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Abstract: The intensive deployment of sixth-generation (6G) base stations is expected to greatly
enhance network service capabilities, offering significantly higher throughput and lower latency
compared to previous generations. However, this advancement is accompanied by a notable increase
in the number of network elements, leading to increased power consumption. This not only worsens
carbon emissions but also significantly raises operational costs for network operators. To address
the challenges arising from this surge in network energy consumption, there is a growing focus on
innovative energy-saving technologies designed for 6G networks. These technologies involve strate-
gies for dynamically adjusting the operational status of base stations, such as activating sleep modes
during periods of low demand, to optimize energy use while maintaining network performance and
efficiency. Furthermore, integrating artificial intelligence into the network’s operational framework is
being explored to establish a more energy-efficient, sustainable, and cost-effective 6G network. In
this paper, we propose a small base station sleeping control scheme in heterogeneous dense small
cell networks based on federated reinforcement learning, which enables the small base stations to
dynamically enter appropriate sleep modes, to reduce power consumption while ensuring users’
quality-of-service (QoS) requirements. In our scheme, double deep Q-learning is used to solve the
complex non-convex base station sleeping control problem. To tackle the dynamic changes in QoS
requirements caused by user mobility, small base stations share local models with the macro base
station, which acts as the central control unit, via the X2 interface. The macro base station aggregates
local models into a global model and then distributes the global model to each base station for the
next round of training. By alternately performing model training, aggregation, and updating, each
base station in the network can dynamically adapt to changes in QoS requirements brought about by
user mobility. Simulations show that compared with methods based on distributed deep Q-learning,
our proposed scheme effectively reduces the performance fluctuations caused by user handover and
achieves lower network energy consumption while guaranteeing users’” QoS requirements.

Keywords: 6G; network energy saving; base station sleeping; federated learning

1. Introduction

With the emergence and rise of various new smart devices and applications, the traffic
in future mobile communication networks is expected to increase significantly. According
to a report by the International Telecommunication Union (ITU), user data traffic per month
is projected to soar to 5016 exabytes (EB) by 2030, which is about 20 times that of 2023 [1].
To meet such data service demands, the coverage of future sixth-generation (6G) mobile
networks will need to be more extensive, the network scale more massive, and the density
of base stations further increased. Concurrently, to align with the vision of building an
environmentally friendly society and to meet the strategic goals of reaching “carbon peak”
and attaining “carbon neutrality”, 6G networks are expected to embody green, low-carbon,
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cost-effective, and sustainable characteristics [2]. To fulfill the requirements for the 2030
carbon peak objectives, the deployment of 6G networks will have to be managed with
minimal increases in network energy consumption compared to existing networks. With the
future data traffic projected to grow by several tens of times and under the premise of
unchanged total energy consumption, the energy efficiency of 6G networks will need to be
improved by several tens of times at least, compared to the current fifth-generation (5G)
mobile networks [3].

In actual network scenarios, the power consumption of base stations does not change
linearly with the service load. Instead, when a base station is idle (with no load), its
power consumption still accounts for 50-60% of the power consumption under full load
conditions [4]. This implies that the energy efficiency of base stations is quite low under
light-load conditions. Therefore, researchers have proposed that during periods when
base stations are not fully loaded, some of the base station’s functionalities and hardware
components should be shut down to significantly reduce power consumption while still
meeting transmission requirements. Ideally, the concept of “0 bit, 0 watt” should be realized,
which means that the base station would consume almost zero power when there is no
data transmission.

In this paper, we investigate the sleep control problem of base stations, and the
remaining of this paper is organized as follows. The related works on base station sleep
control are described in Section 2. The system model of the heterogeneous ultra-dense
networks and the energy delay trade-off problem is described in Section 3. Federated
reinforcement learning for small base station sleep control is introduced in Section 4.
In Section 5, the performance of the proposed scheme is evaluated. Finally, Section 6
provides the discussion of this study. The key mathematical notations used in this paper
are defined in Table 1.

Table 1. Summary of key notations.

Notation Description
M Set of small base stations
K Set of users
m The mth small base station
k The kth user
Tk Data rate of user k served by small base station m
By Total bandwidth of small base station m
K Number of users served by small base station m
Pm Transmission power of small base station m
P Channel gain between small base station m and user k
No Thermal noise power spectral density
T'm Total data rate of small base station m
ti The ith time slot
DPr’;l,k Data packet of user k served by small base station 1 arriving at time slot ¢;
vﬁmk Remaining data volume of data packet Dmek
Bm Working state indicator of small base station n
Ly Lifetime of data packets of user k
i Remaining lifetime of data packet DP!, .
t Current time slot
B Buffer status of small base station m
U Total data volume in the buffer of small base station m
L Packet loss rate of small base station m at time slot ¢
Pt Power consumption of small base station m at time slot ¢
w Trade-off factor
S State space of small base station m
A Action space of small base station m
P Transition probabilities of small base station m
R Reward function of small base station m
Ly Interference level of small base station m
0L, Network parameter of the evaluated Q-network of small base station m
ét, Network parameter of the target Q-network of small base station m
Q Q-value
Discount factor
stil State of small base station m at time slot t + 1
at, Action of small base station m at time slot £
v Target value
o Learning rate
8r Network parameters of the global model
A Step size of local model update
L Loss function

D Experience replay buffer of small base station m
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2. Related Works

In recent years, base station sleeping technology has attracted attention and is regarded
as one of the key technologies for enhancing the energy efficiency of future networks. Based
on the number of sleep levels, base station sleep mechanisms can be categorized into binary
sleep mechanisms and multi-level sleep mechanisms [5]. In the binary sleep mechanism,
a base station typically has an active mode and one sleep mode. The active mode is where
the base station is fully operational and can serve users with full capabilities. The sleep
mode is a low-power state where the base station consumes minimal energy but cannot
serve users or serve them with limited capabilities. The base station switches between these
two states based on network traffic demands.

