
Citation: Meng, Y.; Wu, P.; Feng, J.;

Zhang, X. MixMobileNet: A Mixed

Mobile Network for Edge Vision

Applications. Electronics 2024, 13, 519.

https://doi.org/10.3390/

electronics13030519

Academic Editors: Mehdi Sookhak

and Francesco Moscato

Received: 22 December 2023

Revised: 18 January 2024

Accepted: 25 January 2024

Published: 26 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MixMobileNet: A Mixed Mobile Network for Edge
Vision Applications
Yanju Meng 1 , Peng Wu 1,*, Jian Feng 1 and Xiaoming Zhang 2

1 School of Information Science and Engineering, Zhejiang Sci-Tech University, Baiyang,
Hangzhou 310018, China; 202230705148@mails.zstu.edu.cn (Y.M.); 202120604119@mails.zstu.edu.cn (J.F.)

2 Department of Vehicle Engineering, Army Academy of Armored Forces, Dujiakan, Beijing 100072, China;
xhg.1999@tsinghua.org.cn

* Correspondence: wupeng@zstu.edu.cn

Abstract: Currently, vision transformers (ViTs) have rivaled comparable performance to convolutional
neural networks (CNNs). However, the computational demands of the transformers’ self-attention
mechanism pose challenges for their application on edge devices. Therefore, in this study, we propose
a lightweight transformer-based network model called MixMobileNet. Similar to the ResNet block,
this model only comprises a MixMobile block (MMb), which combines the efficient local inductive
bias with the explicit modeling features of a transformer to achieve the fusion of the local–global
feature interactions. For local, we propose the local-feature aggregation encoder (LFAE), which
incorporates a PC2P (Partial-Conv→PWconv→PWconv) inverted bottleneck structure for residual
connectivity. In particular, the kernel and channel scale are adaptive, reducing feature redundancy
in adjacent layers and efficiently representing parameters. For global, we propose the global-feature
aggregation encoder (GFAE), which employs a pooling strategy and computes the covariance matrix
between channels instead of the spatial dimensions, changing the computational complexity from
quadratic to linear, and this accelerates the inference of the model. We perform extensive image
classification, object detection, and segmentation experiments to validate model performance. Our
MixMobileNet-XXS/XS/S achieves 70.6%/75.1%/78.8% top-1 accuracy with 1.5 M/3.2 M/7.3 M
parameters and 0.2 G/0.5 G/1.2 G FLOPs on ImageNet-1K, outperforming MobileViT-XXS/XS/S
with an improvement of +1.6%↑/+0.4%↑/+0.4%↑ with −38.8%↓/−51.5%↓/−39.8%↓ reduction in
FLOPs. In addition, the MixMobileNet-S assembly of SSDLite and DeepLabv3 achieves an accu-
racy of 28.5 mAP/79.5 mIoU at COCO2017/VOC2012 with lower computation, demonstrating the
competitive performance of our lightweight model.

Keywords: lightweight neural networks; image classification; self-attention mechanism; vision
transformer; convolutional neural network

1. Introduction

In recent years, Google successfully applied a transformer (used in the field of natural
language processing (NLP)) to computer vision (CV) and surpassed CNN-based state-of-
the-art (SOTA) models at that time (ResNet152×4 [1]). This has triggered research workers
to pay further attention to transformers, and subsequent work on vision transformers, such
as DeiT [2], SwinT [3], PVT [4], DETR [5], Segformer [6], etc., has been proposed one after
another. However, it is important to note that training ViTs models often requires the use of
GPU clusters (e.g., TPUv3, Nvidia A100) and large-scale training datasets (e.g., ImageNet-
21K [7], JFT-300M), which inevitably consumes significant computational resources.

With the increasing integration of artificial intelligence technology in daily produc-
tion and life fields, such as autonomous driving, mixed reality, 6-DoF robot grasping,
and other edge applications, the demand for feature extraction networks requires fast
devices with lightweight inference. Marginalizing the transformer-based model poses a
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challenge due to its high computation requirements; nevertheless, it serves as inspiration
for our work. Previously, mobile networks like MobileNet [8–10], ShuffleNet [11], Effi-
cientNet, [12]and GhostNet [13] have been dominant for lightweight vision tasks. Despite
having fewer parameters and FLOPs, these models find it difficult to capture global per-
ception implicitly, creating challenges for lightweight CNNs. This, in turn, leads to low
parameterization efficiency and weak inference performance. Through researching models
such as Swin-T [3], PVT-v1 [4], DeiT [2], and T2T-ViT [14], researchers have discovered that
the cascaded self-attention mechanism in ViT can capture long-range feature dependencies,
effectively compensating for the explicit modeling difficulties and lack of input flexibility
in CNNs. However, ViT-pure models lack convolution-like local inductive biases, and their
performance is sensitive to hyper-parameters. To address the limitations of current net-
works, researchers have experimented with combining CNNs and ViTs, including CeiT [15],
CCT [16], and PVT-v2 [17]. This approach has proved successful in boosting the model’s
performance on baseline tasks. Nevertheless, it can lead to a decrease in inference efficiency
due to the operator of ViTs, self-attention, which has a quadratic relationship with input
size, ultimately impacting the model’s inference speed. Therefore, it does not ensure a
balance between the speed and accuracy of resource-limited devices.

Our MixMobileNet achieves competitive performance compared to lightweight con-
volutional neural networks and recent hybrid architecture networks. We strike a balance
between parameters, FLOPs, and performance in our work.

Recently, a lightweight hybrid architecture model named MobileViTv1 [18] has been
designed specifically for mobile devices. It combines the strengths of MobileNetv2 (MV2) [9]
and ViT [19], achieving SOTA performance in various mobile vision tasks. The model’s in-
ference speed is slow, even with only 5.6 M parameters and 2.1 G MAdds, due to the spatial
self-attention mechanism. The visualized research indicates that the MV2 block [9] results
in feature duplication and redundant kernel parameters within the model [20]. Moreover,
lightweight inference is hindered by the limited ability to compute global interactions in
the spatial dimension due to input size constraints. Similarly, EdgeNeXt [21] combines
depth-wise separable convolution and transposed attention mechanisms to introduce a
split depth-wise transpose attention that enhances resource utilization. However, the struc-
tural design of this model is dependent on intricate submodules, such as Res2Net [22],
ConvNeXt [23], and XCA [24]. Moreover, other related works incorporate EdgeViTs [25],
the MobileFormer [26], EfficientFormer [27], and FasterViT [28]. A significant issue is that
these architectures differ from ResNet in terms of simplicity and efficiency, which relies
on complex structures and neural architecture search techniques [29,30]. To enhance the
model’s performance, they rely on neural architecture search techniques or model pruning
means. Therefore, the objective of this study is to create lightweight networks for devices
with limited resources (e.g., Nvidia-AGX) through a fusion of CNNs’ and ViTs’ advantages.
The objective is to enhance the plug-and-play functionality and ease of module integration.

We propose an efficient and lightweight visual architecture named MixMobileNet.
The model’s body employs solely MixMobile block (MMb)as its primary component and
is supported by two interrelated feature extraction blocks: the local-feature aggregation
encoder (LFAE) and the global-feature aggregation encoder (GFAE). These blocks are uti-
lized for constructing information encodings that combine the advantages of convolutional
neural networks’ efficient local-inductive bias with transformers’ dynamic long-range mod-
eling capabilities. This integration leads to enhanced performance effectiveness, as depicted
in Figure 1.
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Figure 1. Comparison of our MixMobileNet models with state-of-the-art (SOTA) lightweight models.

