
Citation: Xu, L.; Liu, Y.; Fan, B.; Xu,

X.; Mei, Y.; Feng, W. An Improved

Gravitational Search Algorithm for

Task Offloading in a Mobile Edge

Computing Network with Task

Priority. Electronics 2024, 13, 540.

https://doi.org/10.3390/

electronics13030540

Academic Editor: Martin Reisslein

Received: 26 November 2023

Revised: 21 January 2024

Accepted: 25 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Improved Gravitational Search Algorithm for Task Offloading
in a Mobile Edge Computing Network with Task Priority
Ling Xu 1 , Yunpeng Liu 2 , Bing Fan 3 , Xiaorong Xu 1 , Yiguo Mei 4,* and Wei Feng 1,*

1 School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
211080022@hdu.edu.cn (L.X.); xuxr@hdu.edu.cn (X.X.)

2 Zhejiang Haikang Zhilian Technology Co., Ltd., Hangzhou 311113, China
3 Frontier Technology Service Center, Hangzhou Dianzi University, Hangzhou 310018, China;

fanbing@hdu.edu.cn
4 Huaxin Consulting Co., Ltd., Hangzhou 310051, China
* Correspondence: meiyg.hx@chinaccs.cn (Y.M.); fengwei@hdu.edu.cn (W.F.)

Abstract: Mobile edge computing (MEC) distributes computing and storage resources to the edge
of the network closer to the user and significantly reduces user task completion latency and system
energy consumption. This paper investigates the problem of computation offloading in a three-tier
mobile edge computing network composed of multiple users, multiple edge servers, and a cloud
server. In this network, each user’s task can be divided into multiple subtasks with serial and parallel
priority relationships existing among these subtasks. An optimization model is established with
the objective of minimizing the total user delay and processor cost under constraints such as the
available resources of users and servers and the interrelationships among the subtasks. An improved
gravitational search algorithm (IGSA) is proposed to solve this optimization model. In contrast with
the other gravitational search algorithm, the convergence factor is introduced in the calculation of
the resultant force and the crossover operation in a genetic algorithm is performed when generating
the new particles during each iteration. The simulation results show that the proposed IGSA greatly
improves the system performance compared with the existing algorithms.

Keywords: mobile edge computing; computing offloading; serial and parallel priority; improved
graphgravitational search algorithm; genetic algorithm

1. Introduction

With the development of the Internet of Things (IoT) in recent years, mobile user
devices (UEs) such as smartphones and laptops have set off a new wave. The increased
portability and computing power of mobile devices makes them an integral part of our lives.
It has also led to the emergence of new applications such as augmented reality/virtual
reality (AR/VR), online gaming and image processing on devices. However, the limited
battery life of mobile devices and the low latency requirements of these applications have
increased the need for new network models [1].

To address this issue, mobile edge computing offloading techniques have been deployed
to handle the offloading tasks generated by user terminals to edge servers. Unlike tradi-
tional cloud computing, Mobile edge computing (MEC) [2] deploys computing and storage
resources at the edge of a mobile network to provide an information technology (IT) service
environment and cloud computing capabilities for mobile networks, thus providing users
with ultra-low latency, low power consumption, and high broadband network service
solutions [3–5]. As one of the key technologies in MEC, computing offloading [6–10] en-
ables terminal devices to unload partial or all computational tasks to mobile edge servers
for assistance, aiming to address the inherent issues of limited storage space, inadequate
computing power, and energy constraints on terminal devices.

Electronics 2024, 13, 540. https://doi.org/10.3390/electronics13030540 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030540
https://doi.org/10.3390/electronics13030540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4324-7535
https://orcid.org/0000-0002-1816-2716
https://orcid.org/0009-0002-0213-4056
https://orcid.org/0000-0002-8434-5879
https://orcid.org/0000-0001-9406-2453
https://orcid.org/0000-0002-4803-9081
https://doi.org/10.3390/electronics13030540
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030540?type=check_update&version=1

Electronics 2024, 13, 540 2 of 17

In practical applications of mobile edge computing (MEC), the process of offloading
computation requires the collaborative consideration of both mobile terminals and MEC
servers to address the following issues: what to offload, how to offload, how much to
offload, and to whom and how much bandwidth and computational resources should be
allocated [11–13]. Currently, research in this field typically involves two steps to facilitate
this process: task offloading decision and resource allocation and offloading execution.
the first step involves making decisions regarding which tasks or computations should be
offloaded, and which terminal should be matched with which server or multiple servers.
Various factors are considered, such as task characteristics (e.g., computation-intensive or
data-intensive), network conditions, energy consumption, latency requirements, and the
number and capacity of severs. Decision-making techniques, such as optimization algo-
rithms [14–16] or machine learning models [17–19], are employed to determine the most
suitable tasks offloading decision. Once the decision to offload certain tasks is made,
the next step is to allocate the necessary resources to perform the offloading and computa-
tion of the tasks. This process is known as resource allocation and offloading execution.
During this process, it is necessary to determine the required amount of bandwidth and
computational resources, as well as the allocation strategy for these resources. Techniques
like dynamic resource allocation, load balancing, and task scheduling are utilized to ensure
the efficient utilization of resources and improved performance.

Inspired by the aforementioned facts, in order to minimize the total completion latency
and processor cost of subtasks with priority constraints at the client-side, the tasks are
offloaded to both edge servers and cloud servers. This paper proposes a new offloading
algorithm called the improved GSA-based offloading (IGSA) algorithm. The IGSA algo-
rithm incorporates a convergence factor to accelerate the search for optimal solutions in the
search space. Additionally, it introduces crossover operations from genetic algorithms to
improve the optimization results. The main contributions of this paper can be summarized
as follows.

i This paper investigates the resource allocation problem in a multi-user mobile edge
network based on the collaboration between cloud servers and edge servers. Specifi-
cally, the study takes into account the presence of both MCC servers, MEC servers,
and subtasks with concurrent serial and parallel relationships.

ii To address the formulated user latency and processor cost minimization problem,
an improved gravitational search algorithm (IGSA) is proposed. In contrast to the
other gravitational search algorithm, the convergence factor is introduced in the cal-
culation of the resultant force and the crossover operation in a genetic algorithm is
performed when generating the new particles during each iteration. We conducted
comprehensive experiments and evaluations to validate the performance and effec-
tiveness of the proposed improved GSA (IGSA) algorithm.

The remainder of this paper is structured as follows. Section 2 introduces the pre-
vious work of other experts. Section 3 presents the system model and formulates the
problem. Section 4 details the design of the proposed algorithms. Section 5 analyzes
the proposed algorithm in this paper through numerical simulations. Finally, Section 6
concludes the paper.