In early research, scholars hoped to save energy by controlling the sleep of base
stations. For instance, the authors of [6] outlined methods driven by small cells, core
networks, and user equipment, noting energy savings between 10% and 60%. The research
in [7] explored the trade-off between energy consumption and delay using queuing the-
ory, suggesting a sleep control strategy that optimizes both. Despite these advancements,
the widespread implementation of such strategies in 4G networks has been limited due to
coverage continuity concerns [8]. With the advent of 5G and ultra-dense networks, there is
renewed interest in base station sleep for energy efficiency. Innovative sleep models and
artificial intelligence have paved the way for dynamic optimization solutions that adapt to
network changes, as highlighted in [3]. Traffic prediction models have become crucial for
energy-saving strategies, with various algorithms being compared in [9], and Al-driven
approaches like deep neural networks and recurrent neural networks being utilized for
predictive analytics in [10]. However, base station sleeping impacts not only the individual
base station but also the surrounding network infrastructure, as discussed in [11]. Complex-
ities arise when designing metrics and thresholds to balance the local and network-wide
effects of sleeping strategies, especially as networks grow in size and complexity. Advanced
solutions now involve game-theoretic approaches to minimize system power consump-
tion while considering base station load [12], as well as dynamic control mechanisms for
enhanced energy efficiency in millimeter-wave networks [13]. The intricacies of business
load-based sleep in ultra-dense networks (UDNs) were examined in [14], and various
sleeping strategies and their trade-offs were analyzed in [15]. Al and machine learning
have revolutionized base station sleeping decisions. Neural networks can now predict
non-critical stations for sleep initiation, offering a comprehensive solution for optimizing
network energy efficiency [16]. Frameworks like MGCN-LSTM have improved traffic pre-
dictions [17], and Q-learning has been employed to balance load and energy efficiency [18].
Furthermore, a new data-driven framework has been proposed to manage base station
sleep modes, satisfying both energy and quality-of-service (QoS) requirements, with simula-
tions showing significant performance advantages [19]. Multi-agent reinforcement learning
methods are being used to optimize access control and base station sleeping in scenar-
ios where human communication and machine communication co-exist [20]. However,
the binary sleeping mechanism only allows base stations to remain active or be completely
asleep, which often requires a longer transition time and lacks the flexibility to adjust the
transmission capacity of the base station dynamically. This rigidity can easily lead to a
significant decline in users” QoS.

In a multi-level sleep mechanism, unlike hierarchical sleep mechanisms, there are
several levels of sleep depth, each with varying degrees of energy saving and operational
readiness. The deeper the sleep level, the more energy is conserved, but the longer it may
take for the base station to become fully operational again. This mechanism allows for
more granular control of energy consumption, balancing the trade-off between energy
savings and QoS [21]. The base station can dynamically adjust its sleep depth based on
real-time traffic conditions and predefined policies to optimize both energy consump-
tion and user experience. To enable base stations to enter the appropriate sleep mode,
a Q-learning-based algorithm was proposed in [22] to determine the optimal duration
that BS can consume at each sleep level to minimize the network energy consumption
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under BS sleep/activation delay and user service demand constraints. Ali Ei Amine and
colleagues studied multi-level base station sleep mechanisms and proposed a distributed
Q-learning approach to control the depth of sleep to achieve a trade-off between power
saving, average user delay, and packet loss rate [23,24]. Furthermore, Ali Ei Amine et al.
further researched the sleep problem of small base stations in dual-layer heterogeneous
networks, considering co-channel interference and user offloading, and achieved the joint
optimization of the weighted sum of small base station power consumption and data
loss [5]. Meysam Masoudi et al. proposed an online reinforcement learning algorithm to
decide in real time the optimal BS during inactive tuning [25], improving the practicality of
the algorithm. Sheng Lin et al. performed a rather precise modeling of the user experience
delay during base station sleep, including waiting delay and transmission delay, and based
on a real 5G dataset, proposed a sequential DRL mechanism for user association and base
station state selection. Their simulation results show that the sequential DRL algorithm
has a better energy-saving effect than the single DRL algorithm, saving more than 50%
of energy compared to greedy, random, and other algorithms [26]. Considering that the
Al-based base station state selection mechanism may fail due to insufficient training or
changes in network status, leading to an unacceptable severe decline in user QoS, Meysam
Masoudi et al. used a Markov process to model the dynamic changes in the system state
(including base station status and user status) and proposed a risk-aware base station mode
management method assisted by a digital twin. This method ensures that the Al-based
sleep decision can only be used when the risk caused by entering base station sleep is less
than the risk threshold set by the operator. If the risk exceeds the threshold, it indicates
that the model has failed, the sleep decision should be suspended, and retraining should
be carried out to ensure the reliability of the base station sleep mechanism [27]. The above
studies focus only on the selection of base station sleep modes and do not consider the
power control of the base stations, assuming that base stations use all their transmission
power, without considering the impact of base station power control on coverage. In fact,
studies have shown that base station power control should be jointly optimized with sleep
modes [28]. Chang et al. proposed a multi-base station joint downlink power optimization
algorithm, where base stations, after determining sleep decisions, choose the appropriate
power level based on the user’s transmission traffic volume and signal quality using a DQL
approach to optimize the system’s long-term energy efficiency [29]. However, most of the
aforementioned studies are based on distributed learning methods, as mentioned in [5,24].
In these methods, each base station independently trains and makes decisions based on
its own observations, and it is assumed that users are either stationary or semi-stationary
(moving within the coverage area of a single base station without switching). Once the
base station’s sleeping decision-maker is sufficiently trained, it can accurately select the
optimal sleeping decision. In real-life dense network scenarios, users continuously move
and switch, and the quality-of-service requirements of the users served by each base station
are in a state of dynamic change. The model previously learned may no longer perform
optimally when users leave or join, leading to a decline in performance. This decline in
performance due to the different distributions of the training and testing datasets is referred
to as concept drift. An overview of the multi-level sleep strategies is shown in Table 2.