Our contributions are as follows:

• This work proposes a lightweight feature extraction network called MixMobileNet.
It combines the efficient local inductive bias of convolutional neural networks and
the pixel-level long-range global modeling capability of transformers. By using an
effective feature pyramid structure, it aggregates token information in multiple stages
to generate high-density predictive capabilities.

• We propose a plug-and-play MMb as the model’s basic block. In the overall design,
we introduce two layers of encoders: LFAE and GFAE, which are used for local and
global feature extraction and block-level local-global feature fusion, respectively.

• Without introducing complex structures, our models have achieved competitive
results on several benchmark tests. For example, our MixMobileNet-XXS/XS/S
achieve 70.6%/75.1%/78.8% top-1 accuracy on the ImageNet-1K dataset [7]. Addi-
tionally, when combined with SSDLite [9]/DeepLabv3 [31], MixMobileNet-S achieves
28.5 mAP/79.5 mIoU with 8.3 M/6.9 M parameters, resulting in a +2.8%↑/+0.5%↑
improvement over the recent MobileViT-S [18].

The remaining content is organized as follows: Section 2 details the relevant research
advances in lightweight CNNs and ViTs; Section 3 introduces the general design and
detailed description of MixMobileNet; in Section 4, we conduct a series of experiments and
report the final results; and Section 5 summarizes our work.

2. Related Work

CNN-based. In recent years, convolutional neural networks and residual connec-
tion structures, such as ResNet [1], RegNet [30], and DenseNet [32], have significantly
improved the accuracy of image classification. However, for convolutional neural net-
work models with parameters reaching hundreds of M and computational requirements
reaching tens of G FLOPs, both training and inference rely heavily on large-scale GPU
clusters. As a result, it becomes challenging to apply these models to low-powered edge
devices. Therefore, starting with SqueezeNet [33], Iandola et al. [33] begin to explore
the efficiency of deep neural networks in resource-constrained situations. Subsequently,
some lightweight CNN-based models such as MobileNet series [8–10], EfficientNet Lite se-
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ries [12], ShuffleNet series [11], and Huawei’s GhostNet [13] have been proposed, and they
have shown significant improvements in both speed and accuracy. Among them, Howard
et al. [8] propose the depth-wise separable convolution, which reduces the computational
complexity of traditional convolution by nearly an order of magnitude. This innovation
makes MobileNetv1 [8] the first successful network in the field of lightweight models.
Tan et al. [12] propose a new scaling method called compound model scaling, which uni-
formly scales all dimensions of depth/width/resolution using a simple yet highly effective
compound coefficient to improve network performance. This research work is also the
first to simultaneously investigate the impact of depth, width, and resolution on network
performance. Ma et al. [11] propose point-wise group convolution and channel shuffle to
reduce the computational complexity. These structures allow more feature map channels to
encode more information for a given amount of computation, which greatly reduces the
computational overhead while preserving the accuracy of the model. Lin et al. [23] design
a purely convolutional architecture called ConvNeXt [23] by drawing inspiration from
the ResNet [1] and Swin-T [3] networks and combining some design concepts of the ViT
architecture. In the ConvNeXt [23] network, the authors innovatively change the number
of blocks in each stage of ResNet50 [1] from [3, 4, 6, 3] to [3, 3, 9, 3], which improves the
accuracy at the cost of increasing the computational complexity. Additionally, inspired by
the design of the stem layer in ResNet [1], we modify the 7 × 7 convolution with a stride of
2 to a 4 × 4 convolution with a stride of 4. This modification further improves the accuracy
of the model. The ConvNeXt [23] network architecture design has great significance to
many later network designs. Recently, Chen et al. [34] proposed a novel partial convolu-
tion (PConv) that can extract spatial features more efficiently by cutting down redundant
computation and memory access simultaneously. Furthermore, the point-wise convolu-
tion (PWconv) is appended to PConv to effectively integrate information from all channels.
Their effective receptive field together on the input feature maps looks like a T-shaped
convolution, which focuses more on the center position compared to a regular convolution
uniformly processing a patch, allowing the network to be efficiently represented.

ViT-based. After the remarkable success of transformer encoding in the field of natu-
ral language processing (NLP), Dosovitskiy et al. [19] achieve comparable performance
to convolutional architectures by serializing image sequences and feeding them into the
transformer framework. Subsequently, its effectiveness has become increasingly prominent
in tasks such as image classification, object detection, and autonomous driving, making
it a widely adopted tool in computer vision (CV). However, transformers are typically
computationally intensive. Specifically, they generate long sequences of feature tokens
from high-resolution image inputs, which can increase the model’s inference workload
and hinder its generalization to downstream tasks such as object detection and image
segmentation. Additionally, achieving equivalent local inductive capabilities to CNNs with
visual transformers requires training on large-scale datasets. Finally, the ViTs frameworks
are sensitive to hyper-parameters and require patient and careful parameter tuning to
achieve good convergence. To address the aforementioned issues, researchers have primar-
ily focused on upgrading transformers from two perspectives: training settings and model
architecture design. From the perspective of training settings, Touvron et al. have achieved
impressive model performance in CaiT [35] and DeiT-III [2] by employing sophisticated
data augmentation strategies and training techniques such as Mixup, CutMix, and Rand
Augment. They have demonstrated outstanding results without relying on large propri-
etary datasets like JFT-300M. In DeiT [2], a distillation token and soft-distillation technique
are used to compress the parameters of a powerful but large and difficult-to-train teacher
model from 86 M to 5 M (DeiT-Tiny [2]). This compression leads to a tenfold improvement
in inference speed. From the perspective of model architecture design, researchers have
focused on two main directions: self-attention input resolution and attention mechanisms
with low computational cost. PVT-v1 [4] emulates the feature map pyramid architecture
found in CNNs by transforming the fixed 16× downsampling of the original ViTs into a
multi-scale processing of the image. To address the issues of partial loss of spatial infor-
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mation at image edges and quadratic growth in computational complexity in ViT models,
Liu et al. introduce a novel approach in Swin-T [3] and LightViT [36]. They incorporate
a hierarchical feature map and shifted-window mechanisms to reduce the computational
memory and complexity from quadratic to linear growth. As a result, these models exhibit
superior performance compared to the original ViT [19] and DeiT models [2]. Deformable
DETR [37] introduces the (multi-scale) deformable attention modules, which only attend
to a small set of key sampling points around a reference point, regardless of the spatial
size of the feature maps. This reduces computational complexity while maintaining a
large receptive field. PVT [4], ResT [38], and CMT [39] use convolution to reduce the
number of tokens corresponding to keys and values, thereby decreasing computational
complexity. SOFT [40] uses the Gaussian kernel function to replace the softmax dot-product
similarity and samples from the sequence by convolution or pooling to achieve a low-rank
approximation to the original attention matrix.

