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Abstract: Visible light positioning (VLP) has drawn great attention in the field of indoor positioning as
light communication has been popularized in low-cost Internet-of-Things (IOT) devices. In this paper,
we investigate the VLP problem using the received signal strength (RSS) and by only considering the
line-of-slight (LOS) propagation. The RSS-based VLP problem is highly nonlinear, and its solutions
may be trapped in local optima without a good initial guess. To circumvent this difficulty, we propose
closed-form solutions of the VLP problem considering a known or unknown user orientation. By
applying the weighted least squares (WLS) method, the closed-form solutions are divided into two
stages. In the stage-one WLS solution, the nonlinear VLP problem is transformed into a pseudo-
linear form by introducing some auxiliary variables, which are considered to be independent of
each other. The estimates of the stage-one WLS solution are further refined in the stage-two WLS
solution by exploiting the constrained relationships among these defined variables. The simulation
results show that the stage-two WLS solution provides good estimates for the user position and
orientation. The proposed stage-two WLS solution outperforms the existing methods especially at a
high signal-to-noise ratio (SNR).

Keywords: visible light positioning; Internet of Things; closed-form solution; weighted least square;
received signal strength

1. Introduction

Indoor positioning has significant research value in Internet-of-Things (IOT) devices
and potential application prospects in many public places such as parking areas, transport
stations, shopping malls, etc. [1–4]. Traditional global positioning systems (GPSs) are mainly
applicable for outdoor localization and are unable to provide accurate position information
for indoor users due to signal blocking. Accordingly, all kinds of indoor positioning
technologies have been proposed for IOT devices such as wireless signals [5–7], acoustic
signals [8], radio frequency [9], etc. Some of them achieve a high positioning accuracy by
installing various infrastructures and sensors. These different techniques provide feasible
schemes for indoor positioning by trading off the cost and positioning accuracy.

Among these indoor positioning techniques, visible light positioning (VLP) has at-
tracted a lot of research interest for popularized light communication [10–12]. In VLP
systems, light-emitting diodes (LEDs) as luminaires play an important role in rate commu-
nications, and have a low cost and energy consumption. As a result, many VLP methods
have been proposed by utilizing all kinds of range-based measurements, including time of
arrival (TOA), angle of arrival (AOA) [13], received signal strength (RSS) [14], and their
joint methods [15,16]. Owing to the high speed propagation of light signals, accurate
range-based information is difficult to obtain for the TOA and AOA. Hence, the positioning
accuracy is poor for TOA- and AOA-based methods. The RSS of a light signal is relatively
easy to measure by equipping a photodiode (PD) to the user [17]. Moreover, the RSS value
is used to accurately measure the ranging information of densely deployed LEDs in indoor
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environments [18]. As a result, the user’s position can be determined with a high accuracy
from these RSS measurements.

In this paper, we focus on the VLP problem in line-of-slight (LOS) propagation by
applying RSS measurements. To address the RSS-based VLP problem, we propose closed-
form solutions by considering two different cases: a known user orientation (KUO) and an
unknown user orientation (UUO). Designing the closed-form solutions has mainly several
technical challenges:

1. The highly nonlinear nature of the VLP problem. The user position is highly nonlinear
to the RSS value, and the VLP is itself a nonlinear and non-convex problem with lots
of local optima.

2. A large number of variables are produced in the pseudo-linear process. To represent
the nonlinear problem in a pseudo-linear form, there is a large number of variables
that are coupled with each other.

3. The constraint of the user orientation vector. Obviously, the user orientation vector
should satisfy the condition that its norm is equal to one.

To address the first challenge, we represent the nonlinear problem in a pseudo-linear
form by introducing some auxiliary variables that are considered to be independent of
the intended unknowns. According to the pseudo-linear equation, an initial solution is
estimated by applying the stage-one WLS method. To deal with the second challenge,
the constrained relationships among the variables are used to exploit the stage-two WLS
solution. Thus, the estimate in the stage-one WLS solution is further refined, and the
performance becomes better. To handle the third challenge, we formulate the stage-two
WLS solution as a constrained WLS (CWLS) problem. As a result, the problem can be
efficiently solved even if the norm constraint of the orientation vector is included.

This paper also addresses the RSS-based VLP problem by assuming the user orien-
tation to be known or unknown, and we propose closed-form solutions to estimate the
user position. The closed-form solutions are divided into two stages: stage-one WLS
and stage-two WLS. In the stage-one WLS solution, the highly nonlinear VLP problem
is transformed into a pseudo-linear form by assuming the introduced auxiliary variables
to be independent of the intended unknowns. The stage-two WLS solution refines the
solutions obtained from the stage-one WLS by making the constrained relationships among
the defined variables available.

Our proposed VLP models are similar to the existing models in [19–21] due to consid-
eration of a known or unknown user orientation. The contribution of this paper is mainly a
closed-form solution for VLP problems. To our best knowledge, there is no closed-form
solution for the VLP problem due to its highly nonlinear nature. The detailed contributions
are summarized as follows:

1. We propose a closed-form solution to determine the user position for the RSS-based
VLP problem when the user orientation is known, and the closed-form solution is
divided into two stages.