In this paper, we propose a federated reinforcement learning-based (FRL-based) base
station sleeping control strategy, in which the small base stations can turn into sleep modes
when the traffic demand is low to save energy. The main contributions of this paper can be
summarized as follows.

In order to more accurately evaluate the impact of base station sleeping on users’
quality-of-service, particularly regarding latency, we advanced beyond the approach in [27],
which only uses the numbers of users to describe base stations’ load. We modeled the
transmission requirements and channel capacity for each user individually. Unlike [5,26],
which focuses solely on delay-tolerant services, we considered both delay-tolerant and
delay-sensitive services. Contrasting the method in [5], which only looks at total throughput
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and the buffer state of small base stations, our user-specific model allows more accurate
measurements of performance indicators like packet loss rate and transmission delay.

Table 2. Overview of multi-level sleep strategies.

Ref. Scenario Method Contributions Limitations
[22] Single BS QL Power and delay trade-off Only a single BS; the ;;ni];‘f)trggmter—cell interference
[23,24] MBS, SBSs, and fixed oL Power and delay trade-off Ignored the impact brought by user movement
users and handover
The load of the BS is roughly quantified into only two
[25] Single BS QL Power and delay trade-off levels: high and low. It only considers a single BS and
& y 8 Y 8
the inter-cell interference is ignored
. Jointly optimizes the user association and SM control to The decision cycle is long; unable to support service
20l SBSs and moving users bQL minimize the energy-delay reward types with a latency requirement of less than 100 ms
Two BSs and fixed Assess.ed the .rlSk of model performance dggradatlon User mobility is not considered; the BS’s load is
[27] DQL with environmental changes and provided a .
users L . described solely based on the number of users
retraining mechanism
. L - Only optimizes the system’s energy efficiency while
[29] SBSs and fixed users DQL Power and SM control to maximize energy efficiency ignoring the increased delay caused by BS sleeping
MBS, SBSs, and Determined the optimal sleep mode to minimize power Users are restricted to moving within the cell;
[5] / g DQL consumption and packet loss rate, providing a user the impact of inter-cell handover is not considered,

moving users

offloading scheme in heterogeneous networks and only delay-tolerant services are taken into account

We considered a more practical scenario where users are continuously moving, with
movement trajectories sourced from real datasets. Compared to the assumptions in [23,24,27,29]
where users are stationary and the assumption in [5] where users only move within a cell and do
not handover. Our approach evaluates the impact of user movement and handover on system
performance. To address the concept drift caused by user mobility and handover, we integrated
a federated learning framework, offering better performance and convergence compared to the
distributed reinforcement learning method proposed in [5,24].

Through numerical simulations, we analyzed the performance of the proposed algo-
rithm under various network conditions. The simulations demonstrate that our federated
reinforcement learning-based approach has significant advantages in mitigating concept
drift and accelerating model convergence. In particular, compared to the independent deep
Q-learning scheme proposed in [24,26], when there are delay-sensitive service users in the
system, our algorithm enables the system to achieve lower power consumption and packet
loss rate.

3. System Models and Problem Formulation
3.1. Network Scenario

We consider a two-tier heterogeneous ultra-dense network composed of one macro
base station, M small base stations, and K users, as shown in Figure 1. The small base
stations and users are randomly distributed within the coverage area of a macro base station,
following two independent Poisson Point Processes. The small base stations are connected
to the macro base station through the X2 interface to facilitate data backhaul and signaling
interaction. It is assumed that all user data are transmitted by small base stations, while the
macro base station exclusively handles the transmission of control signals. Furthermore, all
small base stations are capable of sharing the whole system bandwidth B. The set of SBSs
and users are denoted by M and K, respectively.

To reduce network energy consumption, small base stations can enter different sleep
modes during off-peak periods. These stations may deactivate certain network functions
and hardware components to lower power usage. In order to save energy without sig-
nificantly compromising user QoS, small base stations need to select appropriate sleep
modes. Optimizing the sleep control problem for small base stations is a highly complex
integer programming problem, requiring extensive searching to find the optimal combi-
nation of sleep modes. Therefore, to solve this problem in real time, methods based on
reinforcement learning are often used. In this approach, small base stations are treated as
agents that continuously interact with the environment to learn near-optimal action-state
mappings, thus achieving near-optimal sleep control. This methodology is advantageous
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for its adaptability and real-time response, allowing sleep strategies to adjust according
to the real-time changes in the network environment. However, in the mechanism of
distributed reinforcement learning, each small base station learns the action—state mapping
that best matches the characteristics of its users over a previous time frame. As users
move and switch, the data distribution during training might not match the distribution
during deployment. Consequently, the experience acquired during training may become
outdated, leading to what is known as concept drift. To mitigate the issue of concept
drift, we have introduced a federated learning mechanism. In this system, small base
stations act as agents that conduct reinforcement learning locally to develop a local model.
These local models are then periodically uploaded to the macro base station, serving as
the central controller. The macro base station aggregates these local models into a global
model and then disseminates it back to the small base stations for model updating. This
approach helps in synchronizing the learning process across the network and maintaining
the relevance of the models in a dynamically changing environment.

Cloud Server

(9
é Small base station _— Backhaul link
Delay-Tolerant user —L— Signal link

a- Delay-Sensitive user —Z—— Interference link

Figure 1. Illustration of the network architecture of a two-tier heterogeneous ultra-dense network.