Hybrid network. Compared to CNN-pure and ViT-pure models, the models that
combine CNNs and ViTs not only have fewer parameters and faster inference but also
demonstrate a significant improvement in network performance. Application deployment
of ViT models poses significant challenges, especially on resource-constrained hardware
like mobile devices. Recently, researchers focusing on mobile networks have paid attention
to this problem. For instance, Apple’s MobileViTv1 [18] integrates the strengths of CNN
into the transformer structure to address the training, transfer, and adaptation challenges
inherent in transformer networks. Simultaneously, a core MobileViT block [18] is proposed
to accelerate the inference and convergence speed of the network, making it more stable
and efficient. Maaz et al. [21] propose a lightweight network called EdgeNeXt [21],
which achieves a comprehensive balance between model size, parameters, and FLOPs.
Furthermore, they introduce an efficient split depth-wise transpose attention (STDA) [21]
encoder, enabling the effective fusion of local and global information representations. Pan
et al. [25] propose a high-cost local–global–local (LGL) information exchange bottleneck
based on the optimal integration of self-attention and convolution. Additionally, the LGL
approach uses a sparse attention module to further mitigate the overhead of self-attention,
achieving a better trade-off between accuracy and latency. Liu et al. [41] propose an
EfficientViT block that includes a sandwich layout and cascaded group attention (CGA).
This design aims to further reduce the inference latency caused by the extensive operations
in the multi-head self-attention (MHSA) and the computational redundancy between
attention heads. Li et al. [42] proposed a CNN-transformer hybrid architecture that utilizes
the next hybrid strategy (NHS) strategy to stack the next convolution block (NCB) and
next transformer block (NTB), enabling the fusion of local and global information and
thus further enhancing the network’s modeling capability. Although most lightweight
networks are designed with the goal of having fewer parameters, lower computational
requirements, and low latency, they often require complex module designs, which greatly
limit the model’s usability and reusability. Therefore, further research is needed to explore
how to design a concise and efficient mobile model.

3. MixMobileNet
3.1. Overview

In order to design a lightweight vision transformer module that is simple, efficient,
and suitable for deployment on mobile devices, we draw inspiration from the feature
pyramid structure [3,43] in convolutional neural networks. By reducing the spatial res-
olution stage-by-stage [4,42,44] and expanding the channel dimensions simultaneously,
the local and global features are continuously aggregated by two encoders LFAE and GFAE.
At the local level, we integrate ResNet [1], ConvNeXt [23], and Partial-Conv [34] as the
foundation and introduce a PC2P(Partial-Conv→PWconv→PWconv) inverted bottleneck
structure to capture fine-grained information. At the global level, tokens generated from
two-dimensional features are continuously aggregated to generate rich semantic expres-
sions. The throughput of the module is accelerated by employing average pooling and
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channel attention strategies. By integrating local–global information, the extraction of
features of different dimensions is enhanced, leading to improved network performance.

Our MixMobileNet is composed of four stages in structure, and each stage is stacked
by MMb, which incorporates LFAE and GFAE, as shown in Figure 2. Specifically, the input
image of size X ∈ RH×W×3 passed through the stem layer at the beginning of the network,
which is composed of 4 × 4 non-overlapping convolution and LayerNorm, resulting in
X ∈ R H

4 ×W
4 ×C1 feature maps. Then, the output feature map is passed to the MMb, which is

only composed of LFAE encoders. The second stage begins with a downsampling layer
implemented using 2 × 2 strided convolution that reduces the spatial sizes by half and
increases the channels, resulting in X ∈ R H

8 ×W
8 ×C1 feature maps, and then passes through

the MMb again. This layer consists of LFAE and GFAE to extract local and global features.
The output feature maps are further passed to the third and fourth stages to generate
X ∈ R H

16×
W
16×C1 and X ∈ R H

32×
W
32×C1 dimensional features, respectively, and then the global

average pooling and fully connected layer are used to generate the prediction results.
In addition, we set the positional encoding in the MMb of each stage, which can further
improve the network expression performance. The configuration of the three variants of
our model is shown in Table 1.
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Figure 2. The overall framework and sub-modules of the model. (a) The overall architecture
of the network adopts a feature pyramid structure, divided into 4 stages to handle visual tasks,
with each stage including a MobileMix block and a downsampling block. (b) MixMobile block (MMb),
consisting of two parts, global-feature aggregation encoder (GFAE) and local-feature aggregation
encoder (LFAE). (c) GFAE. The first operation of average pooling is performed on the input tensor,
followed by feeding into the channel dimension level, self-attention, which expands the completed
encoded features to the input scale via the deconvolution operation, and the final MLP part will
abstract the expression of this transformer. (d) LFAE. The inverted bottleneck structure consists of
an efficient convolution operator F and a dual PWconv, the symbol F can be denoted as DWconv or
PConv, the latter is chosen in this paper, and the kernel size is adaptive at each stage.
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Table 1. Configuration of the three MixMobileNet variants. Channels: number of channels per stage.
#Depths: total number of blocks of global-feature aggregation encoders (GFAE) and local-feature
aggregation encoders (LFAE) per stage. #LFAE: number of LFAE modules. #GFAE: number of GFAE
modules. #Params: the number of parameters.

Model Channels #Depths #LFAE #GFAE MAdds #Params

MixMobileNet-XXS [24, 48, 88, 168] [2, 2, 6, 2] [2, 1, 5, 1] [0, 1, 1, 1] 0.2 G 1.5 M
MixMobileNet-XS [32, 64, 100, 192] [3, 3, 9, 3] [3, 2, 4, 4] [0, 1, 1, 1] 0.5 G 3.2 M
MixMobileNet-S [48, 96, 160, 304] [3, 3, 9, 3] [3, 2, 4, 4] [0, 1, 1, 1] 1.2 G 7.3 M

3.2. MixMobile Block

The self-attention mechanism in transformers helps the model explicitly establish
global dependencies, thereby exhibiting superior performance compared to convolutional
neural networks. When we study the work of Touvton et al. [2] and Simonyan et al. [45],
we find some prominent problems: (a) for traditional ViTs, self-attention in the spatial
dimension imposes a huge computational overhead due to the input resolution, and there
is a huge challenge in deploying visual transformers on edge devices. (b) Although large
kernel convolution adds more shape bias, they may overlook the capture of fine-grained
features. Additionally, as the kernel size increases, the number of model parameters and
FLOPs changes quadratically. To address the above problems, we propose a simple and
efficient module called MMb. One of the GFAEs can effectively encode global information
through the average pooling channel dimensionality reduction computation operation.
This technique significantly reduces the computational overhead of the self-attention layer.
The LFAE adopts a stage-by-stage adaptive kernel-size PConv [34] convolution. Smaller
kernels are used at lower levels to extract local information, while larger kernels are used
at deeper levels to capture more abstract global semantic features. This enables our model
to obtain multi-scale features ranging from details to abstraction.

