16), and
the downsampling ratio r was set to 0.75 in the ranking branch. The margin we set was 0.03
in the rank loss. Lastly, it was implemented on a single NVIDIA RTX 3060Ti GPU (Santa
Clara, CA, USA) with the Pytorch framework.

4.2. The Datasets Used

ShanghaiTech [2] is grouped into two segments, which are ShanghaiTechA, which comprises
300 images used for training and 182 images for testing, and ShanghaiTechB, which has
400 images used for training and 316 images used for testing.
UCF-QNRF [10] has one million annotations of 1535 images. The range of counts is
extensive, spanning from 49 to 12,865. Additionally, it involves 1201 images for training
and 334 images for testing.
NWPU-Crowd [12] is a dataset that is enormous and challenging. It includes 5109 images,
and the number of instances is 2,133,375 with detailed annotations. Furthermore, the
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dataset was stochastically separated into two segments: the training dataset and the test
dataset, which comprised 3,109,500 and 1500 images, respectively.
JHU-CROWD++ [11] consists of 2722 images used for training, 500 images used for es-
timating, and 1600 images for testing from a wide range of scenes. The total number of
people in each image varies from 0 to 25,791.
EoCo [38] comprises two parts, Part A and Part B, and includes a total of 6885 images,
with 2859 images in Part A and 4026 images in Part B. Part A is divided into six classes:
person, jujube, cherry, tulip, chicken, and vehicle. All samples in the dataset are sourced
from public datasets or competitions and are classified into four categories: face, wheat,
person (ShanghaiTech Part B), and penguin.

4.3. Evaluate Metrics

We opted for the mean absolute error along with the mean-squared error as evaluation
metrics to assess the counting results of our approach:

MAE =
1
N

N

∑
i=1

|Ci − Ĉi|, MSE =

√√√√ 1
N

N

∑
i=1

|Ĉi − Ci|
2, (12)

where N is the amount of testing images and Ĉi and Ci are the predicted and ground truth
count of the i-th image, respectively.

4.4. Compared Crowd Counts

We carried out an extensive experiment on four prevailing datasets [10–12] to verify
the usefulness of the proposed approach. In this part, we compare with previous state-of-
the-art methods. Finally, we demonstrate the ablation studies to verify the effectiveness of
the different parts of our approach.

Comparing the counting methods with full supervision: Specifically, on the Shang-
haiTechA dataset, our approach improved by 6.5% on the MAE and 14.1% on the MSE
with respect to CSRNet, which benefited from the ranking branch to understand more
inner information. On the ShanghaiTechB dataset, our approach improved by 20.8% on the
MAE and 12.5% on the MSE with respect to CSRNet and improved by 5% on the MAE and
6.8% on the MSE compared with BL, which benefited from the MLP architecture and could
obtain the global information. The specifics of the ShanghaiTech datasets are shown in
Table 1.For the QNRF dataset, we found that our approach improved by 23.3% on the MAE
and 16.5% on the MSE with respect to CSRNet and benefited from the the MLP architecture,
which could acquire more global information and the pyramid pooling in the graph stage.
The results of the QNRF dataset are shown in Table 2. For the NWPU dataset, our approach
improved by 4.6% on the MAE with respect to CSRNet and improved by 4.3% on the MSE
with respect to PCC-Net-VGG, which benefited from the MLP architecture and the ranking
branch. Besides, our approach improved by 8.9% on the MAE and 0.5% on the MSE with
respect to C3F-VGG on the NWPU dataset.

Comparing the counting methods with weak supervision: Specifically, on the Shang-
haiTechA dataset, our approach improved by 8.3% on the MAE and 15.7% on the MSE with
respect to MATT due to the graph stage, capturing more information between the heads
and the background. Our approach also improved by 5.1% on the MAE and 7.1% on the
MSE with respect to Transcrowd-GAP, which benefited from the convolution tokenizer
being replaced by the traditional tokenizer, which could acquire the global information.For
the QNRF dataset, our approach improved by 3.3% on the MAE and 5.8% on the MSE
with respect to Transcrowd [4]. The specifics of the QNRF dataset can be seen in Table 2.
Furthermore, we also validated the effectiveness of our approach on the JHU-Crowd++
dataset and the NWPU dataset, as illustrated in Tables 3 and 4. For the JHU-Crowd++
dataset, our approach improved by 6.2% on the MAE and improved by 8.0% on the MSE
with respect to Transcrowd [4]. For the NWPU dataset, our approach improved by 3.3% on
the MAE and 5.6% on the MSE compared to the Transcrowd [4].For the NWPU dataset, our