3.2. Multi-Level Sleep Modes

To model the sleep modes of base stations, we utilize the sleep strategy proposed by
GreenTouch in [21], wherein the following four sleep modes are defined:

e SM1: This mode shuts down the shortest time unit, which is an OFDM symbol (71 ps),
including the time for shutdown and reactivation. In this mode, only the power
amplifier and some processing components are disabled.

*  SM2: This mode corresponds to the subframe shutdown, with a shutdown duration
of a time slot interval TTI (1 ms). In this mode, the components including the RF
channels can be turned off to address more energy.

¢ SM3: This mode corresponds to the frame shutdown, with a duration of 10 ms. In this
mode, deeper shutdown, including carrier shutdown, can be achieved.

®  SM4: The deepest sleep level, in which almost all base station components are turned
off and only the necessary components for reactivating the base station are retained.

This includes active modes and sleep modes (symbol shutdown, subframe shutdown,
frame shutdown, and deep sleep, which can cause significant delay increases and need to
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be carefully designed). Higher sleep mode levels can shut down additional base station
functions and components, thereby achieving lower power consumption. However, they
also necessitate a longer time to reactivate (or deactivate) the base station, potentially
causing increased user latency and elevating the risk of compromising user QoS require-
ments. To support the design of multi-level sleep technology, Ref. [21] provides a modeling
method for key indicators such as the power consumption and transition duration of each
sleep level. The transition duration conforms to the time-domain frame structure defined
by 3GPP, while the power consumption of each sleep level can be determined based on
parameters like the type of base station, the number of transmit and receive antennas,
and bandwidth. In practical use, these parameters need to be incorporated into complex
formulas to obtain the corresponding performance indicators. Fortunately, IMEC Green-
Touch also offers an online tool that simplifies the modeling work significantly. This tool
allows users to obtain performance indicators for each sleep level based on key parameters
configured for the base station. The relevant parameters in this paper are sourced from
this online tool [30]. Specifically, we have outlined the characteristics of the sleep levels
for 10 MHz 2 x 2 MIMO small base stations in Table 3. This includes details such as
the power consumption in both active and sleep modes, and the duration required for
activation or deactivation. However, according to the current version of the 3GPP protocol,
5G base stations are required to periodically transmit the Synchronization Signal/Physical
Broadcast Channel. The transmission period can be configured to [5, 10, 20, 40, 80, 160] ms.
Therefore, in this version, SM4 (Sleep Mode 4) cannot be utilized.

Table 3. Sleep modes.

Active

Mode Fall Tdle SM1 SM2 SM3 SM4
Power 27W 11.7W 7W 195 W 11W 0.75W
(De)activation duration 0 0 355 s 0.5ms 5ms 05s
Minimum sleep duration 0 0 71 ps 1ms 10 ms 1s

The base stations should select appropriate working modes based on the traffic de-
mands and QoS requirements of the users, channel conditions, and interference from
neighboring areas. This approach can enhance the system’s energy efficiency without
significantly reducing the QoS experience for users. This balance is crucial for maintaining
network performance that is both energy-efficient and meets user demands.

3.3. Transmisstion and Traffic Model
Given a cell bandwidth B, and the noise spectral density Ny, the data rate of user k

served by SBS m, the cell average data rate, and the number of bits served by SBS m can be
calculated as follows:

Pm hm,k

, (1)
N() . Bm =+ 2;,,[ pml . hm’,k

B
Tk = —Km log, (1 +
m

where py, is the transmission power of the small base station m, h,, x is the channel gain
between the small base station m and user k, and K, is the number of users served by
the small base station m. It is clear that the user data rate is associated with the wireless
channel gain, the bandwidth of the small base station, the number of serviced users, and the
interference from other base stations. Let r,;; denote the total data rate of the small base
station m, which can be calculated by

Tm = Z T k- 2)

keky

In this paper, we consider two types of user services: delay-tolerant and delay-sensitive
services. These categories are significant in the design and optimization of network archi-
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tectures, especially in advanced networks like 5G, which promise to support a wide variety
of applications with different performance requirements:

*  Delay-tolerant services are those where transactions and communications can experi-
ence latency without significantly impacting the user’s experience. These services are
less affected by network congestion and can be scheduled to use network resources
during off-peak times to improve overall network efficiency. Typically, delay-tolerant
services can accommodate latencies of tens of milliseconds or even beyond 100 ms.

*  On the other hand, delay-sensitive services require a fast and often real-time trans-
mission of data to function correctly. High latency can severely impact the qual-
ity of these services, leading to poor user experience. For delay-sensitive services,
the acceptable latency is often below 10 ms. Examples of delay-sensitive services
include real-time voice and video communication, online gaming, and certain forms
of interactive applications.

Users’ traffic is modeled using an on—off model, where user activity (on state) alternates
with periods of inactivity (off state). The on state represents the time during which the
user is actively sending or receiving data, while the off state corresponds to the time when
there is no data transmission. At the beginning of each time slot, new data packets enter
the small base station’s buffer. Therefore, the arrival and lifetime of data packets can be
illustrated, as shown in Figure 2. The small base station then transmits the data packets to
the users it serves over the wireless channel. Let DPI i denote the data packet of the user k
served by the small base station m arriving at time slot t;. Each data packet has a lifetime
Ly, which depends on the service type of the user k. It is assumed that the data volume of a
DPm j V is fixed. If there is a data packet DP} , in the buffer of the small base station m,
then at a later time f, its remaining data volume v’ n x and lifetime d;n/k would be

‘ t
U;n,k =V- Z,erm,k 3)
t

and '
A = L — (t— 1), 4)

where B,; denotes the working state indicator of the small base station m, f = 1 signifies
that the small base station m is in active mode, and p = 0 indicates that the base station is
in one of the sleep modes. If the packet fails to complete transmission after exceeding the
lifetime upon entering the buffer zone (dl x < 0), it will become invalid, leading to packet
loss. The base station is assumed to 1mp1ement a delay-aware scheduling mechanism that
prioritizes the transmission of data packets close to their timeout threshold.