GFAE. To reduce redundancy between attention matrices, we employ average pooling
on input feature tensors. In addition, we use cross-covariance across channels to generate
attention feature maps, which linearly reduce the complexity of the original self-attention
operation and effectively encode global information in an implicit manner. The details are
as follows: given a feature map with input shape X(∈ RH×W×C), we compute query (Q),
key (K), and value (V) projections using three linear layers, yielding Q = WQX(∈ RHW×C),
K = WKX(∈ RHW×C), and V = WVX(∈ RHW×C), where WQ(∈ RC×C), WK(∈ RC×C)
and WV(∈ RC×C) are the projection weights of Q, K, and V, respectively. Then, L2 norm is
applied to Q and K before computing the cross-covariance attention as it stabilizes the train-
ing, and we apply the dot-product across the channel dimensions between QT(∈ RC×HW)
and K(∈ RHW×C) along the spatial dimension, i.e., (C × HW) · (HW × C), producing
a (C × C) softmax-scaled attention score matrix. To obtain the final attention maps, we
multiply the scores by V(∈ RHW×C) and add them up. Finally, a residual connection is
employed to ensure the flow of original fine-grained information from the previous stage,
and the mathematical formulation of the above is as follows:

X̂ = Attention(Q, K, V) + X (1)

S.t., Attention(Q, K, V) = V · so f tmax
(
∥QT∥2 · ∥K∥2

)
(2)

where X is the input and X̂ is the output feature tensor. To achieve a smooth distribution of
attention, we adopt the dropkey [46] regularization method in self-attention. By setting the
key to a dropped object and verifying that it can penalize the high attention value portion,
this approach alleviates the overfitting problem in self-attention. As the only nonlinear
unit in self-attention, MLP provides high-latitude feature abstraction that can enrich the
expressive power of the model even more. It uses two 1 × 1 point-wise convolutional
layers, layer normalization (LN) and Gaussian error linear unit (GELU) activations to



Electronics 2024, 13, 519 8 of 21

generate nonlinear features. Specifically, channel upscaling is performed in the middle of
the PW-conv layer at an adaptive scale. Our GFAE can be expressed as:

XAvg_attn = ϕ(pooling(X) + Attention(pooling(X))) (3)

XMLP = PWconv
(
δ(PWconv(σ(XAvg_attn)))

)
(4)

Xout = XAvg_attn + XMLP (5)

where X is the input, Xout is the output feature tensor, while XAvg_attn is the output feature
tensor after the Avg-pooling layer and self-attention, ϕ denotes the deconvolution operation
(ConvTranspose2d), δ is the standard LN, and σ is the GELU activation.

LFAE. We conducted an ablation study on the selection of the LAFE by comparing
three methods: Figure 3a, a traditional convolution operation; Figure 3b, a depth-wise
convolution; and Figure 3c, the method proposed in this study (Partial-Conv+SE). Fur-
thermore, visual analysis (as shown in Figure 4) reveals that Rb [1] and MV2 [9] contain
more salient n × n kernels in their intermediate feature parameters, such as the n × n fuzzy
kernels with a large central value and smaller surrounding values. This redundancy leads
to feature map repetition and unnecessary computation, which is detrimental to the design
of lightweight models. From the results of the quantitative analysis, for the same number
of parameters, the MAdds of our LFAE is 1.2 G, which is lower than that of Rb and MV2
by −69.2%↓ and −25%↓, respectively. Additionally, the network accuracy is improved
by 6.1% and 1.1% compared to Rb and MV2. In Section 4, we perform a more specific
ablation design, and the results show that the LFAE parameterization is more efficient and
can improve the model’s performance. Our approach is as follows:
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Figure 3. Local-Feature Aggregation Encoder. (a) ResNet block (Rb), which starts with a 1 × 1 point-
wise convolution for channel dimension upgrading and utilizes an N × N traditional convolution
for feature extraction, followed by a PWconv that shrinks the dimensionality to coincide with the
input features, forming the PWconv→Conv→PWconv connection. (b) MobileNetv2 block. What sets it
apart from Rb is that it replaces the regular N × N convolution with the N × N depth-wise separable
convolution. (c) Local-feature aggregate encoder. Our approach uses the PConv and forms the PC2P
(Partial-Conv→PWconv→PWconv) concatenation to reduce the redundancy of feature mapping.

Figure 3c shows that the LFAE’s structural design includes an inverted bottleneck
structure called PC2P. The model uses PConv convolutions with kernel sizes of 3, 5, 7, and 9
for stages 1, 2, 3, and 4, respectively. Local features are represented using two point-wise
convolutions, and standard layer normalization (LN) [47] and Gaussian error linear unit
(GELU) [48] activation functions are used for nonlinear feature mapping. The network’s
sensory field in the deep layers is increased by adding residual structural connections to
implement multi-scale spatial mixing. Additionally, the SE module [49] performs soft-
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attention operations on the channel dimensions to highlight the information between the
input channels. The mathematical expression for the above description is as follows:

X̂ = SE(X + Linear(Linear(δ(PConv(X))))) (6)

where X denotes the input feature map of shape H × W × C, Linear is a point-wise con-
volutional layer followed by GELU, PConv is a kernel for k × k PConv convolution, δ is a
normalization layer, SE is the channel attention module, and X̂ denotes the output feature
map of the LFAE module.

PConv

1000

2000

3000

4000

MV2MV2ResNetResNet

Throughput

Parameters MAdds Throughput

2080

2716
3326

MAdds = 219M

Param = 0.0031M

MAdds = 159M

Param = 0.0025M
MAdds =2.60G

Param = 0.039M

a ResNet 50:layer3.1.conv2 b ShuffleNet V2:stage4.3.branch2.3

c MobileNet V2:fature_5 d MobileViT V1:fature_7 (e)

Figure 4. (a–d) Kernel visualization plots and kernel weight distributions for ResNet [1], ShuffleNet-
v2 [50], MobileNetv2 [9], and MobileViTv1 [8] intermediate feature layers. (e) The comparison
graph in terms of parameters, MAdds, and throughput among traditional convolution, DWconv
convolution, and PConv [34] convolution as individual layer structures is presented. The experiments
were conducted on a single RTX3090 GPU, with an input tensor shape of 128 × 16 × 256 × 256.
From the results shown in the graph, it can be observed that the proposed PConv convolution module
exhibits lower parameter count and MAdds, while also demonstrating faster data throughput.

4. Experiment
4.1. Datasets and Implementation

Datasets. We evaluate our MixMobileNet on different visual tasks, and we use
ImageNet-1K [7], CIFAR-10/100 [51], and Oxford-102 datasets [52] in our classification
experiments to fully evaluate the performance of our network on different datasets. For tar-
get detection, we use the COCO2017 dataset [53]. For semantic segmentation, we use the
PASCAL VOC 2012 dataset [54]. The details are shown in Table 2.

Table 2. Datasets used in this paper .

Dataset Task Train Val Resolution #Classes

ImageNet-1K [7] Classification 1.28 M 50 K 256 × 256 1000
CIFAR-10 [51] Classification 50 K 10 K 256 × 256 10
CIFAR-100 [51] Classification 50 K 10 K 256 × 256 100
MINST [55] Classification 60 K 10 K 256 × 256 10
Fashion [56] Classification 60 K 10 K 256 × 256 10
Oxford-102 [52] Classification 6149 1020 256 × 256 102
COCO2017 [53] Object detection 118 K 5 K 320 × 320 80
PASCAL VOC 2012 [54] Segmentation 1464 1449 512 × 512 20

Implementation Details. We trained our MixMobileNet model with an input reso-
lution of 256 × 256 and an effective batch size of 256. All of the models were trained for
300 epochs using the AdamW [57] optimizer with a learning rate and weight decay of
5 × 10−4 and 0.05, respectively. We used a cosine learning rate schedule [58] and a linear
warmup of 20 epochs. The data augmentations used during training are random resized
crop (RRC), horizontal flip, and AutoAugment [59], where AutoAugment [59](rand-m9-
mstd0.5-inc1) is only used for the MixMobileNet-S model. In addition, we also used a
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multi-scale sampler [18] with a drop path [60] and an EMA [61] with a momentum of 0.9995
during training. We also train and report the accuracy of our MixMobileNet-S model at
224 × 224 resolution. MixMobileNet is implemented by PyTorch [62], based on TIMM [63],
and trained with 2× Nvidia RTX3090 GPUs. Furthermore, in Appendix A, we present the
PyTorch-style pseudocode of GFAE and LFAE for easy implementation.