2. The closed-form solution is also extended to the case of an unknown user orientation
(UUO), in which the user position and orientation are jointly estimated by two stages.

3. We theoretically analyze the Cramér–Rao lower bound (CRB) of two cases: a KUO
and a UUO. The solution complexity of the KUO and UUO cases is also compared.

This paper mainly presents the closed-form solutions for VLP problems considering
a known or unknown user orientation in low-cost IOT devices. The rest of this paper is
structured as follows. The related work is introduced in Section 2. In Section 3, the VLP
problem is formulated. Section 4 describes the closed-form solutions of KUO and UUO
cases in detail. In Section 5, the CRBs of the two cases are derived and the complexity is
provided. The numerical simulations are analyzed in Section 6. The conclusion is presented
in Section 7.

Following convention, the column vector is denoted by a bold lowercase letter and the
matrix is represented by a bold uppercase letter. The notation (∗)−1 and (∗)T represents
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the matrix inverse and transpose operations. The notation ao represents the true value of
a, and ∆a is the noise or error part of a. diag(a) denotes a diagonal matrix formed by the
vector a. diag(A, k) stands for a vector formed by the elements on the k-th diagonal of
matrix A. ∥∗∥ denotes the ℓ2 norm. [a]i is the i-th element of a, and [a]i:j is the sub-vector
formed by the i-th to the j-th element of a. [A]i,j is the (i, j)-th element of matrix A. 0m
stands for an all-zero column vector with length m. Im and 0m×n represent m × m identity
and m × n zero matrices, respectively.

2. Related Work

The position information of IOT devices is crucial for various applications, such as
tracking, navigation, and other interactive services. The position information provided
by a GPS is usually inaccurate and fails to fulfill the requirements of indoor positioning.
Thus, some new indoor positioning techniques have been proposed to provide accurate
position information for IOT devices [22–24]. Popular techniques include wireless radio
strength, radio frequency identification, and acoustic-signal-based methods. Radio-based
technologies, such as WiFi, are vulnerable to multipath propagation and their performance
is poor. Acoustic-signal-based methods require additional hardware deployment which
is costly.

Recently, visible light communication (VLC) has emerged as a promising technol-
ogy for its high communication rates, long lifetime, and low fees. As a result, visible
light positioning (VLP) has also attracted increasing research attention together with the
emerging VLC using light-emitting diode (LED) luminaires [25–27]. For widely deployed
LEDs, the VLP technique is used to solve the indoor positioning problem in the final
meter. By making use of VLC, the LED transmitter index can be identified. In addition to
this, range-based information is required to determine the user position [28,29]. Typical
range techniques include the time of arrival (TOA) [30,31], angle of arrival (AOA) [32],
and received signal strength (RSS) [33]. TOA-based systems depend on the synchroniza-
tion between the LED transmitter and the user. AOA-based measurements require extra
hardware, and accurate angle information is not easily obtained. Among these techniques,
the RSS-based method is very attractive since RSS values are easily measured by equipping
a photo-detector to the user [18,34].

RSS-based VLP is indeed a challenging problem since the measured RSS of a light
signal is strongly nonlinear to the user’s position [33,35,36]. In addition, the orientations of
LEDs and the user have a significant effect on the channel gains [37]. Hence, a large number
of approaches have been proposed previously for the VLP problem. The trilateration-
based method is very common for range-based positioning. However, obtaining ranging
measurements requires the angle information between the LED and the PD in VLP systems.
Without a good initial point, the solutions of many numerical methods may be trapped in
local optima, such as nonlinear least square (NLS) [32], Maximum-Likelihood (ML), and the
Newton–Raphson method. To reach a solution with a global optimum, these approaches
always resort to the random selection of an initial point. As a result, the complexity is high
due to a large number of random initializations.

For range-based positioning, the closed-form solution is very popular since it does not
require any initialization [38–41]. In the closed-form solution, the nonlinear positioning
problem is first formulated in pseudo-linear form by assuming the defined variables to
be independent [42–44]. Subsequently, unknown parameters are estimated by applying
the weighted least squares (WLS) method [45,46]. Since the defined variables are assumed
to be independent of each other, the stage-one WLS solution performs poorly. Accord-
ingly, the stage-two WLS solution is proposed to improve the performance by exploiting
the constrained relationships among the defined variables. Thus, the solution obtained
from stage-one WLS is further refined by the stage-two WLS solution. To the best of our
knowledge, there is no closed-form solution that is used to accomplish RSS-based VLP.