A
DP,
[ DP’, |
. DP;,
g
©
g | DP:, |
8 | DP,, |
DP’,,
DP!,,
| DP!, |
>
, 1, t, t, 15 t t; t t t,  Time Slot

Figure 2. Illustration of the arrival and lifetime of data packets.
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The buffer status of a base station can be modeled as the set of all valid data packets in
the buffer that have not yet completed transmission:

By = {DP,, |d., . > 0,k € Ky }. (5)
The total data volume v, in the buffer of the small base station m can be calculated as

Uy = Z Ufn,k. (6)

DPeBy,

When the small base station is in sleep mode, data transmission is paused, but new
data packets can still arrive. Figure 3 provides an illustrative representation of the dynamic
changes in the base station’s buffer state.

A
Sleep i Active: Sleep Active : Active ., Sleep : Sleep . Sleep « Active
9]
N DP], DP,
n
] DP,, DP,, DP;,
k! DP:,
~ , DP;, DP;, DP;, DP;, DPl,
% bp,,
DP!, DPS,
o DP., DP:, DP:, DP:, DP:,
DP:, DP}, DP;
DP},
DP., 1 DPl, DP, DP:, DP!, DP:, DP!, DPY,
- >
l I8 I8 t ts 1 1 I 1, to Time Slot

Figure 3. Illustration of the arrival and transmission of data packets in the buffer.

3.4. User Moving and Association

In this paper, we use the best RSRP user association strategy. As users move and the
wireless environment changes, when a base station has a higher RSRP than a user’s current
service base station, inter-cell handover occurs. To investigate the impact of user mobility
on base station sleep, we used real user trajectories in our research. Our user trajectory
data come from the open-source dataset, GeoLife GPS Trajectories, released by Microsoft,
which collects real user movement trajectories from the real world.

3.5. Power Model and Problem Formulation

The power consumption of small base stations under sleep modes has been provided
in Table 2. For base stations in the active state, we model their power consumption with
the following linear model:

™ = om(Pru — Prate) + Prater (7)
where pr,;; and pyg, represent the power consumption of the base station under full load
and idle conditions, respectively. p,, is the load ratio of the small base station m.

Based on the system model, the SBS sleep control problem can be formulated as

follows:
+o0 +o0o M
min ELR = Wbyt + (1 —w) - , 8
a€{ Active,SM1,SM2,SM3} t; t;m; mt ) P ®)

where I;;, ; is the packet loss rate of the small base station m at time slot t. Packet loss means
that the data packet has not been transmitted within its lifetime, w is the trade-off factor
used to quantify the priority of energy conservation and ensure the packet loss rate. The
goal is to jointly minimize the long-term energy-loss reward (ELR), which is defined as the
sum of the total packet loss rate and the total power consumption of the small base stations.
To reach this goal, the small base stations need to choose the appropriate operating mode
at the beginning of each time slot based on their own buffer status, channel conditions,
and other factors.
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4. Federated Reinforcement Learning for Small Base Station Sleep Control

To reduce power consumption while avoiding packet loss, a multi-level base station
sleep control scheme based on reinforcement learning was proposed in [5], where small base
stations independently learn the optimal active control strategy to minimize the weighted
sum of power consumption and packet loss, thereby achieving a trade-off between energy
saving and user QoS. However, in [5], users are assumed to move only within their serving
cell, that is, there is no handover between the small cells. Moreover, the packet reception
rate of each base station depends solely on the number of users it serves, and under this
assumption, the arrival and lifetime distribution of the packets to the small base stations
remain constant. Once the deep Q-network is trained, the small base stations can obtain an
optimal sleep control strategy adapted to their service demands.

However, such assumptions are challenging to guarantee in real-world scenarios.
For instance, the service demands of users do not arrive at a constant rate; each user
has different data rate and latency requirements, leading to variable service demands for
small base stations. Furthermore, as users move, there are continuous inter-cell handovers
between small base stations, causing the user set served by each small base station to
dynamically change. This change affects the arrival rate and lifetime of packets at the
small base stations. The dynamic variation in the user set served by small base stations,
changes in wireless channels, and user QoS requirements may cause a data distribution shift
between the samples collected during the training of the reinforcement learning for optimal
sleep control strategy and the samples processed after base station deployment. This
discrepancy between training and test data can lead to concept drift, causing the trained
base station sleep control strategy to deviate from the optimal strategy. This deviation
can lead to inaccurate or erroneous decisions, reducing the energy-saving effectiveness or
service quality of the base stations and even causing severe packet loss.

In this paper, we introduce a federated learning approach to mitigate concept drift.
Federated learning is a distributed machine learning framework that enables multiple
nodes (for example, mobile devices or small base stations) to collaboratively train a shared
model while keeping the data localized. In addressing concept drift caused by dynamic
network changes, federated learning offers several advantages:

e Data diversity: Federated learning aggregates learned information across different de-
vices and users, which increases the model’s generalization capability by considering
the variability in environments and user behaviors.

*  Real-time updates: Base stations can update their local models and exchange parame-
ters with a central server or other base stations periodically, keeping the global model
current with the latest network conditions and user behaviors.

¢  Continuous learning: The federated network engages in ongoing learning to better
adapt to dynamic changes in channels and user demands, thereby minimizing the
impact of concept drift.