2. Related Work

In recent years, with the development of intelligent terminals, there has been an
emergence of more computation-intensive services and applications. Due to the limited
storage and computational resources of end devices, mobile edge computing provides an
alternative solution for data processing and storage. Among them, computation offloading,
as a key technology, has attracted increasing attention. Through the in-depth exploration of
this field, researchers have achieved fruitful results.

In [20], the authors studied a genetic and deep deterministic policy gradient
(GADDPG)-based computation offloading scheme to achieve the optimal user experi-
ence quality. In [21], the author proposed an emerging method of deep reinforcement

Electronics 2024, 13, 540 3 of 17

learning for the dynamic clustering of IoT networks to solve the communication balance of
IoT networks and the computational balance of edge servers. In [22], the authors proposed
an improved multi-objective cuckoo search (IMOCS) algorithm to reduce the execution
latency and energy consumption of user terminals. In [23], the author studied a deep
reinforcement learning method that combines multiple neural networks to minimize the
computational cost of the weighted sum of delay and energy consumption in dynamic
environments with time-varying wireless fading channels. In [24], the authors investigated
the policy gradient (PG) algorithm to achieve a low decision time and low task offloading
time. In [25], the author studied a multi-agent power control algorithm to maximize the
total transmission rate of all downlink transmissions. However, it is not difficult to notice
that this category of research focuses on unordered, parallelizable, independent task mod-
els. Based on this, further investigation reveals that some research outcomes [26] have
also considered the computation offloading of sequential tasks, i.e., taking into account the
completion priority of tasks or subtasks. However, neither pure parallel nor pure sequential
models are realistic as tasks in actual systems are a hybrid of both. Currently, only a small
number of scholars have begun researching the complex task offloading problem in this
hybrid model. For example, in [27], Anubhav Choudhary et al. proposed a problem of
minimizing completion time and cost by considering the scenario of cloud computing.
They presented a hybrid algorithm based on the meta-heuristic GSA and the heterogeneous
earliest finish time (HEFT) heuristic to determine the monetary cost ratio (MCR) and the
scheduling length ratio (SLR). However, their study only focuses on the scenario of
cloud computing, which is relatively limited in scope. In [28], a heterogeneous com-
puting system workflow scheduling based on the GSA is proposed. The design of this
algorithm involves representing task dependencies using a new agent while preserving
the constraints. The algorithm shows an improvement in terms of completion time, load
balancing, and energy consumption. However, it does not consider the specific application
of the algorithm in specific system scenarios.

The offloading decision [29] mainly solves the problem of how the mobile terminal
decides how to offload, how much to offload, and what to offload. There are mainly
two-part offloading and partial offloading. In [27], the authors proposed a hybrid algo-
rithm based on GSA and heterogeneous earliest finish time [30] (HEFT) to minimize the
completion time and total computational cost. However, maintaining the dependency
constraints based on the HEFT algorithm requires O(T2 × P) complexity. In [28], the au-
thors proposed a GSA-based algorithm that uses a lower complexity algorithm to maintain
the priority and proposed a new proxy method.

3. System Model
3.1. Network Model

Figure 1 shows the system model, which consists of a mobile cloud computing (MCC)
server, multiple mobile edge computing (MEC) servers and multiple users (UEs). In this
scenario, the user terminal devices communicate with the edge servers through the base
stations. The edge servers receive task requests from the user terminal devices. The cloud
server, as the central node of the entire system, is responsible for receiving task requests
from edge servers and handling the centralized task scheduling and allocation of computing
resources. Each server, including MCC and MEC servers, can only handle one task at a time.
The MEC servers perform collaborative computing and offloading to meet the users’ delay
requirements and are co-located with the users-owned base stations (BSs). All the MEC
servers can communicate with each other through the resource pool and the communication
time between different MEC servers can be ignored. Within the network, there are |ℜ|
users, ℜ = {1, 2, 3 . . . , R} and each user can generate a task that can be subdivided into
multiple subtasks, which can be executed concurrently or sequentially, depending on their
priority relationship. S = {sl |1 ≤ l ≤ L} is the server set, where sl = l, and s1 is the MEC
server to which the user belongs, s2, s3, . . . , and sL−1 are the other MEC servers in the
same resource pool, and sL is the MCC server. Similarly, F = { fl |1 ≤ l ≤ L} represents

Electronics 2024, 13, 540 4 of 17

the available computing resource set, where f1 is the computing resources of the hosting
MEC server, f2, f3, . . . , and fL−1 are the other MEC servers’ computing resources in the
same resource pool, and fL is the MCC server’ computing resources, that is, the CPU cycle
number that can be provided per second.

Figure 1. Network model.

3.2. Task Model

Figure 2 shows the task model, in which Figure 2(a), (b) represent the single-task and
multi-task models, respectively. Each task can be divided into multiple sequential subtasks.
As shown in the diagram, the number before the ‘-’ symbol represents the task number,
and the number after the ‘-’ symbol represents the subtask number. In Figure 2(a), there is
only one main task 1, while in Figure 2(b), there are three parallel main tasks 1, 8, and 15.
The priority constraint relationship between the subtasks can be illustrated using a directed
acyclic graph (DAG) G = ⟨V, E⟩. V = {vi|1 ≤ i ≤ I} is the set of subtasks, which are also
called nodes in the graph. E is the set of directed edges between subtasks, indicating the
priority constraint relationship between subtasks, and eij ∈ E means that task vi must be
executed before subtask vj. Each subtask vi = {di, gi}, where di is the input data size of the
ith subtask module, and gi is the required CPU cycle to complete the task.

The subtasks without predecessor constraints are called entry nodes, and the subtasks
without successor tasks become exit nodes. If there are multiple entry nodes at the same
time, a new input node is added as the predecessor node of multiple entry nodes. For exam-
ple, in Figure 2(b), the input node is added before the entry nodes 1, 12, and 23. Similarly,
if there are multiple exit nodes, add a new exit node. For example, in Figure 2(b), the output
node is added after the exit nodes 11, 22, and 33. The calculation and communication
delays for both the input and output nodes are zero.

For the known DAG model, the predecessor node set of subtask vi is pre(vi), and the
successor node set is suc(vi). The input data size di of subtask vi is derived from the output
of the preceding task. For a subtask with |pre(vi)| preceding nodes, in order to facilitate an
easier explanation, we define the data size provided by each preceding node as the average
value di

|pre(vi)|
, where |·| denotes the cardinality of the set ·. Importantly, whether we choose

the average value as the output of each preceding node does not affect the algorithm itself.
Furthermore, the layer value h(i) of subtask vi in the subtask set V can be determined

by the following formula.

h(i) =

{
1, pre(vi) = ∅,
1 + max{h(pre(vi))}, pre(vi) ̸= ∅

(1)

Electronics 2024, 13, 540 5 of 17

where max{h(pre(vi))} means the maximal layer value of the predecessor node set pre(vi),
and ∅ represents the empty set.