The RSS received by a PD depends on not only the distance between the LED and the
PD, but also the irradiance and incidence angles. By assuming the angles or orientations to
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be known [47], the position estimation problem is simplified and the user position can be
derived from the geometric relation. Since the measured angles or orientations are also sub-
ject to error, the position estimation performance will degrade accordingly [14]. In addition,
obtaining angle information requires extra equipment or sensors. Hence, the Simultaneous
Position And Orientation (SPAO) method [48] was proposed by considering the user orien-
tation to be unknown. In this case, the RSS-based VLP problem is more challenging since
the user orientation is also a variable and required to be determined. In [20], the SPAO
problem is solved using the successive linear least square (SLLS) method, in which the
user orientation and position are separately estimated. In [21], the Gauss–Newton method
(GNM) and interior point method (IPM) are proposed to determine the user orientation
and position. Unfortunately, these proposed methods also require an initial guess, and the
solutions may converge to local optima.

In this paper, we propose a closed-form solution to determine the user position for an
RSS-based VLP system, where the user orientation is assumed to be known or unknown.
The closed-form solution does not depend on the initialization and always converges to
a global optimum. Thus, the proposed closed-form solution can be easily determined by
low-cost IOT devices. By introducing some auxiliary variables, the nonlinear VLP problem
is transformed into a pseudo-linear equation. As a result, a stage-one solution is obtained
from the pseudo-linear equation by applying WLS minimization. The stage-two WLS
solution is used to refine the stage-one solution by exploiting the constrained relationships
among the introduced variables.

3. Problem Formulation

In a three-dimensional (3D) scenario, a VLP system composed of M LEDs is used to
locate the user equipped with a photodiode (PD). We denote the position and orientation of
the i-th LED as pi ∈ R3 and v ∈ R3, which are known for i = 1, 2, . . . , M. The position and
orientation of the user need to be determined and are represented by xo ∈ R3 and uo ∈ R3,
where the ℓ2 norm of vector uo is one, i.e., ∥uo∥ = 1. As illustrated in Figure 1, the LEDs
are always installed in the upper part of the room, and the user should be in the range of
light illumination.

(a) The application of the VLP system.

q
i

f
i i

p

vu

(b) A diagram of an RSS-based VLP system.

Figure 1. VLP in an indoor environment.

The LEDs are able to communicate with the user using the Visible Light Communica-
tion (VLC) technique. Thus, the user can acquire the LED IDs of the VLC signals, and the
received signal strength (RSS) corresponding to each LED, under the line-of-slight (LOS)
link, is modeled as

Φi =
Ψi
2π

(cos(ϕi))
ri cos(θi)

∥xo − pi∥2 , (1)

where Ψi = (ri + 1)ΓiGiPi Ai, Ai is the detection area of the PD and ri is Lambertian order
of the i-th LED. For the Lambertian pattern of LED radiation, ri = − ln 2

ln cos(A0.5)
, where A0.5
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is the semi-angle at the half power of the LEDs. Typically, A0.5 = π
3 , and ri is equal to 1 [49].

Γi, Gi, and Pi represent the gain of the optical filter, the gain of the optical concentrator,
and the optical power of the i-th LED, respectively. Detailed definitions of Γi, Gi, and Pi
are given by [48,50], and they are generally available for a given LED and considered to
be known. In addition, ϕi and θi represent the irradiance angle and incidence angle of
the i-th LED, respectively. ϕi and θi should be within the field of view (FOV) angles ϕF
and θF, i.e., |ϕi| ≤ |ϕF| and |θi| ≤ |θF|. From the geometry relationship shown in Figure 1,
the irradiance angle ϕi and incidence angle θi are obtained by

cos(ϕi) =
(xo − pi)

Tv
∥xo − pi∥

, (2a)

cos(θi) =
(pi − xo)Tuo

∥xo − pi∥
. (2b)

Multiplying both sides by −2π
Ψi

and applying the definitions of (2a,b), we simplify
(1) as

go
i =

(xo − pi)
Tv(xo − pi)

Tuo

∥xo − pi∥4 , (3)

where go
i = −2πΦi

Ψi
and ri is considered to be one. The true go

i is unavailable, and its
measurable version is expressed as

gi = go
i + ∆gi, (4)

where gi is a measured value of go
i and ∆gi is additive noise, i = 1, 2, . . . , M. Stacking all

measurements yields a vector form g = [g1, g2, . . . , gM]T . Similarly, collecting all the ∆gi
produces a vector ∆g, defined by ∆g = [∆g1, ∆g2, . . . , ∆gM]T . ∆gi mainly includes shot
noise and thermal noise. As a result, the vector form ∆g obeys a zero-mean Gaussian
distribution with covariance Σ = diag([σ2

1 , σ2
2 , . . . , σ2

M]T), where σ2
i is the variance of the

total noise, i = 1, 2, . . . , M.
Considering the user orientation as known or unknown, we aim at estimating the

position xo using the measured g in the VLP system, where the positions pi and the
orientation v are known. In addition, uo should satisfy ∥uo∥ = 1. Note that all LED
orientations are assumed to be the same. This assumption is reasonable since all installed
LEDs always have the same orientation as the luminaires. In addition, in the proposed
problem, the Lambertian order ri considered as one. If ri is not equal to one and is near one,
our proposed closed-form solution can be further refined using some numerical methods.