Markov Decision Process Model of Multi-Level Sleeping Control

In this paper, the multi-level sleep control for each small base station is modeled as a
four-tuple Markov Decision Process (MDP) (Sy, Am, Pm, Rm), where Sy, is the state space
of the small base station m, A, is the action space of the small base station m, Py, is the
transition probability from the current state S, to the next state S%,F1, and Ry, is the reward
function. In the base station sleep control strategy studied in this paper, a small base station
selects an action a based on the current state S;, according to a certain policy. Subsequently,
the base station’s state transitions to S!, and it receives a reward. The small base station
continuously updates its policy based on the received reward using reinforcement learning
methods until it converges to an optimal or near-optimal sleep control policy. Accordingly,
aligned with the features of the problem, the state space Sy, action space A, transition
probability Py, and reward function R, are defined as follows:

*  The state space Sy, = {rm, Um, Im} represents a combination of the current achievable
data rate, buffer data amount, and the level of interference for the small base station m.



Electronics 2024, 13, 549

11 of 19

Here, the current achievable data rate can be calculated using Equations (1) and (2),
the buffer data amount can be calculated using Equation (6), and the level of interfer-
ence represents the proportion of throughput loss due to interference and is expressed
by the following equation:

pm'hm,k
log, (1 + xypes, P ok
Im - Pm'hm/k - (9)
10g2(1 + No-Bm )

e The action space A,, = {Active, SM1,SM2,SM3} consists of possible operational
states for the small base station m, such as the active mode and three sleep modes.
The small base station m selects an action from A, based on the e-greedy policy at the
beginning of each time slot.

e The transition probabilities P, (s'|s, a) represent the likelihood of moving from state s
to state s’ when action a is taken.

e The reward function R, (s, a) quantifies the immediate benefit of taking action a in
state s, typically balancing energy consumption against service quality. Considering
the characteristics of problem (8), the reward function is defined as

Ry = —ELRy = —(w Iyt + (1 — w) - pmt)- (10)

The base station can calculate rewards based on power consumption and the packet
loss rate in time slot .

To address the issue of “concept drift” caused by user mobility, this paper proposes
an FRL-based small base station sleep control scheme based on the federated learning
framework proposed in [31,32]. The process flow of the small base station sleep control
scheme based on federated learning is shown in Figure 4, and the execution of this scheme
can be summarized as follows: the small base stations first train their local models indepen-
dently based on their environment; then, they periodically upload their local models to
a central data unit for model aggregation to obtain a global model; once the aggregation
is performed, the central data unit broadcasts the global model to all small base stations
and; upon receiving the global model, the small base stations update their local models
and continue with the next round of local model training. The details of this scheme are
as follows.

2
t
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©
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o}
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©
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—
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¢ L ¢
J \ J \ y \
Local model training Local model training Local model training

Figure 4. Flowchart of federated learning-based small base station sleep control scheme.
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Local Model Training

The small base stations initially engage with their environment to refine their local
models, targeting improved effectiveness in present conditions. This research utilizes
the discrete action deep reinforcement learning algorithm, double deep Q-network
(DDQN), for local model training, considering the expansive state space and compact
action space in base station sleeping scenarios. DDQN, with its replay buffer and the
separation of action selection from its evaluation, tackles the challenges posed by the
vast state space by diminishing data correlation. The update mechanism of DDQN is
outlined as follows:

Vo= Ren +9Q (st argmax Q<4 a6 )6 ) 1 = 1,23+, )
ay'
where

arg max stHl gt -0t ) ifo > e,
at, =8 siea Qs ahih) NmeMt=1,23,--- (12)
rand(A), otherwise

is the e-greedy policy used for base station sleeping control, where c~U(0,1) is a
random number that follows a uniform distribution and € is a preset probability
threshold. 6)" and 6" are the network parameters for the Q-network and the target
network, respectively, and y € [0, 1] is the discount factor. For a base station m, if it is
in state s} and takes action aj* at time slot ¢, its state—action value is given by

T
Q(s,tn,a,tn) :]E[Z'y”rfnbfn,afﬂ],t: 1,2,3,---. (13)
n=t

The objective of DDQL is to minimize the gap between Q and 8, i.e., the loss function.
Here, the loss function of the DDQN, L, is defined as

L(an) = E[(yin - Q(sin,a;;efn))z],t =1,2,3, . (14)

Furthermore, gradient descent is employed to update the network parameters 6" in
DDQL. The update rule in DDQN is given by

001 = 0+ o [yhy — Q(sh 04, ) | VQ(shy a0l ) £ = 1,23, (15)

where « is the learning rate and 7 is the period of model aggregation. After training
for T time slots locally, the small base stations send the model parameters 6;" to the
central data unit for global model aggregation.

Global Model Aggregation

The global model aggregation occurs at the central data unit. Once the local models
;" from all small base stations are received, the global model is calculated using:

_ ZmEM Kin an

g < , mod (t,7) =0, (16)

where K = Y,y Kin represents the total number of training samples, K, stands for
the total number of training samples at the base station m, and g is the global model
in the rth aggregation round. After the global model aggregation, the central data
unit broadcasts the obtained global model g, to all small base stations for updating
their local models.

Local Model Update
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The local model update process occurs at the small base station. After receiving the
global model from the central data unit, the small base station updates its local model
based on the global model, which serves as the foundation for subsequent local model
training. Let us assume each communication period consists of T time slots. We
denote ;" as the dormant model of base station m at time slot t and g, as the global
model in the rth round of communication. At the beginning of the rth communication
cycle, the small base station m receives the global model g, broadcasted by the central
node. The local model is then updated as

A M
il = ¢, — X Y VL(6},), mod (t,T) =0, (17)
m=1

where A is the step size. After the model update, the small base station interacts with
the environment and performs the next round of local model training.