4.2. Visual Tasks

Small-scale Datasets Training. To thoroughly validate the network performance of
MixMobileNet, we adjust the resolution of input images to 256× 256 and retrain the model
for 300 epochs on CIFAR-10/100 [51], MINST [55], Fashion-MNIST [56], and Oxford-102
datasets [52] without additional data, as shown in Table 3. Our method achieves 96.56%/
79.71% top-1 accuracy with 7.3 M parameters and 1.2 G MAdds on CIFAR-10/100 [51]. Com-
pared to traditional convolution models, MixMobileNet exhibits a significant reduction in
model parameters and computational complexity, which makes it particularly beneficial
for resource-constrained edge devices. For instance, our network achieves an improve-
ment of +6.29%↑/+6.05%↑ on CIFAR-10 [51] and +13.25%↑/+12.87%↑ on CIFAR-100 [51]
compared to ResNet18/34 [1] while reducing the model parameters by −34.8%↓/−65.7%↓
and decreasing FLOPs by −50%↓/−75%↓. The recent vision transformers have achieved
remarkable results in visual tasks, but they also heavily rely on training with large-scale
datasets. For example, ViT-12/16 [19] only achieved an accuracy of 57.97% on CIFAR-
100 [51]. Currently, SOTA models based on hybrid structures have significant advan-
tages, such as MobileViTv1-S [18]/EdgeNeXt-S [21]/EdgeViT-XS [25], which achieves
96.26%/96.07%/96.36% top-1 accuracy on CIFAR100, significantly reducing the model
parameters and MAdds. Our MixMobileNet based on a hybrid architecture aggregates the
advantages of convolution and transformer to beat recent SOTA models on multiple small-
scale datasets (CIFAR10/100 [51], MINIST [55], Fashion-MNIST [56], Oxford-102 [52]).

Table 3. Comparison of classification performance on fractional sets. C-10: dataset CIFAR-10 [51].
C-100: dataset CIFAR-100 [51]. O-102: dataset Oxford-102 [52]. #Params: number of parameters.

Model C-10 C-100 MINST Fashion O-102 #Params MAdds

ResNet18 [1] 90.27% 66.46% 99.80% 94.78% 62.42% 11.2 M 2.4 G
ResNet34 [1] 90.51% 66.84% 99.77% 94.78% 62.35% 21.3 M 4.8 G

MobileNetv2 [9] 91.02% 67.44% 99.75% 93.93% 64.76% 8.9 M 1.0 G

ResNet-1k-v2 [64] 95.38% — — — — 10.3 M 1.6 G
Proxyless-G [65] 97.92% — — — — 5.7 M —

ViT-12/16 [19] 83.04% 57.97% 99.63% 93.61% 53.73% 85.6 M 17.6 G
CVT-7/8 [44] 89.79% 70.11% 99.69% 94.49% — 3.7 M 0.06 G
CCT-7/3×2 [16] 95.04% 77.72% 99.76% 95.16% — 3.9 M 0.29 G

MobileViTv1-S [18] 96.26% 78.18% 99.53% 94.60% 70.97% 5.6 M 2.0 G
EdgeNeXt-S [21] 96.07% 77.33% 99.67% 95.10% 69.34% 5.6 M 1.3 G
EdgeViT-XS [25] 96.36% 78.62% 99.71% 95.21% 67.28% 6.7 M 1.1 G
MixMobileNet-S 96.56% 79.71 99.82% 95.37% 75.88% 7.3 M 1.2 G

ImageNet-1K Dataset Training. We compare MixMobileNet with a variety of baseline
models, including classic efficient CNN-pure, ViT-pure, and more recent hybrid models
with SOTA performance.

Comparison with CNNs. Thanks to depth-wise separable convolution, the family of
lightweight CNN-based models (e.g., MobileNet [8] and ShuffleNet [11]) has significantly
reduced their parameters and computational complexity. However, this reduction also
leads to a severe degradation in network performance. For example, MobileNetv2-1.40 [9]
and ShuffleNetv2-2.0× [11], respectively, attain 74.4% and 74.9% accuracy on ImageNet with
6.9 M and 7.4 M parameters. Surprisingly, our MixMobileNet-XS achieves 75.1% accuracy
on the ImageNet-1K dataset [7] with only about half the parameter size of the former.
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In comparison, our model improves accuracy by +0.7/+1.7/+0.2%↑. This is attributed to
the more efficient LFAE used in our network, which incorporates an adaptive PConv [34]
that significantly reduces model parameters by changing the adaptive kernel size and
convolutional computation ratios. This further reduces the redundancy of image features
and computations, allowing the model to achieve efficient representation.

Comparison with ViTs. Recent ViTs have outperformed traditional CNNs in the visual
domain. According to Table 4, MobileViTv1-XS [18]/MobileFormer-96M [26] /PVTv2-
B0 [17] achieve 74.7%/ 72.8%/70.5% accuracy. These models perform similarly to CNN-
pure, but their FLOPs metric raises concerns due to their high computational requirements.
To address this issue, MobileViTv2-0.5 [66], EfficientViT-M1 [41], and EdgeViT-XS [25]
attempt to use various complex modules such as MV2 block [9], Res2Net [22], etc. However,
these units require patient combination and parameter tuning, which makes it difficult to
stack modules as straightforwardly as in ResNet [1]. Our MixMobileNet takes a holistic
design approach, similar to Rbs [1], to achieve higher accuracy through simple layer-by-
layer connections. This design method significantly reduces model complexity and is easy
to optimize and deploy.

Table 4. Comparison of classification performance on the ImageNet-1K dataset [7]. We trained
the family of MixMobileNet models from scratch on the ImageNet-1K [7], where the XXS/XS/S
variants achieve 70.6/75.1/78.8% top-1 accuracy, respectively, and our approach achieves competitive
performance compared to recent lightweight work.