(a)

(b)

Figure 2. Task model.

3.3. Delay Model

The computing power of UE is ignored compared with the servers in this paper, so
all the subtasks are transmitted to it hosting MEC severs first, and then, the MCC server
analyzes the gathered data to decide whether the subtasks should be offloaded to other
MEC servers for computation, offloaded to the MCC server for computation, or locally
computed on the hosting MEC server without any data transmission. Thus, the completion
delay of each subtask vi can be divided into two parts: processing delay pi and transmission
delay ti.

The processing delay of subtask vi on the edge server and cloud server are

pE
i = gi/ fl , 0 ≤ l ≤ L − 1 (2)

and
pC

i = gi/ fL (3)

where the symbols E and C represent the processing that takes place at edge and cloud
server, respectively.

The processing delay of the subtask vi on the server can be expressed as

pi = αpE
i + βpC

i (4)

where α and β are all 0–1 variables, and

α =

{
1, task vi is processed on MEC server,
0, otherwise

(5)

β =

{
1, task vi is processed on MCC server,
0, otherwise

(6)

and α + β = 1.
Since the MCC server starts collecting information from all servers and deciding the

offloading strategy only after the tasks are uploaded to their hosting servers, the latency
from UEs to their hosting servers does not need to be considered in our model. In the
process of data transmission, there are four possible scenarios. To clearly explain these
scenarios, we define three binary variables yi,sl , yi,s′l

, and yi,sL to denote whether the subtask
vi is executed by the MEC server l, l′ or the MCC server, respectively. If the predecessor
task vj and the successor tasks vi are all allocated on the same server, the input data di

|pre(vi)|
originates from within the local server and the transmission delay is zero. If the predecessor

Electronics 2024, 13, 540 6 of 17

task vj is processed on the MEC server sl , and the successor task vi is executed on another
MEC server sl′ , the transmission delay ti,j,sl→sl′

is equal to

ti,j,sl→sl′
= yj,sl yi,sl′

di

|pre(vi)| × rE (7)

where rE is the transmission rate between BSs in the resource pool, and the arrow indicates
the direction of the computing platforms for offloading, and

yj,sl =

{
1, if predecessor task vj is processed on MEC server sl ,
0, otherwise.

(8)

yi,sl′
=

{
1, if successor task vi is processed on other MEC server sl′ , and l ̸= l′,
0, otherwise.

. (9)

Similarly, it can be inferred that the transmission delay from BS to MCC is

ti,j,sl→sL = yj,sl yi,sL

di

|pre(vi)| × rC (10)

and from MCC to BS is
ti,j,sL→sl = yj,sL yi,sl

di

|pre(vi)| × rC (11)

where rC is the transmission rate between the BS and MCC server, and yj,sL , yi,sL and yi,sl
are all binary functions that have the same characteristics as yj,sl in Equation (8).

Taking into account the four aforementioned cases, the transmission delay from the
predecessor task vj to the successor task vi can be described as

ti,j = ti,j,sl→sL + ti,j,sL→sl + ti,j,sl→sl′
, l ̸= l′, ∀l, l′ ∈ {1, 2, . . . , L − 1} (12)

Due to the fact that each server can only handle a single task at a time, tasks assigned
to the same server must be executed sequentially. If task vk is the preceding task of task vi
in the server’s scheduling sequence, and mk and pk represent the start time and execution
delay of task vk, and then the start time mi of task vi must satisfy

mi ≥ mk + pk (13)

Additionally, each task vj in the preceding task set pre(vi) of task vi and data
transmission between preceding task vj and succeeding task vi must be accomplished.
Thus, we have

mi ≥ max
j∈pre(vi)

{mj + pj + ti,j} (14)

As a result, the start time mi of task vi is

mi = max

{
mk + pk, max

j∈pre(vi)
{mj + pj + ti,j}

}
(15)

Finally, the completion time of all tasks is

ttotal = max
1≤i≤I

{mi + pi}. (16)

3.4. Server Cost Model

The cost of executing a task on a processor is closely related to the processor’s own
capability and execution time. We use the exponential pricing model [31] to define the cost
in which a server with more processing power is associated with a higher cost, that is

Electronics 2024, 13, 540 7 of 17

OE
i = σ × pE

i × δ × exp(
fl′

min
1≤l≤L−1

fl
) (17)

and
OC

i = σ × pC
i × δ × exp(

fL
min

1≤l≤L
fl
) (18)

where OE
i and OC

i denote the cost of task vi on MEC server and MCC server, respectively,
and σ is a random variable used to generate different pricing models, fl′ is the frequency of
the MEC server that processes task vi, min

1≤l≤L
fl is the minimum of server frequency, and δ is

the base price charged to min
1≤l≤L

fl .

Based upon this, the execution cost costi of task vi is calculated as follows.

Oi = αOE
i + βOC

i (19)

where α and β are the Boolean indicators defined in Equations (5) and (6), respectively.
The total server cost is

Ototal =
I

∑
i=1

Oi (20)

3.5. Problem Formulation

This paper aims to investigate the resource allocation optimization problem in a
mobile edge computing (MEC) network composed of multiple users, multiple edge servers,
and one cloud server. The optimization objective is to minimize the task completion time
and reduce server costs. User delay is represented by the total delay of all user tasks in the
network, while the expression of the total processor cost is based on an exponential pricing
model. Based on the above equations, the problem can be formulated as follows.

min
α,β,

{
yi,sl

,1≤i≤I,1≤l≤L
} λ × ttotal + (1 − λ)× φ × Ototal (21)

s.t. C1 :
L

∑
l=1

yi,sl = 1

C2 :
I

∑
i=1

L

∑
l=1

yi,sl = I

C3 : α + β = 1

C4 : 0 ≤ λ ≤ 1

In the set of constraints, C1 indicates that a task can only be assigned to one server for
processing. C2 states that each task must be assigned a server for processing. C3 implies
that tasks can either be processed in MEC or MCC, but not both. C4 makes sure that the
weights of the optimization objectives are all positive values. Where λ is a weighting factor
to balance the total delay and total cost in the optimization goal, φ is the normalization
factor, which makes the total cost and total delay under one scale.