The workflow of the proposed federated reinforcement learning-based base station
sleeping control algorithm can be summarized as follows. Each small base station trains
a local Q-network to guide base station sleeping decisions based on the reinforcement
learning framework. When the model aggregation process starts, each small base station
uploads its local Q-network parameters (including network weights, biases, etc.) to the
macro base station. The macro base station aggregates the collected local models based on
the aggregation rule shown in Equation (16) to obtain a global model. This global model
is then shared with each small base station, allowing them to update their models and
perform the next round of local training on the basis of the global model. This helps the
small base stations to obtain Q-networks that are more suitable for the characteristics of all
users in the network. The details of the proposed algorithm are given in Algorithm 1.

As analyzed in references [31,32], since each communication round involves model ag-
gregation, model updates, and T rounds of local training, the computational complexity of
the proposed algorithm is O(J(M + 7)), where | represents the number of communication
rounds. The local model training process can be considered similar to the independent rein-
forcement learning described in references [5,26], where each small base station maintains
its own experience replay buffer and Q-network, with no information exchange between
the small base stations or between small and macro base stations. The model aggregation
process can be seen as a process of “experience sharing” among the small base stations
through the global model aggregated by the macro base station. In this process, the small
base stations transmit local model parameters to the macro base station, and then the macro
base station transmits the global model parameters back to the small base stations. This
will incur certain signaling overheads, but in the network architecture of this paper, this
interaction process is carried out through the X2 interface connected by an optical fiber
between the base stations, making the communication cost acceptable. The framework of
base station sleeping decisions based on federated learning proposed in this paper, com-
pared to a completely independent reinforcement learning approach, can bring significant
performance advantages.

As local model training, global model aggregation, and global model updates alternate,
the small base stations continually update their deep Q-network, allowing the sleeping
control strategy to dynamically adapt to changes in the network environment. The details
of the proposed federated reinforcement learning-based base station sleeping control
algorithm are given in Algorithm 1.
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Algorithm 1 Federated reinforcement learning-based base station sleeping control.

1: while Online do

2. procedure Local Model Training

3 form e Mdo

4 Visit state sf,.

5: Select an action a,, using e-greedy policy (12).

6 Obtain reward r,, and next state st

7 Store (s, at,, 1%, s5F1) into Dyy,.

8 Randomly select samples D, from D;,.

9 Train Q-network using gradient descent method (15) based on the loss function
(14) and samples Dy;,.

10: Update O0=0Q.

11:  end for

12 procedure Global Model Aggregation

13 g = 72’"“}(“”9’{“.

14:  procedure Local Model Update

15 6041 =g — ¢~ T VL(6),).

16: end while

5. Results

In this section, we evaluate the performance of the algorithm proposed in this paper
through simulation. We consider a dense urban environment, where there are 30 users
served by four SBSs distributed in the coverage of an MBS. Users move according to
trajectories sampled from reality, with the user trajectory data sourced from the dataset
GeolLife GPS Trajectories. The small base stations will use the FRL-based base station
sleeping control method proposed in this text to select the appropriate working mode
based on the status of their buffer area, channel, interference, etc., in order to minimize the
ELR. The detailed parameters of the simulation are summarized in Table 4.

Table 4. Simulation parameters

Parameters Values
The total bandwidth of the small base stations By, 10 MHz
Carrier frequency f. 5GHz
Number of time slots 7 x 10%
Real-world duration of simulation 70s
Duration of a time slot 1ms
The lifetime of a delay-tolerant data packet 100 ms
The lifetime of a delay-sensitive data packet 20 ms
Data volume of a data packet 10 kbit
Spectral density of thermal noise Ny —174 dBm/Hz
Number of layers in neural network 20
Target network update interval step 4
Discount factor 0.9
Learning rate 0.01
Replay memory size 8000
Minibatch size 400
Cycle of model aggregation 50

Figure 5 shows the evolution of the ELR with the number of epochs. We simulated
70,000 epochs, corresponding to 70 s in the real world. From the simulation, it is observed
that the DRL model converges. In the simulation of this paper, the first 10,000 epochs (10 s)
are dedicated to free exploration without training the Q-network. Between 10,000 epochs
and 20,000 (10 s and 20 s), deep reinforcement learning begins to train the Q-network. It
is noted that as the training progresses, the DRL model can converge within 1000 ms and
significantly reduce the ELR, indicating that the base station has lower weighted power
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consumption and packet loss. After 20,000 epochs (20 s), the FRL-based algorithm starts
to perform periodic model aggregation, with the small base stations sharing experiences
within the model. It is observed that after 20,000 epochs (20 s), the ELR of the DQL-based
algorithm remains relatively stable with fluctuations, while the ELR of the FRL-based
algorithm further decreases. This is because, in the DQL-based algorithm, the small base
stations independently interact with the environment to train the sleeping control model.
However, as users move, the channel conditions and service types of the small base stations’
served users dynamically change. This breaks the assumption of training and testing
datasets being from the same distribution, leading to concept drift. The small base stations
struggle to adapt quickly and in real time to the dynamic changes in the environment,
causing performance fluctuations. On the other hand, in the FRL algorithm, the small
base stations periodically interact with macro base stations for model aggregation and
updating. This allows for a certain degree of experience sharing among the small base
stations, enhancing the adaptability of the model. Even with users switching cells, the new
small base station gains some experience with these users. The FRL-based algorithm adapts
more quickly to environmental changes, thus showing better performance.

Figure 6 shows the proportion of various operating states used by base stations when
employing the FRL-based small base station sleeping control algorithm at different values
of w. It can be seen that small base stations choose their operating modes according to the
e-greedy strategy, including Active, SM1, SM2, and SM3, to save power.