Electronics 2024, 13, 471 9 of 15

approach improved by 1.5% on the MAE and 5.8% on the MSE with respect to Transcrowd-
Token. For the JHU-Crowd++ dataset, our approach improved by 6.2% on the MAE and
8.0% on the MSE with respect to Transcrowd-Token. To verify the generalization ability of
our model, we conducted a validation on the EoCo dataset, and the performance on this
dataset was also very excellent, as shown in Table 5. For the cherry class, our approach
improved by 43.31% on the MAE and 27.23% on the MSE with respect to the MCNN and
improved by 14.55% on the MAE and 13.89% on the MSE with respect to CSRNet. As
shown in Table 5, we also demonstrate that counting performance was comparable to the
popular fully supervised networks on other classes of the EoCo dataset.

Table 1. Comparison (MAE and MSE) of quantitatively different crowd-counting methods on the
ShanghaiTech dataset. The localization of the training labels denotes point-level annotations, and the
crowd number of the training labels stands for the count-level annotations. The bold values of the
MAE and MSE represent the best performance.

Methods Publish Training Label Part A Part B

Localization Crowd Number MAE MSE MAE MSE

MCNN [2] CVPR16 ✓ ✓ 110.1 174.0 27.1 51.3
CSRNet [3] CVPR18 ✓ ✓ 68.4 116.0 10.7 16.1

BL [39] ICCV19 ✓ ✓ 62.8 101.8 8.0 13.1
S3 [40] IJCAI21 ✓ ✓ 57.1 97.3 8.4 12.7

UOT [41] AAAI21 ✓ ✓ 58.1 92.5 7.7 12.5

MATT [33] PR21 × ✓ 69.7 118.2 10.6 19.9
Transcrowd-Token [4] SCIS22 × ✓ 69.7 118.2 10.6 19.9
Transcrowd-GAP [4] SCIS22 × ✓ 67.4 107.2 9.4 16.3

SR2 (ours) - × ✓ 63.9 99.6 8.4 14.0

Table 2. Comparison (MAE and MSE) of quantitatively different crowd-counting methods on the
QNRF dataset. The bold values of the MAE and MSE represent the best performance.

Methods Publish Training Label QNRF

Localization Crowd Number MAE MSE

MCNN [2] CVPR16 ✓ ✓ 277.1 426.1
CSRNet [3] CVPR18 ✓ ✓ 124.1 196.2

BL [39] ICCV19 ✓ ✓ 88.7 154.8
S3 [40] IJCAI21 ✓ ✓ 80.6 139.8

UOT [41] AAAI21 ✓ ✓ 83.3 142.3

MATT [33] PR21 × ✓ 98.9 176.1
Transcrowd-Token [4] SCIS22 × ✓ 98.0 175.1
Transcrowd-GAP [4] SCIS22 × ✓ 97.3 168.4

SR2 (ours) - × ✓ 96.5 153.1

Moreover, we also show the results of the training loss value with the number of
training epochs on ShanghaiTech Part A in Figure 2. As can be seen, our model had rapid
convergence within the first 100 epochs of the training phase and consistently stayed within
the designated convergence interval.
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Figure 2. Graph of the training loss function in relation to the number of training epochs.

Table 3. Comparisons of the counting results on NWPU-Crowd. The bold values of the MAE and
MSE represent the best performance.

Methods Publish Training Label Testing Set

Localization Crowd Number MAE MSE

C3F-VGG [42] Tech19 ✓ ✓ 127.1 439.5
CSRNet [3] CVPR18 ✓ ✓ 121.3 387.8

PCC-Net-VGG CVPR19 ✓ ✓ 112.2 457.1
CAN [43] CVPR19 ✓ ✓ 106.1 386.6
SFCN [44] CVPR19 ✓ ✓ 105.6 424.2

BL [39] ICCV19 ✓ ✓ 105.4 454.2
KDMG [45] PAMI20 ✓ ✓ 100.6 415.6

NoisyCC [46] NeuralPS20 ✓ ✓ 96.5 534.1
DM-Count [47] NeuralPS20 ✓ ✓ 88.4 388.6

UOT [41] AAAI21 ✓ ✓ 83.6 346.8
S3 [40] IJCAI21 ✓ ✓ 87.9 387.6

Transcrowd-Token [4] SCIS22 × ✓ 119.6 463.9
Transcrowd-GAP [4] SCIS22 × ✓ 117.7 451.0

SR2 (ours) - × ✓ 115.7 437.2

Table 4. Comparison (MAE and MSE) of quantitatively different crowd-counting methods on the
JHU-Crowd++ dataset. The bold values of the MAE and MSE represent the best performance.