4. Closed-Form Solutions

In this section, we introduce the closed-form solutions in detail for the RSS-based VLP
problem considering two cases: a known and unknown user orientation. For each case,
the closed-form solution is divided into two stages. In stage one, we establish the pseudo-
linear equation in terms of unknown parameters using RSS measurements, and the user
position is then estimated by applying the WLS method from the pseudo-linear equation.
The stage-two solution refines the estimates obtained from the stage-one WLS solution.
As a result, the performance of the stage-two solution becomes better than that of stage-one.

4.1. Known User Orientation

In this case, the user orientation is assumed to be known and directly equal to u.
Multiplying both sides of (3) by ∥xo − pi∥4 and expanding and rearranging the expression
yield the following

aT
i xo + 4gi(pT

i xo)2 − xoTuvTxo + 2gipT
i pixoTxo − 4gipT

i (x
oTxoxo) + gi(xoTxo)2

+ gipT
i pipT

i pi − pT
i vpT

i u = ∥xo − pi∥4∆gi, (5)
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where ai = pT
i uv+pT

i vu− 4gipT
i pipi, i = 1, 2, . . . , M. The terms 4gi(pT

i xo)2 and 2gipT
i pixoTxo

can be grouped in a more compact form. Applying the vector multiplying formula, we
arrive at

4gi(pT
i xo)2 = bT

i,1ρo, −xoTuvTxo = bT
i,2ρo, pT

i pixoTxo = bT
i,3ρo,

ρo = [diag(xoxoT)T , diag(xoxoT , 1)T , diag(xoxoT , 2)T ]T ,

bi,1 = 4gi[diag(pipT
i )

T , 2diag(pipT
i , 1)T , 2diag(pipT

i , 2)T ]T ,

bi,2 = −[diag(vuT)T , diag(vuT , 1)T + diag(vuT ,−1)T , diag(vuT , 2)T + diag(vuT ,−2)T ]T ,

bi,3 = 2gipT
i pi

[
1T

3 , 0T
3 ]

T , (6)

where ρo ∈ R6. As a result, (5) is also rewritten as

aT
i xo + bT

i ρo − 4gipT
i (x

oTxoxo) + gi(xoTxo)2

+ gipT
i pipT

i pi − pT
i vpT

i u = ∥xo − pi∥4∆gi, (7)

where bi = bi,1 + bi,2 + bi,3. Let the unknown vector be

φo = [ xoT︸︷︷︸
3

, ρoT︸︷︷︸
6

, xoTxoxoT︸ ︷︷ ︸
3

, (xoTxo)2︸ ︷︷ ︸
1

]T ∈ R13. (8)

For our proposed problem, the intended unknown is only xo, and the other introduced
auxiliary variables are determined by the intended unknown. When the defined variables
are considered to be independent of each other, (8) is considered to be a linear expression.
As a result, the linear matrix form of (5) is given by

G1φo − h1 = α1, (9)

where α1 is the noise term and is given by α1 = B1∆g, G1 is an M × 13 matrix, and the i-th
row of G1 is defined by

[G1]i,: = [aT
i , bT

i ,−4gipT
i , gi], (10)

where i = 1, 2, . . . , M. In addition, the diagonal matrix B1 ∈ RM×M and vector h1 ∈ RM

are defined by

[h1]i = −gipT
i pipT

i pi + pT
i vpT

i u,

[B1]i,i = ∥xo − pi∥4 ≃ ∥x − pi∥4, (11)

where xo is approximated by its estimated value x. For the stage-one WLS solution, the esti-
mate value φ of φo is given by

φ = (GT
1 Wα1G1)

−1GT
1 Wα1h1, (12)

where Wα1 is called a weighting matrix and is approximately equal to the inverse of the
covariance with respect to the noise term α1. As a result, Wα1 is obtained by

Wα1 = (B1ΣBT
1 )

−1. (13)

To efficiently solve problem (9), the matrix G1 needs to be full of rank. Thus, the num-
ber of measurements needs to be larger than that of the variables for the WLS solution
(12). At least 13 non-collinear LEDs are required to uniquely locate the user when the user
orientation is available and considered to be known.
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Remark 1. From (13), the solution of Wα1 depends on B1, which is unavailable at the beginning
due to the unknown position x. It is known that the WLS solution is insensitive to the weighting
matrix Wα1 . Initially, Wα1 is set to an identity to yield a coarse estimate φ, which is used to form
Wα1 . Thus, forming Wα1 using a coarse estimate gives a better solution.