In order to minimize the optimization problem (21) mentioned above, we seek the
optimal values for the binary offloading decision variables α, β, and yi,s′l

. Our objective is
to reduce the total user delay and processor cost while adhering to the given constraints.
However, as this is a nonlinear binary programming problem that falls under the NP-hard
category, finding the optimal solution is not feasible. Therefore, we propose a heuristic
algorithm called the improved GSA (IGSA) to approximate the optimal solution to the
original problem as closely as possible. By applying the IGSA algorithm, we can obtain an
approximate optimal solution that satisfies our optimization objectives.

Electronics 2024, 13, 540 8 of 17

4. Proposed Algorithm

As our algorithm is a hybrid of genetic algorithm (GA) and GSA, we first provide a
brief description about both of these algorithms as follows.

4.1. Overview of GA

The genetic algorithm mimics the mechanisms of selection, crossover, and mutation
observed in biological genetics and evolutionary processes to perform an adaptive search
process for solving optimization problems. It starts by initializing the algorithm with any
initial population (a set of feasible solutions). Then, an fitness function is designed to
calculate the fitness value of each individual (a single solution) in the population. Next,
individuals with higher fitness values are selected, and genetic crossover is performed
among them to form a new population. This process is repeated iteratively to evolve and
obtain one or several optimal solutions.

The genetic algorithm utilizes crossover operations to generate new feasible solutions,
thereby maintaining population diversity and improving population quality. The proposed
IGSA in this paper integrates the crossover and mutation operations of SA into the GSA
algorithm. By performing these operations, a portion of the encoded positions of feasible
solutions are replaced by a portion of the best solution in the current population with a
certain probability q during the stage of generating a new population in GSA. This method
further improves the convergence speed and optimization range of the algorithm.

4.2. Overview of GSA

Gravitational search algorithm (GSA) is a random heuristic search algorithm. Initially,
the algorithm generates a set of particles (a set of feasible solutions) through random
position encoding and forms an initial population by assembling these particles. Then,
based on the law of universal gravitation, the algorithm calculates the force between
particles using their masses and distances. Next, each particle calculates its own force based
on the magnitude of total force and uses it to update its velocity and new position. Finally,
the algorithm iterates continuously to obtain the final solution.

During the process of calculating the total force, IGSA improved the GSA and designed
a convergence factor that only calculates the force between the top k particles with the
optimal fitness values and maximum mass, filtering out some miscellaneous particles and
highlighting the influence of superior individuals. This method further accelerates the con-
vergence of the algorithm, achieving a good balance between exploration and exploitation.

4.3. Generation of Population

The population is composed of a group of particles. Each particle corresponds to a
solution of the optimization problem. Therefore, the population is a set of feasible resource
allocation methods. Initially, we generate a population X = {Xn, n = 1, 2, . . . , N}, where
the particle is denoted by Xn. Actually, a particle Xn means a complete solution of the
problem. For the network with I subtasks and L severs, it can be expressed as follows.

Xn =
{

x1
n, x2

n, . . . , xi
n, . . . , xI

n

}
, 1 ≤ i ≤ I, 1 ≤ n ≤ N (22)

where xi
n represents the sever assigned to the task vi in the solution Xn.

Next, we proceed to encode the positions of the particles. Note that xi
n implies the

sever number, so we first define
0 < xi

n ≤ 1. (23)

and then have
sl =

⌈
xi

n × L
⌉

(24)

where the symbol ⌈⌉ signifies the ceiling function.
The diagram in Figure 3 illustrates an example of particle encoding in a system with 3

base stations and 3 users, where each user has 4 subtasks.

Electronics 2024, 13, 540 9 of 17

Figure 3. Particle position encoding.

Each particle has a fitness value which indicates the quality of the solution. For a given
particle (allocation strategy), we can always calculate its total delay and total cost using
Equations (16) and (20), respectively, so we can compute

qn =
1

λttotal + (1 − λ)× φ × Ototal
(25)

where qn denotes the fitness value of the nth particle, and λ and φ are defined in Equation (21).
The fitness value is inversely proportional to the total latency and total cost. Therefore,

a particle with low latency and low cost will have a high fitness value. The higher the
fitness value, the higher the likelihood of becoming the optimal solution.

The fitness can be obtained based on the particle’s position encoding. Firstly, calculate
the hierarchical values of subtasks based on Equation (1), and sort the subtasks in ascending
order according to their hierarchical values. If there are subtasks with the same hierarchical
value, sort them in descending order based on their corresponding position codes. This
process yields the topological order vector, denoted by a. Next, in accordance with the
order of subtasks in a, calculate the execution time pi and start time mi of each task using
Formulas (4) and (15). During this process, the server number sl corresponding to the
subtasks are obtained from Equation (24). Then, evaluate the total user delay, total server
cost, and fitness function value by applying Formulas (16), (20), and (25), respectively. A
detailed procedure for computing the fitness is described in Algorithm 1.

Algorithm 1 Fitness-Calculation

Input: Particle position Xn
Output: Fitness qn

1: Initialize the processor end delay matrix to 0 matrix, processor_time[l] = 0, 1 ≤ l ≤ L
2: for each task vi ∈ V in the topological order of subtasks a do
3: Compute the server number sl corresponding to the task vi according to Equation (24)
4: Set the forward task end time to 0, that is, mi = 0
5: if the preceding task vi exists then
6: for traverse all tasks vj in the forward node set of task vi, vj ∈ prev(vi) do
7: if mi < mj + pj + ti,j then
8: mi = mj + pj + ti,j
9: end if

10: end for
11: end if
12: Compute processing delay pi using Equation (4)
13: The actual start time of task vi, vi = max{Processor_time[sl], mi}
14: Update the processor end latency matrix, Processor_time[sl] = mi + pi
15: end for
16: Calculate the total latency of user end tasks using Equation (16)
17: Calculate the total cost of the processor using Equation (20)
18: Calculate the fitness function value using Equation (25)

Electronics 2024, 13, 540 10 of 17

Typically, the computed fitness values vary in a wide range. Hence, we employ the
method of max–min normalization to normalize the fitness to a range of [0, 1] to evaluate
the mass of each particle. The mass of the nth particle is given by

Qn(t) =
qn(t)− min

n′=1,2,...,N
qn′(t)

max
n′=1,2,...,N

qn′(t)− min
n′=1,2,...,N

qn′(t)
(26)

where qn(t) is the fitness value of the nth particle, max
n′=1,2,...,N

qn′(t) is the highest particle

fitness function value in the t-th iteration, and min
n′=1,2,...,N

qn′(t) is the lowest particle fitness

function value in the t-th iteration.