Methods Publish Training Label Testing Set

Location Crowd Number MAE MSE

MCNN [2] CVPR16 ✓ ✓ 188.8 483.5
CMTL [48] AVSS17 ✓ ✓ 157.9 490.5
CAN [43] CVPR19 ✓ ✓ 100.2 314.1

SANet [49] ECCV18 ✓ ✓ 91.2 320.5
CSRNet [3] CVPR18 ✓ ✓ 85.8 309.1

BL [39] ICCV19 ✓ ✓ 75.1 299.8
UOT [41] AAAI21 ✓ ✓ 60.6 252.6

S3 [40] IJCAI21 ✓ ✓ 59.5 244.1

Transcrowd-Token [4] SCIS22 × ✓ 76.4 319.8
Transcrowd-GAP [4] SCIS22 × ✓ 74.9 295.6

SR2(ours) - × ✓ 71.7 294.1
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Table 5. Comparison (MAE and MSE) of quantitatively different crowd-counting methods on the
EoCo dataset.

Methods

Part A Part B

Cherry Chickens Tulips Vehicles Jujubes Wider Face Wheat Penguins

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

SR2
(ours)

39.24 71.69 49.11 101.02 87.61 96.59 35.29 57.04 92.11 114.67 68.43 98.34 120.10 240.77 31.67 68.49

MCNN 69.23 98.51 98.27 126.78 88.26 95.21 70.32 96.55 112.58 147.32 112.1 186.52 150.74 267.43 82.69 100.33
CSRNet 45.92 83.25 62.74 94.38 97.64 101.13 68.55 89.71 100.37 139.60 69.74 117.42 148.33 251.96 73.54 99.28

4.5. Visualization and Analysis

To discern whether our proposed method learned the crowd changes in the spatial
scales and spatial semantics, we divided the image into equal parts and predicted the count
of each part separately, as illustrated in Figure 3. Specifically, the leftmost image (yellow)
cluster had large-scale variation. The rightmost image (green) cluster had auniformly
distributed crowd.

Original Image

Cropped Image Sets

gt 985 Pred 998.7

Pred 0.4 Pred 50.4 Pred 3.7

Pred 239.3 Pred 320.8 Pred 384.1

Figure 3. Visualization of a crowd scene example with drastic scale and density. The total predicted
count is 998.7, whereas the ground truth is 985.

4.6. Inference Time Calculation Comparison

As illustrated in Table 6, we compared two popular counting approaches with full
supervision, BL [39] and CSRNet [3]; we also make a comparison between two popular
weakly supervised counting methods, Transcrowd-Token [4] and Transcrowd-GAP [4].
The test was performed on an NVIDIA RTX 3060Ti GPU. Despite the longer run time
of SR2 compared to the other methods, excellent performance could be achieved with
only half the parameters due to the fact that our approach optionally merges tokens to
represent the signature of larger objects while corresponding to certain tokens to maintain
the fine-grained features.

Table 6. Calculation resource use of different approaches compared. The bold values of the MAE and
MSE represent the best performance.

Methods Resolution Parameters ↓ Backbone FPS ↑
CSRNet [3] 384 × 384 16.2 M VGG16 21.67

BL [39] 384 × 384 21.6 M VGG19 45.66

Transcrowd-Token [4] 384 × 384 86.8 M vision Transformer 46.41
Transcrowd-GAP [4] 384 × 384 90.4 M vision Transformer 46.73

SR2(ours) 384 × 384 58.6 M ConvMLP 41.56
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4.7. Ablation Study

Scale-ranking module: To demonstrate the impact of our proposed ranking branch, we
removed the scale-ranking module from our proposed method. Specifically, we only used
the MLP encoder, the regression branch, and L1 loss, which were compared with SR2
on the ShanghaiTechA dataset, as illustrated in Table 7. From Table 7, we can find the
impact of the scale-ranking module, which could learn more inner information in the
images. Meanwhile, there is a ratio r that determines the size of I1, I2, . . . , In in Figure 1.
Thus, we selected different ratios to obtain the best performance of the scale-ranking
module. The results are shown in Table 8. From Table 8, we found that the ratio of 0.75
had the best performance. Meanwhile, we also tested the capabilities of the amount of
I = {I1, I2, . . . , In}, as illustrated in Table 9, and we obtained the best performance when
the amount of I was five.

Table 7. The contrast between our proposed method SR2 and its architecture without the ranking
branch and graph stage. The bold values of the MAE and MSE represent the best performance.