Extracting from the estimated φ, we can obtain the stage-one WLS solution of xo by
x = [φ]1:3. When the RSS measurements are subject to noise, the estimate value φ also
contains error. As a result, we have φ = φo + ∆φ, where ∆φ is the estimation error included
in φ. Since the noise term is B1∆g in the linear Equation (10), the estimation error ∆φ is

∆φ = (GT
1 Wα1G1)

−1GT
1 Wα1B1∆g, (14)

where the noise in G1 is considered to be insignificant. Although G1 also contains noise
due to the inaccurate gi, it is negligible at low noise levels. As a result, the error ∆φ is
zero-mean, and its covariance, denoted by cov(∆φ), is given by

cov(∆φ) = (GT
1 Wα1G1)

−1. (15)

The variables defined in φo are coupled with each other, and the constrained relation-
ships are not considered in the stage-one solution. Hence, the stage-one WLS solution
performs poorly. In the following, we further refine the stage-one solution by exploiting
the constrained relationships among the variables.

According to the definition of φo, applying φ = φo + ∆φ directly produces

G2xo − h2 = α2, (16)

where α2 = B2∆φ. The detailed derivation and definition of (16) are provided in Appendix A.
Accordingly, the accurate estimate in the stage-two WLS solution is

x = (GT
2 Wα2G2)

−1GT
2 Wα2h2, (17)

where Wα2 is also a weighting matrix, obtained by

Wα2 = (B2cov(∆φ)BT
2 )

−1. (18)

4.2. Unknown User Orientation

A small deviation in the user orientation will result in a large position estimation error.
In this case, the user orientation uo is assumed to be unknown and needs to be estimated
together with the user position. For this case, the definition of unknown variables is slightly
different from that of a known user orientation. However, the derivation procedure of the
closed-form solution is similar. By considering the user orientation as unknown, (5) is also
represented as

− 4gipT
i pipT

i xo − pT
i vpT

i uo + 4gi(pT
i xo)2 + 2gipT

i pixoTxo + pT
i uoxoTv + pT

i vxoTuo

− 4gipT
i (x

oTxoxo) + gi(xoTxo)2 − vTxoxoTuo + gipT
i pipT

i pi = ∥xo − pi∥4∆gi. (19)

Note that the term pT
i uoxoTv should be integrated with pT

i vxoTuo for the common
variables. As a result, this yields

pT
i uoxoTv + pT

i vxoTuo = pT
i τo, (20)

where τo = uoxoTv + uoTxov. Thus, (19) is also rewritten as

− 4gipT
i pipT

i xo − pT
i vpT

i uo + (bT
i,1 + bT

i,3)ρ
o + pT

i τo − 4gipT
i (x

oTxoxo) + gi(xoTxo)2

− vTxoxoTuo + gipT
i pipT

i pi = ∥xo − pi∥4∆gi, i = 1, 2, . . . , M. (21)
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Let the unknown vector be

ηo = [ xoT︸︷︷︸
3

, uoT︸︷︷︸
3

, ρoT︸︷︷︸
6

, τoT︸︷︷︸
3

, xoTxoxoT︸ ︷︷ ︸
3

, (xoTxo)2︸ ︷︷ ︸
1

, vTxoxoTuo︸ ︷︷ ︸
1

]T ∈ R20. (22)

Collecting all expressions in an ascending order of i produces a matrix form:

C1ηo − d1 = β1, (23)

where the noise term β1 is given by β1 = α1 and C1 and d1 are defined by

[C1]i,: = [−4gipT
i pipT

i ,−pT
i vpT

i , bT
i,1 + bT

i,3, pT
i ,−4gipT

i , gi,−1]T ,

[d1]i = gipT
i pipT

i pi, i = 1, 2, . . . , M. (24)

According to (23), we obtain the stage-one WLS solution η of ηo by

η = (CT
1 Wβ1C1)

−1CT
1 Wβ1d1. (25)

where Wβ1 is equal to Wα1 for β1 = α1.

Remark 2. Similar to Wα1 , Wβ1 is set to an identity to produce a preliminary estimate of xo.
Then, the preliminary estimate is used to form Wβ1 , which will yield an accurate solution for
the unknowns.

According to the definition of ηo, the estimate values are obtained by

x = [η]1:3, u = [η]4:6. (26)

Similar to (14) and (15), the estimation error of η is denoted as ∆η, the covariance of
which is given by

cov(∆η) = (CT
1 Wβ1C1)

−1. (27)

For the case of an unknown user orientation, the orientation is estimated together
with the position. In addition to the two intended parameters, the others included in ηo are
auxiliary variables and used to assist in establishing the linear expression. The constrained
relationships among these variables should be further exploited in the stage-two WLS
solution. Let us define the intended unknown vector as

yo = [xoT , uoT ]T . (28)

The stage-two WLS solution is obtained by

C2yo − d2 = β2, (29)

where the error term β2 is given by β2 = D2∆η, the detailed derivation and the definition
of (29) are given in Appendix B. In addition, the user orientation should satisfy ∥uo∥ = 1.
Hence, the following constraint it yielded

yoTPyo = 1, (30)

where the matrix P is defined by

[P]4:6 = I3. (31)
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According to (29), the estimation problem can be represented as a constrained opti-
mization problem

min
yo

(C2yo − d2)
TWβ2(C2yo − d2)

s.t. yoTPyo = 1, (32)

where Wβ2 = (D2cov(∆η)DT
2 )