4.4. Force Computation

Let Qn(t) and G(t) be the mass of n-th particle and the gravitational constant, respec-
tively, in the t-th iteration. We can define the force acting on the n-th particle by n′-th
particle for the t-th iteration as follows.

Fi
n,n′(t) = G(t)× Qn(t)× Qn′(t)

Rn,n′(t) + δ
× (xi

n′(t)− xi
n(t)) (27)

where Qn(t), Qn′(t) are the masses of particles n and n′, respectively. Rn,n′(t) is the
Euclidian distance between two particles n and n′, and xi

n(t) and xi
n′(t) are the encoded

positions of the particle n and particle n′ in the searching space with the dimension i,
respectively; G(t) is the gravitational factor, and δ is a small constant.

The gravitational constant G0 is initialized in the beginning and reduces as the
algorithm proceeds. In order to improve the search accuracy, we define G(t) as a function
of initial value G0 and iteration number t.

G(t) = G0 × (
t
T
)γ (28)

where T is the maximal iteration time and γ is a small constant.
To avoid trapping in a local optimum, kbest is introduced in the IGSA. The force acting

on the particle is defined as follows:

Fi
n(t) = ∑

n′∈kbest(t),n′ ̸=n
randn × Fi

n,n′(t) (29)

where randn is a random number between [0, 1] and Kbest is the set of k best particles with
the biggest masses.

For each iteration, we compute the percent λ of particles that apply force to the others
in the last iteration, and apply it to compute the value k in the current iteration. k is
defined as

k =

〈
N

100
× (λ + (1 − (

t
T
)× (1 − λ)))

〉
(30)

where the sign ⟨·⟩ means to round ·.
From the above definition, it is obvious that the elements in set kbest(t) is a linear

decreasing function of time. Only the particles in set Kbest attracts other particles, which
filters out some idle particles and highlights the influence proportion of the better individual.
Not only that, but this method also speeds up the convergence.

4.5. Position Update

The acceleration of the n particle at iteration t in the i dimension space can be de-
fined as:

ai
n(t) =

Fi
n(t)

Qn(t)
(31)

Electronics 2024, 13, 540 11 of 17

The velocity and position of particles are calculated as follows:

vi
n(t + 1) = randn × vi

n(t) + ai
n(t) (32)

xi
n(t + 1) = xi

n(t) + vi
n(t + 1) (33)

During the position update procedure, we introduce the idea of cross mutation in
the genetic algorithm. In each iteration, for the particle whose position is updated, if the
generated random number rankr (randr ∈ [0, 1]) is less than the predefined crossover
probability pc, the original position information of the agent is replaced with part of the
position information in the global optimal solution. The change of the particle force before
and after replacement is compared. Only when the force becomes larger, the replacement
retains. The crossover procedure is shown in Algorithm 2.

Algorithm 2 IGSA algorithm

1: Initialize particle position
2: while (t < maxt) do
3: calculate fitness si using Algorithm 1 and Formula (25)
4: calculate G(t) using Formula (28)
5: calculate Qn using Formula (26)
6: for i = 1 : N do
7: Calculate the resultant force on particles using Formula (29)
8: Calculate particle acceleration and velocity using Formulas (31) and (32)
9: Calculate Xn using Formula (33)

10: end for
11: Calculate the optimal solution Xbest for the current population
12: for i = 1 : N do
13: Ui = Xbest
14: if randr < pc then
15: Generate random integer Nl , 1 < Nl < Nd − l′′′, [uNl

i , . . . , uNl+l
i] =

[xNl
best, . . . , Nl+l

best]
16: if fitness(Ui) > fitness(Xbest) then
17: Xn = Ui
18: else
19: Xn = Xn
20: end if
21: end if
22: end for
23: t = t+1
24: end while

5. Simulations and Results

In this section, we evaluate the performance of the proposed IGSA. Firstly, the conver-
gence of IGSA is simulated. Then, the proposed algorithm is compared with the HGSA [27]
and GSAL [28] algorithms. The distinctions between the three algorithms are as follows:

(a) IGSA is a strategy designed to solve the joint task offloading and resource allocation
problem in the context of cloud-edge collaborative dual-layer network structures. It
adopts a series of optimization strategies, which enable it to outperform other algo-
rithms in terms of performance. Firstly, the IGSA algorithm introduces the concept of
a convergence factor during the computation of the resulting force. By incorporating
a continuous iterative updating process, it aims to seek the optimal solution. This
not only enhances the convergence speed of the algorithm but also allows for the dis-
covery of improved solutions after multiple iterations. Secondly, the IGSA algorithm
incorporates genetic algorithm crossover operations after each iteration, enhancing the
algorithm’s global search capability, and enabling it to better find the optimal solution.

Electronics 2024, 13, 540 12 of 17

(b) In HGSA, in [27], a meta-heuristic workflow scheduling algorithm is designed to
address scheduling problems in cloud computing. The HGSA algorithm utilizes the
output of the heterogeneous earliest finish time (HEFT) algorithm to seed the initial
population, retains the best particle to enhance convergence speed, and optimizes
the quality of the population through the threshold quality and update mechanisms.
However, compared to the IGSA algorithm, the hybrid genetic/simulated anneal-
ing (HGSA) algorithm primarily adopts predefined heuristic strategies and lacks
flexibility to adjust decision strategies according to real-time situations, resulting in
poor adaptability.

(c) In the GSAL algorithm mentioned in [28], a recursive algorithm is used to generate
effective task execution sequences to enhance the priority relationships between
tasks. This approach allows for effective scheduling based on task correlations and
dependencies. However, compared to the IGSA algorithm, the GSAL algorithm has a
simpler search strategy, which may result in it getting stuck in local optimal solutions
during the search process, leading to less desirable results.

In addition, since the objective function and fitness value are inversely related, and the
system performance is directly proportional to fitness, we will analyze the system perfor-
mance using the fitness value in further discussions.

This article conducts a simulation analysis on the proposed IGSA algorithm. Assuming
that the total number of users in the system is R = 5 and the total number of processors
is L = 4, there are three MEC servers and one MCC server in the system. The computing
power of the MCC server is fL = 64 GHz, while the computing power of MEC server is 16,
15, and 14 GHz, respectively. The required CPU cycle di of the subtask is taken as a random
value at [0.2, 0.3] GHz, and the corresponding task size gi is taken as a random value at
[500, 1500] KB. The base price of the processor cost δ = 2. Random variables σ = 1. Gravity
factor λ = 0.5, normalization factor φ = 0.0005. In the IGSA algorithm, let the gravitational
constant G0, γ = 0.3, maximum iteration ς = 1000, number of particles N = 20, crossover
rate pc = 0.7, and minimum gravitational coefficient 0.1. The simulation results are taken
as the average of 10 experiments. The simulation parameters are summarized in Table 1.