Model #Params FLOPs Input Top-1 Date

MobileNetv1 [8] 2.6 M 0.32 G 224 × 224 68.4 ICLR2017
EfficientViT-M1 [41] 3.0 M 0.2 G 224 × 224 68.4 CVPR2023
MobileNetv3-L-0.50 [10] 2.5 M 0.1 G 224 × 224 68.8 ICCV2019
MobileViTv1-XXS [18] 1.3 M 0.4 G 256 × 256 69.0 ICLR2022
ShuffleNetv2 1.0 × [50] 2.3 M 0.6 G 224 × 224 69.4 ECCV2018
MobileViTv2-0.5 [66] 1.4 M 0.5 G 256 × 256 70.2 arXiv2022
PVTv2-B0 [17] 3.4 M 0.6 G 224 × 224 70.5 CVMJ 2022

MixMobileNet-XXS 1.5 M 0.2 G 256 × 256 70.6 (Ours)

EfficientViT-M2 [41] 4.2 M 0.2 G 224 × 224 70.8 CVPR2023
MobileFormer-96M [26] 4.6 M 0.1 G 224 × 224 72.8 CVPR2022
MobileNetv3-L-0.75 [10] 4.0 M 0.2 G 224 × 224 73.3 ICCV2019
EfficientViT-M3 [41] 6.9 M 0.3 G 224 × 224 73.4 CVPR2023
MobileNetv2-1.40 [9] 6.9 M 0.6 G 224 × 224 74.4 CVPR2018
MobileViTv1-XS [18] 2.3 M 1.0 G 256 × 256 74.7 ICLR2022
MobileViTv2-0.75 [66] 2.9 M 1.0 G 256 × 256 74.7 arXiv2022
ShuffleNetv2-2.0 × [50] 7.4 M 0.6 G 224 × 224 74.9 ECCV2018

MixMobileNet-XS 3.2 M 0.5 G 256 × 256 75.1 (Ours)

DeiT-Tiny [2] 5.7 M 1.3 G 224 × 224 72.2 ICML2021
TNT-Tiny [67] 6.7 M 1.4 G 224 × 224 73.9 arXiv2022
ViT-C [68] 4.6 M 1.1 G 224 × 224 75.3 NeurIPS2021
T2T-ViT-12 [14] 6.9 M 1.9 G 224 × 224 76.5 ICCV2021
MobileFormer-214M [26] 9.4 M 0.2 G 224 × 224 76.7 CVPR2022
GhostNet 1.0 × [13] 5.2 M 0.1 G 224 × 224 77.0 CVPR 2020
EfficientNet-B0 [12] 5.3 M 0.4 G 224 × 224 77.1 ICML2019
XCiT-T12 [24] 6.7 M 1.3 G 224 × 224 77.1 NIPS2021
EfficientViT-M5 [41] 12.4 M 0.6 G 224 × 224 77.1 CVPR2023
PoolFormer-S12 [69] 11.9 M 1.8 G 224 × 224 77.2 CVPR2022
ResNet-101 [1] 44.5 M 7.9 G 224 × 224 77.4 arXiv2015
CoaT-Lite-Tiny [70] 5.7 M 1.6 G 224 × 224 77.5 ICCV2021
EdgeViT-XS [25] 6.7 M 1.1 G 256 × 256 77.5 ECCV2022
MobileFormer-294M [41] 11.4 M 0.3 G 224 × 224 77.9 CVPR2022
MobileViTv2-1.0 [66] 4.9 M 1.9 G 256 × 256 78.1 arXiv2022
MobileViTv1-S [18] 5.6 M 2.0 G 256 × 256 78.4 ICLR2022
PVTv2-B1 [17] 13.1 M 2.1 G 224 × 224 78.7 CVMJ 2022

MixMobileNet-S 7.3 M 0.9 G 224 × 224 78.4 (Ours)
MixMobileNet-S 7.3 M 1.2 G 256 × 256 78.8 (Ours)
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Comparison with Hybrid Models. In Table 4, we compare our MixMobileNet with recent
ViT-based models and demonstrate excellent performance. By using fewer parameters
and FLOPs, MixMobileNet achieves better performance. For instance, MixMobileNet-XXS
obtains 70.6% top-1 accuracy, surpassing EfficientViT-M1 [41] and MobileViTv1-XXS [18]
with absolute margins of 2.2% and 1.6%, respectively. Surprisingly, our MixMobileNet-
XS attains 75.1% top-1 accuracy, outperforming MobileFormer-96M [26]/ EfficientViT-
M2 [41]/MobileViTv1-XS [18] +2.3%↑/+4.3%↑/+0.4%↑. Finally, our MixMobileNet-S model
achieves 78.8% top-1 accuracy on ImageNet with only 3.2 M parameters, surpassing to
T2T-ViT-12 [14]/DeiT-Tiny [2]/CoaT-Lite-Tiny [70] by +2.3%↑/+6.6%↑/+1.3%↑.

Object Detection. We used MixMobileNet-S pre-trained on ImageNet-1K [7] as the
backbone of SSDLite [9] to fine-tune the model on the COCO2017 dataset [53] at 320 × 320
resolution. We used smooth L1 and cross-entropy losses for object localization and classi-
fication, respectively, and evaluated the performance using mAP@IoU on the validation
set. Our experiments begin with 200 epochs of trunk weight freezing and 50 epochs of
fine-tuning experiments on 2 Nvidia-RTX3090 GPUs, respectively, with an effective batch
size of 64, where we use a cosine learning rate scheduler and L2 weight decay. Furthermore,
we compared MixMobileNet-S with efficient models—MobileNetv1 [8], MobileNetv2 [9],
and MobileNetv3 [8]. The results are presented in Table 5. Specifically, MixMobileNet
consistently outperforms the MobileNet [8] backbone and performs competitively with the
MobileViT [18] backbone. Compared to MobileNetv2 [9]/MobileNetv3 [10]/EdgeNeXt-
S [21], MixMobileNet achieves an improvement of +22.4%↑/+22.8%↑/+2.1%↑mAP, respec-
tively. With fewer MAdds, our MixMobileNet obtains 28.5 mAP, 20.6% fewer MAdds than
MobileViT. The results of the visualization are shown in Figure 5.

Table 5. Comparison of MixMobileNet Object detection performance with state-of-the-art (SOTA)
SSDLite models on COCO2017 [53].

Backbone #Params MAdds mAP

MobileNetv3 [10] 5.0 M 0.6 G 22.0
MobileNetv2 [9] 4.3 M 0.8 G 22.1
MobileNetv1 [8] 5.1 M 1.3 G 22.2

MobileViTv1-S [18] 5.7 M 3.4 G 27.7
EdgeNeXt-S [21] 6.2 M 2.1 G 27.9
MixMobileNet-S 8.3 M 2.7 G 28.5

Figure 5. Results of our model for object detection on the COCO2017 dataset [53]. This result
shows that our method can effectively localize and classify objects in different scenes.

Semantic Segmentation. We integrate MixMobileNet with DeepLabv3 [31] and evalu-
ate its performance by fine-tuning it 200 epochs on the PASCAL VOC 2012 dataset [54] with
an input resolution of 512 × 512. In Table 6, our model obtains 79.5 mIOU on the valida-
tion dataset. Our MixMobileNet significantly outperforms the ViT-based MobileNetv1 [8]
and MobileViT-S [18] in all aspects, surpassing MobileNetv1 [8]/MobileViT-S [18] by
+5.2%↑/+0.5%↑ mIOU and a reduction of approximately −31.0%↓/−28.5%↓ in MAdds.
The qualitative segmentation results of the model are shown in Figure 6.
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Table 6. Comparison of MixMobileNet semantic segmentation performance with SOTA DeepLabv3
models on the PASCAL VOC 2012 dataset [54]. # params of MixMobileNet denotes the number of
parameters in millions of the encoder/backbone architecture only.

Feature Backbone
DeepLabv3

Params MAdds mIoU

MobileNetv1 11.1 M 14.2 G 75.3
MobileNetv2 4.5 M 5.8 G 75.7
MobileViTv2-1.0 13.3 M — 78.9
MobileViT-S 6.4 M 13.7 G 79.1
MixMobileNet-S 6.9 M 9.8 G 79.5

aeroplane sheep boat person horse motorbike dog bird

Figure 6. Semantic segmentation results using Deeplabv3 [31] with MixMobileNet as its backbone.