−1. The optimal solution y should satisfy the Karush–Kuhn–
Tucker (KKT) conditions,

y(λ) = (CT
2 Wβ2C2 + λP)−1CT

2 Wβ2d2, (33a)

y(λ)TPy(λ) = 1. (33b)

λ is Lagrange coefficient, and its optimal value is determined by solving the six-root equation

3

∑
i=1

µi
(1 + γiλ)2 = 1, (34)

where µi and γi are defined in Appendix C. The desired λ is found from the roots of
Equation (34) and the following procedure is then carried out:

(a) Solve the six roots of Equation (34) and discard the complex roots.
(b) Put the obtained roots in (33a) and estimate the user position and orientation from

x = [y]1:3 and u = [y]4:6.
(c) Make the orientation sign consistent with that of the stage-one WLS solution as the

final step.

The definition of matrix C2 and vector d2 requires the estimate obtained from the
stage-one WLS solution of (25), in which the variables are considered to be independent of
each other. To efficiently solve the WLS problem, the number of measurements needs to be
greater than that of unknown variables. Accordingly, at least 20 non-collinear LEDs are
required to uniquely determine the user position and orientation. The detailed closed-form
solution for an unknown user orientation is illustrated in Algorithm 1.

Algorithm 1: Closed-form solution for an unknown user orientation
Input: pi, v, gi, Σ, i = 1, 2, . . . , M
Output: x, u

(1). Stage-one WLS solution:
Create C1 and d1 using (24);
Estimate η by (25) considering Wβ1 as the identity;
Extract the coarse estimate of the user position using (26);
Generate Wβ1 equal to Wα1 from (13);
Estimate η with generated Wβ1 by (25) again;
Obtain the stage-one WLS solution by extracting from the new estimated η.
(2). Stage-two WLS solution:
Create C2, d2, and D2 using (A15) and (A16), where η is an estimate of the
stage-one WLS solution;
Generate Wβ2 from the definition below (32);
Solve the optimal y with (33), where λ is found from the six roots of Equation (34);
Obtain the final stage-two WLS solution by checking the orientation sign.

5. Performance Analysis

In this section, the CRBs of two cases are first derived. The CRB of a KUO is proven to
be smaller than that of a UUO. In addition, we analyze the computational complexity of
the proposed closed-form solutions.
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5.1. CRB Derivation

In this subsection, the CRBs of the VLP estimation problem are first evaluated for two
different cases: a KUO and a UUO. The CRB provides a lower bound for error variance
based on the assumption of Gaussian noise, which is commonplace for VLP systems [20,32].
As a result, the CRB of the unknown parameters is equal to the inverse of the Fisher
information matrix (FIM). When the user orientation is known, the only variable is the
user position xo. For notation simplicity, we shall use the symbol ∇a,b to denote the partial
derivative, i.e.,

∇a
def
=

∂g
∂aT . (35)

According to [51], the CRB of a known user orientation, denoted by CRBKUO(xo), is
given by

CRBKUO(xo) = (∇T
xo Σ−1∇xo )−1. (36)

∇xo is also defined by

[∇xo ]i,1:3 =
Lisi

∥xo − pi∥3 (37a)

Li = [ei, v, uo], (37b)

si = [−4eT
i veT

i uo, eT
i uo, eT

i v]T , (37c)

where ei is called the incident vector and is given by ei = xo−pi
∥xo−pi∥

, i = 1, 2, . . . , M.
For the case of an unknown user orientation, the intended unknown parameters are
yo = [xoT , uoT ]T , in which ∥uo∥ = 1. In [48], the CRB of unknown user orientation is
given; however, the FIM may be deficient-rank due to the constrained condition. In the
following, we apply the constrained CRB formulation to derive the CRB. Let F be the FIM
corresponding to the unconstrained estimation problem. When the user orientation is
unknown, F is obtained by

F = [∇xo ,∇uo ]TΣ−1[∇xo ,∇uo ]. (38)

where ∇xo is the same as that in (36), and ∇uo is defined by

[∇uo ]i,1:3 =
eT

i veT
i

∥xo − pi∥2 . (39)

Expression (38) is also expressed as

F =

[
X Y

YT Z

]
, (40)

where

X = ∇T
xo Σ−1∇xo , (41a)

Y = ∇T
xo Σ−1∇uo , (41b)

Z = ∇T
uo Σ−1∇uo . (41c)

For the unconstrained estimation problem, the CRB of xo, denoted by CRBUUO(xo), is the
upper left 3× 3 matrix of F−1. Applying the partitioned matrix inversion formula produces

CRBUUO(xo) = (X − YZ−1YT)−1. (42)
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According to (41a–c), (42) is also rewritten as

CRBUUO(xo) = (∇T
xo K∇xo )−1, (43)

where K is defined as

K = Σ−1 − Σ−1∇uo (∇T
uo Σ−1∇uo )−1∇T

uo Σ−1. (44)

Comparing (43) with (36), we arrive at

CRBKUO(xo) ≤ CRBUUO(xo). (45)

According to (44), the presence of an unknown user orientation is equivalent to
increasing the noise covariance by an extra term that is determined by ∇uo and the noise
covariance Σ.