Methods
Part A Part B JHU-Crowd++ QNRF NWPU-Crowd

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

SR2 63.9 99.6 8.4 14.0 71.7 294.1 63.9 99.6 115.7 437.2
SR2 (w/o scale-ranking module) 70.2 116.3 10.7 23.1 75.4 297.6 65.7 103.4 125.6 444.6

SR2 (w/o scale-reasoning module) 64.2 104.2 9.5 16.3 72.9 300.8 65.5 99.8 117.8 441.9
SR2 (w/o convolution stage) 81.2 130.6 13.6 32.7 80.0 350.4 80.7 120.1 126.9 487.5

Table 8. The results of different ratios for SR2 on the datasets. The bold values of the MAE and MSE
represent the best performance. The bold values of the MAE and MSE represent the best performance.

Ratios
Part A Part B JHU-Crowd++ QNRF NWPU-Crowd

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

0.7 65.9 102.1 9.8 15.7 74.2 299.6 70.1 103.4 117.3 441.2
0.75 63.9 99.6 8.4 14.0 71.7 294.1 63.9 99.6 115.7 437.2
0.85 67.0 106.2 10.3 16.1 75.2 297.1 69.5 101.0 115.8 438.7

Scale-reasoning module: We further showed the impact of the scale-reasoning module.
Therefore, we removed the scale-reasoning module from SR2, as illustrated in Table 7.
Because the scale-reasoning module can reflect the relationship between the heads and
backgroundin the images well, we found a 4.6% improvement in the MSE.

Table 9. The comparisons of different numbers of ranking images in the scale-ranking module on the
datasets. The bold values of the MAE and MSE represent the best performance.

n
Part A Part B JHU-Crowd++ QNRF NWPU-Crowd

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

1 66.2 106.6 10.1 21.2 77.2 211.3 68.8 102.1 128.9 503.2
3 64.4 108.1 9.8 21.1 75.8 207.6 64.7 104.3 117.4 472.1
5 63.9 99.6 8.4 14.0 71.7 204.1 63.9 99.6 115.7 437.2
6 74.0 113.7 8.7 16.2 72.1 204.1 64.1 99.8 116.9 486.7

The amount of the MLP stages: The MLP stage was used to extract the feature maps from
the input images. When we set the amount of MLP stages as three, the capabilities of our
approach were the best. The details can be seen in Table 10.
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Table 10. Comparisons of different numbers of MLP stages for the basic network. The bold values of
the MAE and MSE represent the best performance.

The Amount of MLP Stages MAE MSE

2 65.7 102.4
3 63.9 99.6
4 64.1 98.5
5 66.2 101.1

The convolution stage: In order to solve the limitations of the dimension of the input
feature map, we only adopted the channel MLP. However, only using the channel MLP
may ignore the spatial information. Thus, we added the convolution stage before the MLP
stages, which can increase the interaction of the spatial information in the images. The
specifics of the convolution stage are shown in Table 7.
The loss function: We set the loss function as L1 + γLrank. γ is a weighting factor reflecting
the ranking loss proportion. We found that the results were better when we set γ as 0.7.
The details can be seen in Table 11.

Table 11. The comparisons of γ for the loss function on the ShanghaiTechA dataset. The bold values
of the MAE and MSE represent the best performance.

γ MAE MSE

0.2 67.1 103.8
0.4 67.6 107.3
0.5 67.2 110.0
0.6 64.3 100.7
0.7 63.9 99.6
0.8 64.1 103.2

5. Conclusions

In this paper, we proposed SR2 for weakly supervised crowd counting. SR2 adopts
an MLP-based framework. The framework leverages the convolution stage and the MLP
stage for deep feature extraction, which can obtain efficient crowd feature representations.
Considering that the MLP architectures ignore the spatial information and the information
of the inner image, we added the scale-reasoning module to fuse the region-to-region
dependency in the images and capture the multiscale information. Then, the fused features
were fed into two branches, which were the regression branch for generating estimated
counts and the scale-ranking module for improving the accuracy of the estimated counts
in the regression branch. SR2 was assessed on four popular datasets for crowd counting,
showing superior results with respect to other excellent approaches. The effectiveness of
our approach was proven by both the quantitative and qualitative results. However, SR2
has many network parameters and is unsuitable for hardware with restricted computational
resources. Besides, we only took into account crowd counting from images and did not
explore crowd counting in videos, which would by appropriate for real-world applications.
In the next step in this process, we will try to extend weakly supervised crowd counting to
video tasks.
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