4.3. Ablation Study

Throughput Comparison. In Table 7, we provide the throughput evaluation results
comparing MixMobileNet with MobileViT [18,66]. The test platforms are i9-11900K CPU,
Nvidia-RTX 3090 GPU, and Nvidia-AGX with a resolution of 256 × 256 and a batch size of
256. The results show that our MixMobileNet is faster on all three platforms. Compared
to MobileViTv1-XXS [18] and MobileViTv1-XS [18], MobileViTv1-S [18] exhibits a speed im-
provement of +78.81%↑/+71.59%↑/+64.81%↑ on GPU, +60.22/+61.04/+53.40%↑ on CPU,
and +13.63%↑/+23.50%↑/+9.82%↑ on Nvidia-AGX. The experimental results show that our
MixMobileNet has a better speed-accuracy trade-off compared to recent methods (see Figure 7).

Table 7. Comparison of throughput on CPU/GPU/Nvidia-AGX, with * denoting an input size of
224 × 224 and the rest of the inputs being 256 × 256.

Method #Params MAdds CPU GPU Nvidia-AGX Accuracy

MobileViTv1-XXS [18] 1.3 M 0.4 G 26.9 ms 527.1 us 4.62 ms 68.7%
MobileViTv2-0.5 [66] 1.4 M 0.5 G 15.4 ms 327.2 us 4.09 ms 70.2%
MixMobileNet-XXS 1.5 M 0.2 G 10.7 ms 111.7 us 3.99 ms 70.6%
PVTv2-B0 [17] 3.4 M 0.6 G 20.5 ms 477.3 us 7.93 ms 70.5%
Twins-SVT-Tiny [71] 4.1 M 0.6 G 21.8 ms 596.3 us 17.93 ms 71.2%
Uniformer-Tiny * [72] 3.9 M 0.6 G 25.7 ms 656.7 us 11.85 ms 74.1%
MobileViTv1-XS [18] 2.3 M 0.9 G 48.0 ms 705.5 us 8.17 ms 74.8%
MixMobileNet-XS 3.2 M 0.5 G 18.7 ms 200.4 us 6.25 ms 75.1%
TNT-Tiny * [67] 6.7 M 1.4 G 31.3 ms 788.5 us 32.03 ms 73.9%
T2T-ViT-12 [14] 6.9 M 1.9 G 30.5 ms 784.0 us 11.30 ms 76.5%
MobileViTv1-S [18] 5.6 M 2.0 G 60.3 ms 902.5 us 9.98 ms 78.4%
PVT-v2-B1 [17] 14.0 M 2.1 G 33.4 ms 796.2 us 11.59 ms 78.7%
MixMobileNet-S 7.3 M 1.2 G 28.1 ms 317.5 us 9.00 ms 78.8%
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Figure 7. Accuracy vs. latency and throughput (a) Accuracy vs. latency of our model on Nvidia-AGX.
(b) Design of local feature extractor selection.

Ablation design for LFAE. In Table 8, we perform ablation experiments to investigate
the impact of adaptive kernel size, adaptive channel number, and soft attention mechanism
on the overall performance of the network regarding the design choice for the local feature
extractor (Table 8). For the same channel expansion ratio and kernel size, the traditional
PCP(PWconv→Conv→PWconv) bottleneck structure performs (deep) convolution opera-
tions in the channel dimension, leading to higher memory access, significant latency, and a
decrease in overall computational speed that cannot be ignored. Our LFAE uses the PC2P
inverted bottleneck structure to shift the convolution operation out of the high-dimensional
feature space, resulting in a significant reduction in the MAdds of the model for a certain
number of parameters. Compared to the Rb [1] and MV2 block [9], the LFAE reduces
MAdds by −69.2%↓ and −25%↓, respectively.

Table 8. Ablation design for localized feature extractors.

Item Combination Adaptive Kernel Adaptive Channel SE #Params MAdds Throughout (Images/s) Top-1 ↑
1 ResNet 7.3 M 3.9 G 2723 72.7%
2 MV2 7.3 M 1.6 G 1557 77.7%

3 PConv 8.1 M 1.8 G 2062 77.8%
4 PConv ✓ 7.6 M 1.4 G 2155 78.0%
5 PConv ✓ ✓ 7.3 M 1.2 G 2401 78.4%
6 PConv ✓ ✓ ✓ 7.3 M 1.2 G 2326 78.8%

As shown in Table 8, in the design of our LFAE, when we set the kernel size of
PConv [34] to 9 and the channel expansion ratio to 4, as in configuration (3) of Table 8,
the model achieves an accuracy of 77.8%. Then, in configuration (4) of Table 8, the accuracy
of the network increases to 78.0% when we only change the kernel to adaptive. We find that
using adaptive kernels in contrast to fixed kernels and channel expansion ratios improves
the network accuracy by +0.2%↑. Furthermore, the number of MAdds and parameters is
also drastically reduced by −6.1%↓ and −33.3%↓, respectively. Furthermore, in configura-
tion (5) of Table 8, when we also change the number of channels to adaptive, the network
accuracy reaches 78.4%, while the number of MAdds and parameters further decreases by
−14.2%↓ and −3.9%↓. These results suggest that adaptive kernels and channels are highly
effective in our network. Finally, building upon these findings, we introduce an SE mod-
ule [49] to improve the network’s selectivity towards feature map channels. Despite a slight
increase in inference speed, the network performance has significantly improved, with a
+0.4%↑ increase compared to the case without using the SE module [49]. The experimental
results are shown in Figure 7b.

Comparison of Visualization. To better demonstrate the effectiveness of our method,
we visualize the features learned by EdgeNeXt [21] and MixMobileNet, providing an
intuitive assessment of the proposed method’s efficacy. In Figure 8, we randomly select
several images from the ImageNet-1K [7] test set, and the Grad-CAM [73] method is used
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to highlight the regions that the model focuses on. Through a visual comparison, it is clear
that our MixMobileNet method exhibits more accurate and comprehensive coverage of the
highlighted regions compared to the SOTA EdgeNeXt-S. [21]. This is the reason why our
network achieves excellent results across various tasks.

e
g
a

mI
t
x
e
n
e
g
d
E

sr
u

O

Figure 8. Visualization of Grad-CAM between EdgeNeXt and our MixMobileNet.

Depth Configuration. Upon examining the ResNet [1], MobileNet [8–10] series,
EfficientNet [12] series, and ConvNeXt [23] networks, it is noteworthy that the feature
extraction units are stacked more frequently in the middle and late stages of the model.
For example, the ratio of the number of residual blocks in ResNet50 [1] is [3: 4: 6: 3], and the
ratio of the number of inverse bottleneck blocks (IBBs) in ConvNeXt [23] is [3: 3: 9: 3], and it
seems that this tacit rule can also be found in the design of transformer networks, such
as SwinT [3], MobileViT [18,66], and PVT [4], etc. During the feature extraction process,
shallow networks focus on fine-grained information, while deeper networks prioritize
global semantic information. Consequently, the latter requires richer expressive capabilities
to achieve outstanding performance. We draw inspiration from ConvNeXt for our deep
configuration, where the ratio of the number of GFAE and LFAE at each stage is set to [1: 1:
3: 1]. For specific design explorations, see Table 9, which illustrates the significance of using
transformer blocks at different stages of our network. Meanwhile, due to FLOP constraints,
the usage of GFAE in each stage is strictly limited to only once. In Configuration (1) of
Table 9, we observe a sharp decline in network performance when transformer blocks are
not used. Furthermore, configurations (2) and (3) reveal that the use of transformer blocks
in the lower stages is not efficient. Configuration (4) is the recommended combination in
this paper, which takes into account the balance between #Params, MAdds, and accuracy.