Our proposed problem includes the constraint ∥uo∥ = 1. According to [52], the con-
strained CRB formulation of unknown parameter yo, denoted by CCRBUUO(yo), is ex-
pressed as

CCRBUUO(yo) = F−1 − F−1q(qTF−1q)−1qTF−1, (46)

where the vector q is caused by the constraint and given by

q =
∂([yo]T4:6[y

o]4:6 − 1)
∂yo = 2[yo]4:6. (47)

Apparently, we have

CCRBUUO(xo) ≤ CRBUUO(xo). (48)

The constraint ∥uo∥ = 1 indicates that there are two independent variables in the
defined u. As a result, CCRBUUO(xo) is smaller than CRBUUO(xo) due to fewer indepen-
dent variables.

5.2. Computational Complexity

In this subsection, the complexity of the closed-form solutions is provided. When the
WLS solution includes m equations and n unknown variables, its complexity is equal to
O(2m2n + mn2 + mn + n3 + n2) [53]. When the user orientation is known or unknown,
the closed-form solutions are divided into two stages. For each case, the number of variables
in the stage-two WLS solution is always irrelevant to M, and the complexity is mainly
dominated by that of the stage-one WLS solution. Hence, we only compare the complexity
of stage-one WLS solutions under the two different cases.

For the two different cases, the parameters of m and n are listed in Table 1, where KUO
and UUO represent known user orientation and unknown user orientation, respectively.
Using the parameters listed in Table 1, we further calculate the complexity of these proposed
closed-form solutions,

Complexity in (12) ≃ O(26M2 + 182M), (49a)

Complexity in (25) ≃ O(40M2 + 420M). (49b)

As a result, the complexity of a known user orientation is approximated by (49a).
In contrast to the case of a known user orientation, the complexity of an unknown user
orientation includes κ WLS solutions for the choice of the optimal Lagrange coefficient λ.
The complexity of an unknown user orientation is approximately equal to O(κ(40M2 +
420M)). Accordingly, the complexity of the UUO case is much greater than that of the
KUO case. In contrast, we also derived the complexities of the trilateration-based method
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(denoted by “Trilateration”) [19], the NLS (denoted by “NLS”) [32], and the SLLS-SPAO [48],
which are given by

Complexity of Trilateration ≃ O(13M2), (50a)

Complexity of NLS ≃ O(M2log
1
ϵ
), (50b)

Complexity of SLLS-SPAO ≃ O(40M2log
1
ϵ
), (50c)

where ϵ is the solution accuracy of the NLS and the SLLS-SPAO.

Table 1. Parameters in computing the complexity of closed-form solutions.

Solution m n

WLS for KUO in (12) M 13

WLS for UUO in (25) M 20

6. Evaluation

The performance of the closed-form solutions was evaluated using simulations. Un-
less noted otherwise, the LEDs were deployed in a room of size 9 m × 9 m × 5 m. The LED
positions in the x-axis and y-axis directions were randomly generated in the deployed
region, and the height of the LEDs was restricted to the range of (4, 5) m. For our proposed
VLP problem, all LED orientations need to be the same, and they are assumed to be down-
ward, i.e., v = [0, 0,−1]T . The user position is set at xo = [5, 5, 1]T m, and their orientation
is considered to be upward, i.e., uo = [0, 0, 1]T . In addition, the other LED parameters are
listed as follows, Γi = 2.25, Gi = 1, Ai = 1 cm2, Pi = 2.2 Watt, ϕF = θF = π

2 , which implies
that the user is within the range of all LED illuminations. The performance was evaluated
using root mean square error (RMSE), defined by

RMSE(t) =

√√√√ 1
GL

G

∑
g=1

L

∑
l=1

∥xg
l − xo∥2, (51a)

RMSE(u) =

√√√√ 1
GL

G

∑
g=1

L

∑
l=1

∥ug
l − uo∥2, (51b)

where xg
l and ug

l are the estimates of user position and orientation in the l-th MC run for the
g-th LED geometry configuration and L = 500 and G = 20 in our simulations. The signal-to-
noise ratio (SNR) is given by P2

r R2
p/σ2

i , where Rp is the photoelectric conversion efficiency
of a PD and Rp = 1.