As w increases, the small base stations tend to choose higher levels of sleeping to save
more power. Notably, when w = 1, the proportion of the small base stations choosing the
SM3 mode exceeds 90%, with other modes being chosen almost exclusively during the
exploration phase of the e-greedy strategy. This allows the system to achieve the lowest
power consumption but at a high risk of packet loss. Conversely, when w = 0, the small
base stations almost always choose the active mode, ensuring continuous data transmission
but potentially resulting in high network power consumption.

12 T
FRL-based
DQL-based

10 bl

ELR
(o]

L L L L L
0 1000 2000 3000 4000 5000 6000 7000
Epochs

Figure 5. Evolution of the ELR with the number of epochs.

In the evaluation section focusing on the power consumption and latency performance
of our algorithm, we adopt a comparative analysis approach. We provide performance
evaluation results of both the algorithm proposed in this paper and those presented in
existing related research. This methodology is employed to clearly discuss the relationship
and differences between our study and the most recent mainstream solutions in the field.
The comparison algorithms include DQL-based (similar to [5,26]), all-active (small base
stations always in active mode), and random (small base stations randomly choose their
work mode). Figure 7 and Figure 8, respectively, showcase the average power consumption
and delay of the networks employing the federated reinforcement learning (FRL)-based
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small base station sleeping control algorithm and other algorithms. Among these four
algorithms, the random scheme displays higher levels of power consumption and delay
because the small base stations randomly select their operating states without considering
user business, channel conditions, or other network states.
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Percentage of SBS state
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Figure 6. The proportion of various operating states used by base stations with different w.
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Figure 7. Average power consumption with different w.

In contrast, the all-active scheme exhibits the lowest delay levels but the highest power
consumption. This is because, with the small base stations not entering any sleep mode and
remaining active, the network does not experience additional delays due to base station
sleeping. However, this leads to significant power wastage in scenarios where the system
is not fully loaded.

The two intelligent sleeping control algorithms, FRL-based and DQL-based, achieve
better energy-saving effects while maintaining relatively low delays. As the weight factor
w increases, the network’s average power consumption gradually decreases, while the
average delay increases, aligning with the characteristics of the designed weight factor.
When w is 0 or 0.1, to ensure very low packet loss performance in the system, the active
mode dominates the small base station’s choices. The power consumption levels of both
algorithms are higher than the random scheme, but their delay levels are close to the
method without base station sleeping. This is because w = 0 and w = 1 represent two of
the simplest sleeping objectives: base stations choosing active mode as much as possible
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to ensure transmission performance and choosing the deepest sleep mode to achieve
the lowest power consumption, respectively. Both learning-based methods can learn the
optimal strategy, hence displaying similar performance.
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Figure 8. Average transmit delay with different w.

However, when w takes other values, the small base stations must consider the
trade-off between power consumption and transmission performance when selecting their
operating modes. The FRL-based algorithm shows stronger performance than the DQL-
based algorithm because it mitigates the issue of concept drift through model aggregation,
making the model more adaptable to user mobility. On average, the FRL-based algorithm
achieves a 13.9% reduction of power consumption and a 5.8% reduction of delay compared
to the DQL-based algorithm. Compared to the scenario without base station sleeping, it
achieves a 62.7% reduction of power consumption.

6. Discussion

In this paper, we investigated the issue of network energy saving through base station
sleeping in dense network environments. To reduce network power consumption while
preventing a significant decrease in users’ QoS, we introduced a federated reinforcement
learning-based multi-level sleeping control method for small base stations, aimed at mini-
mizing the network’s overall power consumption and packet loss. The small base stations
choose between active or dormant modes at the start of each time slot depending on their
buffer load, channel conditions, and neighboring interference. They interact with the
environment using double deep reinforcement learning to obtain a near-optimal sleeping
control policy. Furthermore, recognizing the concept drift problem due to user mobility
in actual networks, we adopted a federated learning mechanism. This involves periodic
model aggregation and updates, allowing small base stations to share experiences, thereby
enhancing the performance of the sleeping control algorithm. The simulation shows that,
compared to scenarios without base station sleeping, our proposed method can save over
62.7% in power consumption. Additionally, relative to the sleeping control method based
solely on DQL, our approach can reduce power consumption by 13.9% and average latency
by 5.8%.

The federated learning-based base station sleeping control technique proposed in this
paper is conducive to achieving a more energy-efficient 6G network. Employing a decen-
tralized learning and decision-making process enables small base stations to autonomously
adjust their sleep states based on real-time data and environmental changes. This approach
not only enhances overall energy efficiency and the packet loss of the network compared
with completely independent learning schemes but also reduces dependence on centralized
control, thereby increasing network reliability and responsiveness. Furthermore, the appli-
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cation of this technology may also lead to further improvements in user experience, service
quality, and environmental adaptability in 6G networks, particularly in dynamic and con-
stantly changing network environments. In future work, it would be valuable to explore
different federated learning architectures and algorithms in the base station sleep control,
especially those that can efficiently handle non-independently and identically distributed
data, which is a common challenge in real-world networks. Advanced algorithms that
can better manage the skewed and unbalanced data distributions often found in dense
network environments would likely yield improvements in both energy savings and QoS.
Additionally, our study has certain limitations regarding network architecture. The scenario
we investigated assumes that small base stations have ideal backhaul links to support the
signaling required for transmitting neural network parameters during model aggregation
and model update processes. However, considering that future 6G networks are likely to
support various networking methods, including wireless backhaul for small base stations, it
would be interesting to explore the impact of the signaling overhead required for federated
learning on performance. Developing an optimal base station sleeping control technology
that accounts for signaling overhead could be a fascinating research direction. This would
potentially enhance the practical applicability of the algorithm.
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