Table 1. Simulation parameters.

Name Value

Number of processors L = 4
Number of users R = 5

The computing power of MCC server fL = 64 GHz
The computing power of MEC servers 16, 15, 14 GHz

The subtask required CPU cycle di = [0.2, 0.3] GHz
The subtask data size gi = [500, 1500] KB
Processor base price δ = 2

Random variable σ = 1
The weighting factor λ = 0.5

The normalization factor φ = 0.0005

Next, we first simulate the convergence of the proposed IGSA algorithm in the different
task numbers using Figure 4 to illustrate that the algorithm can achieve fast convergence
with a smaller number of iterations. Secondly, in the simulation presented in Figure 5,
we compared the fitness values, delays, and costs of three algorithms under different task
numbers to illustrate the advantages of the proposed algorithm in various performance
metrics. Then, in Figure 6, we further simulated the convergence of different algorithms
in terms of fitness values under the different numbers of tasks. Finally, in Figures 7 and 8,
we compared the fitness values of the algorithms under different numbers of users and
processors to demonstrate the performance of the proposed algorithm in this paper. These
experimental results further validate the effectiveness and feasibility of the algorithm
proposed in this study.

Electronics 2024, 13, 540 13 of 17

The following paragraph provides a detailed analysis of the simulation results.
According to Figure 4, in an MEC system with three MEC servers and one MCC

server, for different task loads (8, 12, and 17), we observed two characteristics of the
proposed IGSA algorithm in terms of fitness value. Firstly, as the number of iterations
increases, this algorithm always converges rapidly to the optimal fitness value. This is
because the gravitational effect attracts particles towards the optimal solution, causing
them to cluster around it. As the number of iterations increases, the distance between
particles decreases, bringing them closer to the optimal solution and achieving convergence
towards the best solution. Secondly, when the task quantity decreases, especially for I = 8,
the algorithm converges to a higher optimal fitness value (1.2). This is because, as the task
quantity decreases, the search space of the problem becomes smaller and the solution space
becomes more concentrated, making it easier to find the global optimal solution. Therefore,
as the number of iterations increases, the algorithm is more likely to find a higher optimal
fitness value.

Figure 4. Algorithm convergence at different numbers of tasks.

In Figure 5, we analyzed the relationship between the task quantity and fitness value,
the total user delay, and processor cost. We considered the task quantities of 8, 12, and 17.
It was observed that, as the task quantity increased, the fitness values of all algorithms
decreased, while the total delay and cost increased. In addition, in all scenarios, the algo-
rithm proposed in this paper consistently outperforms other baseline algorithms, achieving
higher fitness values and lower total delay and cost. This can be attributed to the IGSA al-
gorithm’s stronger global search capability as the task quantity increases. The convergence
factor guides particles towards the global optimal solution, leading to rapid convergence.
Additionally, the crossover operation in the genetic algorithm enhances the diversity of
the search space, preventing the algorithm from getting stuck in local optima. This enables
the algorithm to find solutions with higher fitness values, ultimately minimizing the total
delay and cost.

In Figure 6, we compared the IGSA algorithm proposed in this paper with the HGSA
algorithm from the reference [27] and the GSAL algorithm from the reference [28]. We
simulated their overall performance under the different values of N (8, 12, and 17). An-
alyzing the final optimization results, we found that the IGSA algorithm proposed in
this paper exhibits a better optimization performance compared to the HGSA and GSAL
algorithms. The HGSA algorithm proposed in [27] shows an average performance in terms
of optimization results, despite its attempt to improve the convergence speed by replacing
particles below a threshold with the current iteration’s best particle. Similarly, the GSAL
algorithm proposed in [28] demonstrates a poorer performance in convergence accuracy
and optimization results, despite its use of the acceleration and force of the gravitational
law to locate the next particle to be executed. In contrast, the IGSA algorithm proposed
in this paper incorporates a convergence factor in the resulting force calculation and uti-

Electronics 2024, 13, 540 14 of 17

lizes the genetic algorithm’s crossover operation in each iteration, leading to improved
optimization results.

(a) Fitness comparison (b) Delay comparison (c) Cost comparison

Figure 5. Fitness, delay, and cost performance for different algorithms when λ = 0.5.

(a) I = 8 (b) I = 12 (c) I = 17

Figure 6. Performance comparison of different algorithms.

The following paragraph presents additional experimental results to demonstrate the
effectiveness of the proposed IGSA algorithm when varying the number of processors and
users. It also compares its performance with other leading algorithms in the field.

The comparison results in Figure 7 demonstrate the clear advantage of our algorithm
over others. As the number of users increases from 5 to 7, our algorithm only experiences a
31% decrease in fitness value, while the other two algorithms show decreases of 43% and
44%, respectively. Moreover, as the number of users increases, the fitness value gradually
decreases. This is because the increase in the number of users leads to an increase in total
delay and cost. As the fitness value is a weighted sum of delay and cost, it naturally
decreases. However, despite the increase in the number of users from 5 to 13, our algorithm
still demonstrates a significant advantage.

By observing Figure 8, it can be noticed that, as the number of processors increases,
the three algorithms show different performances in terms of fitness value. In the graph,
the IGSA algorithm consistently achieves the optimal fitness value. This is because the
algorithm introduces a crossover operation, facilitating effective gene pairing and selecting
individuals with higher fitness as parents for the next generation or directly including them
in the next generation. This mechanism leads to a superior genetic composition, resulting
in an improvement in the overall fitness value of the system. Additionally, we observe
that the fitness value decreases most rapidly when the number of processors increases
from 3 to 6. However, when the number of processors further increases to 15, the fitness
value stabilizes. This can be explained by the fact that, with fewer processors, there is
more room for optimization, resulting in a significant decrease in fitness value. However,
as the number of processors continues to increase, the system reaches a point of optimal
utilization. Further increasing the number of processors may not lead to a significant

Electronics 2024, 13, 540 15 of 17

performance improvement since the system is already operating at a relatively stable level
of resource utilization.

Figure 7. Performance comparison of different algorithms as the number of users changes.

Figure 8. Performance comparison of different algorithms as the number of processors changes.

From the above analysis, we can see that our algorithm outperforms existing HGSA
and GSAL algorithms in terms of fitness value, total delay, and total cost. A key reason
for this is that our proposed IGSA algorithm introduces the concept of a convergence
factor in the calculation of a resulting force during the iteration process to search for the
optimal solution. This allows for continuous iterative updates and a more efficient
convergence towards the optimal solution. The introduction of this convergence factor not
only accelerates the convergence speed of the algorithm but also helps find better solutions
after multiple iterations. Furthermore, after each iteration, we also apply the crossover
operation of the genetic algorithm to enhance the global search capability of the algorithm.
Through this approach, we can better explore the search space and find better solutions.
Therefore, our IGSA algorithm can provide both a fast convergence speed and a high global
search capability, enabling it to find high-quality solutions.