Table 9. Performance and depth configuration.

Item Combination #Params MAdds Throughout Top-1 ↑(Images/s)

1 LFAE = [ 3, 3, 9, 3 ], GFAE = [ 0, 0, 0, 0 ] 6.4 M 1.3 G 2378 77.3
2 LFAE = [ 2, 2, 9, 3 ], GFAE = [ 1, 1, 0, 0 ] 6.4 M 1.3 G 2286 76.4
3 LFAE = [ 2, 2, 8, 2 ], GFAE = [ 1, 1, 1, 1 ] 7.4 M 1.3 G 2252 78.7

4 LFAE = [ 3, 2, 8, 2 ], GFAE = [ 0, 1, 1, 1 ] 7.3 M 1.2 G 2326 78.8

Visualization of feature maps. We visualize the learning features of MobileViTv1-
S [18] and MixMobileNet to gain further insights into the effectiveness of the proposed
methods. In order to visualize the results more effectively, the size of the input image was
adjusted to 1024 × 1024. The feature map is formed by reshaping the patch embeddings
based on their spatial positions. For MobileViTv1-S [18], we take the feature maps of the
1/3/4/5 blocks, and to ensure a fair comparison, we take the feature maps of the 1/2/3/4
stages with the same resolution as MobileViTv1-S [18] for MixMobileNet. In Figure 9, we
randomly sample 24 feature maps from each stage. Our method preserves local information
better compared to MobileViTv1-S [18]. We can see that the features of MixMobileNet are
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more diverse and contain richer information than those of MobileViTv1-S [18]. The benefits
are attributed to the introduction of an adaptive kernel size PConv [34] in the local encoder,
which reduces the complexity of large kernel convolutions while capturing features at
different levels in the network.

Block-1

Stage-1 Stage-2

Block-3

Stage-3

Block-4

Stage-4

Block-5

MobileViT-S

Ours

Figure 9. Visualization of MobileViTv1-S [18] blocks 1/3/4/5 and MixMobileNet-S stage 1/2/3/4
characteristics.

5. Conclusions

In this study, we introduce an efficient model called MixMobileNet, which is composed
of stacked MMbs consisting only of a local feature aggregation encoder (LFAE) and a global
feature aggregation encoder (GFAE). MixMobileNet effectively models both local and global
information while reducing the number of parameters and the amount of computation.
Specifically, our GFAE efficiently encodes global information by performing two operations:
average pooling for channel dimension reduction and computing channel-wise feature
attention. This approach effectively reduces the computational cost of self-attention layers.
On the other hand, our LFAE utilizes PConv convolutions with adaptive kernel sizes,
which helps to reduce the complexity of large kernel convolutions and capture local
features at different levels in the network. Extensive experimental results demonstrate the
effectiveness and generalization capability of our proposed model, showcasing its efficiency
across various downstream benchmarks.

Our method does not use other more efficient strategies, such as a split depth-wise
transpose attention (STDA) [21] encoder, dilated convolution [74], and neural architecture
search [29,30], which should be thoroughly tried and experimented with, and thus, our
method may not be optimal. In addition, our method is not trained on the ImageNet-21K
dataset [7] and does not employ stronger training augmentation/strategies. Therefore,
the upper limit of efficient model performance needs to be further explored. Limited
by the current computational power, we will use the abovementioned attempts in our
future works.
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Appendix A. Code of GFAE and LFAE in a Pytorch-like Style

# GFAE
class GFAEncoder(nn.Module):
def __init__(self, dim, drop_path=0.,expan_ratio=4,n_heads=4,qkv_bias=True):

super().__init__()
self.norm1=LayerNorm(dim, eps=1e-6)
self.n_heads=n_heads
self.temp=nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv=nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj=nn.Linear(dim, dim)
self.dk_ratio=0.2
self.dw=nn.Conv2d(dim,dim, kernel_size=3,padding=3//2,groups=dim)
self.avgpool= nn.AvgPool2d(2,stride=2)
self.convtranspose2d=nn.ConvTranspose2d(dim,dim,2,stride=2)
self.norm2=nn.LayerNorm(dim,eps=1e-6)
self.pw1=nn.Linear(dim, expan_ratio*dim) # pointwise/1x1 convs
self.act=nn.GELU()
self.pw2=nn.Linear(expan_ratio*dim, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

def forward(self,x):
input=x
x=self.avgpool(self.dw(x)+input)
B,C,H,W=x.shape
x=x.reshape(B,C,H*W).permute(0, 2, 1).norm1(x)
# Attention
qkv=self.qkv(x).reshape(B,H*W,3,self.n_heads,C//self.n_heads)
qkv=qkv.permute(2, 0, 3, 1, 4)
q=torch.nn.functional.normalize(qkv[0].transpose(-2, -1),dim=-1)
k=torch.nn.functional.normalize(qkv[1].transpose(-2, -1),dim=-1)
v=qkv[2].transpose(-2, -1)
# DropKey
attn=(q@k.transpose(-2,-1))*self.temp
m_c=torch.ones_like(attn)*self.dk_ratio
attn=attn+torch.bernoulli(m_c)*-1e12
attn=attn.softmax(dim=-1)
x=self.proj((attn@v).permute(0,3,1,2).reshape(B,H*W,C))
x=(x+self.drop_path(x)).permute(0,2,1).reshape(B,C,H,W)
#convtranspose
x=self.convtranspose2d(x).permute(0,2,3,1)
# MLP
x=self.pw2(self.act(self.pw1(self.norm2(x)))).permute(0,3,1,2)
x=input + self.drop_path(x)
return x

# LFAE
class LFAEncoder(nn.Module):
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6,

expan_ratio=4.0, kernel_s=7):
super().__init__()
self.dwconv1=nn.Conv2d(dim,dim,kernel_size=3,padding=3//2,groups=dim)
# Pconv : https://arxiv.org/abs/2303.03667
self.dwconv2=Pconv(dim=dim,n_div=4,forward=’split_cat’,kernel_size=kernel_s)
self.norm=nn.LayerNorm(dim, eps=1e-6)
self.pwconv1=nn.Linear(dim, int(expan_ratio * dim))
self.act=nn.GELU()
self.pwconv2=nn.Linear(int(expan_ratio * dim), dim)
# SE_Module : https://arxiv.org/abs/1709.01507
self.se=SE_Module(channel=dim,ratio=16)
self.drop_path=DropPath(drop_path) if drop_path > 0. else nn.Identity()
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def forward(self, x):
input = x
x=self.dwconv2(self.dwconv1(x)+input)
x=x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x=self.pwconv2(self.act(self.pwconv1(self.norm(x))))
x=x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x=self.se(input + self.drop_path(x))
return x
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