6. Conclusions

In this paper, we consider the problem of a computing offload in a three-tier mobile-
edge computing network consisting of a multi-user, multi-edge server, and a cloud server.
By calculating the offloading strategy, we will optimize the user task execution latency
and server computing costs. In order to achieve better uninstallation benefits for all users,
multiple subtasks need to be handled for multiple users. We designed a suitable gravity
search algorithm (IGSA) to address this issue, modified the strategy of gravity search

Electronics 2024, 13, 540 16 of 17

algorithm in calculating resultant force and each iteration, and proposed an improved
gravity search algorithm (IGSA) to solve this problem. We designed a comprehensive
simulation experiment to verify the performance of IGSA and the feasibility of the model.
The experimental results show that this strategy is significantly superior to the baseline
method in terms of latency, cost, and other aspects.

In future work, we will continue to follow the work of this article and focus on some
issues worthy of research.

i Assuming that offloading follows a centralized decision-making approach in this
paper, in the follow-up research, we will explore the dynamic offloading decision-
making.

ii In this paper, we focused on the overall delay for users and the total cost for proces-
sors. In future research, we will discuss additional aspects such as security, privacy,
and user experience.

iii We plan to investigate more complex and diverse models and tasks in future work,
potentially integrating them within the field of deep learning, which holds significant
interest and value.

Author Contributions: Conceptualization: L.X. and Y.L.; methodology: L.X., Y.L., X.X. and Y.M.;
software: L.X. and B.F.; formal analysis: W.F.; investigation: L.X., Y.L., X.X., B.F., Y.M. and W.F.;
resources: L.X., Y.L., X.X. and B.F.; data curation: Y.L., X.X., and B.F.; writing—original draft prepara-
tion: L.X., Y.L. and B.F.; writing—review and editing: Y.M. and W.F.; visualization: L.X., Y.M. and
W.F.; supervision: Y.M. and W.F.; project administration: Y.M. and W.F.; funding acquisition: Y.M. and
W.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Natural Science Foundation of China under Grant
62101169, Grant 62301204, and Grant 62371174.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Yunpeng Liu was employed by Zhejiang Haikang Zhilian Technology
Co., Ltd. and Yiguo Mei was employed by Huaxin Consulting Co., Ltd. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

References
1. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A

comprehensive survey. IEEE Internet Things J. 2022, 9, 359–383. [CrossRef]
2. Liang, B.; Gregory, M.A.; Li, S. Multi-access Edge Computing fundamentals, services, enablers and challenges: A complete

survey. J. Netw. Comput. Appl. 2022, 199, 103308. [CrossRef]
3. Dong, S.; Xia, Y.; Kamruzzaman, J. Quantum Particle Swarm Optimization for Task Offloading in Mobile Edge Computing. IEEE

Trans. Ind. Inform. 2023, 19, 9113–9122. [CrossRef]
4. Mei, J.; Tong, Z.; Li, K.; Zhang, L.; Li, K. Energy-Efficient Heuristic Computation Offloading With Delay Constraints in Mobile

Edge Computing. IEEE Trans. Serv. Comput. 2023, 16, 4404–4417. [CrossRef]
5. Wang, P.; Li, K.; Xiao, B.; Li, K. Multiobjective Optimization for Joint Task Offloading, Power Assignment, and Resource Allocation

in Mobile Edge Computing. IEEE Internet Things J. 2022, 9, 11737–11748. [CrossRef]
6. Hu, Z.; Niu, J.; Ren, T.; Dai, B.; Li, Q.; Xu, M.; Das, S.K. An Efficient Online Computation Offloading Approach for Large-Scale

Mobile Edge Computing via Deep Reinforcement Learning. IEEE Trans. Serv. Comput. 2022, 15, 669–683. [CrossRef]
7. Liu, L.; Yuan, X.; Chen, D.; Zhang, N.; Sun, H.; Taherkordi, A. Multi-User Dynamic Computation Offloading and Resource

Allocation in 5G MEC Heterogeneous Networks With Static and Dynamic Subchannels. IEEE Trans. Veh. Technol. 2023,
72, 14924–14938. [CrossRef]

8. Wang, F.; Cai, S.; Lau, V.K.N. Sequential Offloading for Distributed DNN Computation in Multiuser MEC Systems. IEEE Internet
Things J. 2023, 10, 18315–18329. [CrossRef]

9. Li, X.; Chen, T.; Yuan, D.; Xu, J.; Liu, X. A Novel Graph-Based Computation Offloading Strategy for Workflow Applications in
Mobile Edge Computing. IEEE Trans. Serv. Comput. 2023, 16, 845–857. [CrossRef]

10. Li, K.; Wang, X.; He, Q.; Ni, Q.; Yang, M.; Dustdar, S. Computation Offloading for Tasks With Bound Constraints in Multiaccess
Edge Computing. IEEE Internet Things J. 2023, 10, 15526–15536. [CrossRef]

11. Fang, T.; Yuan, F.; Ao, L.; Chen, J. Joint Task Offloading, D2D Pairing, and Resource Allocation in Device-Enhanced MEC: A
Potential Game Approach. IEEE Internet Things J. 2022, 9, 3226–3237. [CrossRef]

http://doi.org/10.1109/JIOT.2021.3103320
http://dx.doi.org/10.1016/j.jnca.2021.103308
http://dx.doi.org/10.1109/TII.2022.3225313
http://dx.doi.org/10.1109/TSC.2023.3324604
http://dx.doi.org/10.1109/JIOT.2021.3132080
http://dx.doi.org/10.1109/TSC.2021.3116280
http://dx.doi.org/10.1109/TVT.2023.3285069
http://dx.doi.org/10.1109/JIOT.2023.3279271
http://dx.doi.org/10.1109/TSC.2022.3180067
http://dx.doi.org/10.1109/JIOT.2023.3264484
http://dx.doi.org/10.1109/JIOT.2021.3097754

Electronics 2024, 13, 540 17 of 17

12. Wang, X.; Han, Y.; Shi, H.; Qian, Z. JOAGT: Latency-Oriented Joint Optimization of Computation Offloading and Resource
Allocation in D2D-Assisted MEC System. IEEE Wirel. Commun. Lett. 2022, 11, 1780–1784. [CrossRef]

13. Chen, G.; Chen, Y.; Mai, Z.; Hao, C.; Yang, M.; Du, L. Incentive-Based Distributed Resource Allocation for Task Offloading and
Collaborative Computing in MEC-Enabled Networks. IEEE Internet Things J. 2023, 10, 9077–9091. [CrossRef]

14. Pan, L.; Liu, X.; Jia, Z.; Xu, J.; Li, X. A Multi-Objective Clustering Evolutionary Algorithm for Multi-Workflow Computation
Offloading in Mobile Edge Computing. IEEE Trans. Cloud Comput. 2023, 11, 1334–1351. [CrossRef]

15. Laboni, N.M.; Safa, S.J.; Sharmin, S.; Razzaque, M.A.; Rahman, M.M.; Hassan, M.M. A Hyper Heuristic Algorithm for Efficient
Resource Allocation in 5G Mobile Edge Clouds. IEEE Trans. Mob. Comput. 2024, 23, 29–41. [CrossRef]

16. Vieira, R.F.; Souza, D.D.S.; Silva, M.S.D.; Cardoso, D.L. A Heuristic for Load Distribution on Data Center Hierarchy: A MEC
Approach. IEEE Access 2022, 10, 69462–69471. [CrossRef]

17. Zheng, K.; Jiang, G.; Liu, X.; Chi, K.; Yao, X.; Liu, J. DRL-Based Offloading for Computation Delay Minimization in Wireless-
Powered Multi-Access Edge Computing. IEEE Trans. Commun. 2023, 71, 1755–1770. [CrossRef]

18. Sun, M.; Xu, X.; Han, S.; Zheng, H.; Tao, X.; Zhang, P. Secure Computation Offloading for Device-Collaborative MEC Networks:
A DRL-Based Approach. IEEE Trans. Veh. Technol. 2023, 72, 4887–4903. [CrossRef]

19. Jiao, X.; Ou, H.; Chen, S.; Guo, S.; Qu, Y.; Xiang, C.; Shang, J. Deep Reinforcement Learning for Time-Energy Tradeoff Online
Offloading in MEC-Enabled Industrial Internet of Things. IEEE Trans. Netw. Sci. Eng. 2023, 10, 3465–3479. [CrossRef]

20. Zhang, H.; Yang, Y.; Shang, B.; Zhang, P. Joint resource allocation and multi-part collaborative task offloading in MEC systems.
IEEE Trans. Veh. Technol. 2022, 71, 8877–8890. [CrossRef]

21. Liu, Q.; Xia, T.; Cheng, L.; van Eijk, M.; Ozcelebi, T.; Mao, Y. Deep Reinforcement Learning for Load-Balancing Aware Network
Control in IoT Edge Systems. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1491–1502. [CrossRef]

22. Li, J.; Shang, Y.; Qin, M.; Yang, Q.; Cheng, N.; Gao, W.; Kwak, K.S. Multiobjective oriented task scheduling in heterogeneous
mobile edge computing networks. IEEE Trans. Veh. Technol. 2022, 71, 8955–8966. [CrossRef]

23. Shang, C.; Sun, Y.; Luo, H.; Guizani, M. Computation Offloading and Resource Allocation in NOMA–MEC: A Deep Reinforcement
Learning Approach. IEEE Internet Things J. 2023, 10, 15464–15476. [CrossRef]

24. Li, Y.; Yang, C.; Deng, M.; Tang, X.; Li, W. A dynamic resource optimization scheme for MEC task offloading based on policy
gradient. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC),
Chongqing, China, 4–6 March 2022; Volume 6, pp. 342–345.

25. Zhang, L.; Liang, Y.C. Deep Reinforcement Learning for Multi-Agent Power Control in Heterogeneous Networks. IEEE Trans.
Wirel. Commun. 2021, 20, 2551–2564. [CrossRef]

26. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A cooperative partial computation offloading scheme for mobile edge computing enabled
Internet of Things. IEEE Internet Things J. 2018, 6, 4804–4814. [CrossRef]

27. Choudhary, A.; Gupta, I.; Singh, V.; Jana, P.K. A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud
computing. Future Gener. Comput. Syst. 2018, 83, 14–26. [CrossRef]

28. Biswas, T.; Kuila, P.; Ray, A.K.; Sarkar, M. Gravitational search algorithm based novel workflow scheduling for heterogeneous
computing systems. Simul. Model. Pract. Theory 2019, 96, 101932. [CrossRef]

29. Abu-Taleb, N.A.; Abdulrazzak, F.H.; Zahary, A.T.; Al-Mqdashi, A.M. Offloading decision making in mobile edge computing: A
survey. In Proceedings of the 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA),
Ibb, Yemen, 25–26 October 2022; pp. 1–8.

30. Sun, F.; Cao, J.; Lu, Z. HEFT-dynamic scheduling algorithm in workflow scheduling. In Proceedings of the 2022 34th Chinese
Control and Decision Conference (CCDC), Hefei, China, 15–17 August 2022; pp. 4885–4890.

31. Su, S.; Li, J.; Huang, Q.; Huang, X.; Shuang, K.; Wang, J. Cost-efficient task scheduling for executing large programs in the cloud.
Parallel Comput. 2013, 39, 177–188. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LWC.2022.3179820
http://dx.doi.org/10.1109/JIOT.2022.3233026
http://dx.doi.org/10.1109/TCC.2021.3132175
http://dx.doi.org/10.1109/TMC.2022.3213410
http://dx.doi.org/10.1109/ACCESS.2022.3185992
http://dx.doi.org/10.1109/TCOMM.2023.3237854
http://dx.doi.org/10.1109/TVT.2022.3227197
http://dx.doi.org/10.1109/TNSE.2023.3263169
http://dx.doi.org/10.1109/TVT.2022.3174530
http://dx.doi.org/10.1109/TPDS.2021.3116863
http://dx.doi.org/10.1109/TVT.2022.3174906
http://dx.doi.org/10.1109/JIOT.2023.3264206
http://dx.doi.org/10.1109/TWC.2020.3043009
http://dx.doi.org/10.1109/JIOT.2018.2868616
http://dx.doi.org/10.1016/j.future.2018.01.005
http://dx.doi.org/10.1016/j.simpat.2019.101932
http://dx.doi.org/10.1016/j.parco.2013.03.002

	Introduction
	Related Work
	System Model
	Network Model
	Task Model
	Delay Model
	Server Cost Model
	Problem Formulation

	Proposed Algorithm
	Overview of GA
	Overview of GSA
	Generation of Population
	Force Computation
	Position Update

	Simulations and Results
	Conclusions
	References