To the best of our knowledge, there are few solutions that do not require the initializa-
tion for the RSS-based VLP problem. For the KUO case, we will use the trilateration-based
method (denoted by “Trilateration”) [19] as a baseline, and also compare the performance
with that of the LS (denoted by “LS”) estimator [54] and the NLS (denoted by “NLS”)
estimator [32], which employs the stage-one WLS solution as an initial guess. When the
user orientation is unknown, the performance of the WLS solution is compared with that
of the Gauss–Newton method (GNM) [21] and SLLS-SPAO [48], in which the stage-one
WLS solution is regarded as the initial point. In addition, the CRB corresponding to two
different cases is taken as a benchmark. The intention of the simulations is illustrated in
Table 2.
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Table 2. Intention of simulations in eight scenarios.

Scenario Varied Parameter Examined Performance

1 SNR CRB for KUO and UUO

2 SNR RMSE of different solutions for the KUO case

3 SNR RMSE of different solutions for the UUO case

4 number of LEDs RMSE of different solutions for the KUO case

5 number of LEDs RMSE of different solutions for the UUO case

6 room size RMSE of different solutions for the KUO case

7 room size RMSE of different solutions for the UUO case

8 user height RMSE of different solutions for the KUO case

6.1. CRB Comparison under Two Cases

Scenario 1: The number of LEDs is set at 30, and their positions are generated randomly
in the deployed room. For two different cases of a KUO and a UUO, the CRBs of user
position and orientation estimation are plotted in Figure 2 as the noise increases. It is
shown that the CRB(xo) for a KUO is smaller than the CCRB(xo) for a UUO, since the user
orientation is also a variable in the UUO case. Hence, the solution of a KUO will perform
better than that of a UUO. However, an accurate determination of the user orientation is
not easy for VLP systems. Compared with the CRB(xo) for a UUO, the CCRB(xo) for a
UUO is slighted reduced, confirming the result in (48). Hence, the constrained condition in
(32) should be considered. As a result, the performance will also be slightly improved.

-10 0 10 20 30 40 50 60 70

SNR (dB)

10-4

10-2

100

102

C
R

B

CRB (uo) for UUO CCRB (uo) for UUO

CRB (xo) for UUO CCRB (xo) for UUO

CRB (xo) for KUO

Figure 2. CRB comparison for user position and orientation estimations in scenario 1 as the SNR
varies, M = 30.

6.2. Performance Comparison with a Varying SNR

For the KUO and UUO cases, we also demonstrate the performance of the proposed
solutions when the SNR varies.

Scenario 2: In this scenario, the performance of a KUO is examined with different
solutions. M, the number of LEDs, is set to 30. Figure 3a shows the RMSE performance
as the SNR is varied from −10 to 70. The trilateration-based method performs worst
among these solutions, although it also does not require initialization. Based on the
initial solution of stage-one WLS, the NLS method performs better due to its iterative
refinements. However, the NLS performance still has a big gap regarding the CRB accuracy.
Our proposed stage-two WLS solution performs well, especially at a large SNR. When
the SNR is larger than 40, the performance of the stage-two WLS solution is close to the
CRB accuracy.

In addition, the cumulative distributed function (CDF) of the positioning error was
used to better assess the variability and reliability, and the results of these solutions are
plotted in Figure 3b, where the SNR is kept at 30. It is shown that the 90% positioning error
is less than 0.02 m for the stage-two WLS, 0.06 m for the NLS, 0.36 m for the stage-one WLS,
0.42 m for the LS, and 0.58 m for the trilateration method.
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Figure 3. Performance comparison in scenario 2, M = 30. (a) RMSE comparison for user position
estimation as SNR varies. (b) CDF of positioning error, SNR = 30.

Scenario 3: The performance of a UUO is examined with our proposed solutions.
Owing to more variables, the minimum number of LEDs needed for the UUO is increased
compared with the KUO. Hence, the number of LEDs is set at 40 in this scenario. Figure 4a,b
show the RMSE performance in the estimation of user position and orientation, respectively.
Using the stage-one WLS solution as an initial guess, the GNM solution performs well.
Unfortunately, its performance is still worse than that of the stage-two WLS solution. As is
known, the SLLS-SPAO estimates the user position and orientation separately and does not
consider the weighting matrix. Hence, the SLLS-SPAO provides a worse solution than our
proposed stage-two WLS solution.
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(a) RMSE performance for user position estimation.
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(b) RMSE performance for user orientation estimation.

Figure 4. RMSE comparison in scenario 3 as SNR varies, M = 40.

6.3. Performance with a Varying Number of LEDs

In this subsection, we also examine the performance of these solutions by varying M,
the number of LEDs. Similarly, KUO and UUO cases are used to examine the performance.

Scenario 4: At an SNR from −10 to 20, our proposed solutions perform poorly. Hence,
the SNR is set at 40 in this simulation. Figure 5 shows the RMSE performance in the
estimation of the user position as M is varied from 15 to 60. As expected, the performance of
these proposed solutions becomes better when the number of LEDs increases. Among the
proposed solutions, the stage-two WLS solution performs best, and the performance
comparison of these solutions is similar to the observations in Figure 3. When the number
of LEDs is less than 30, the stage-one WLS solution has a big gap with the CRB accuracy.
However, the performance becomes almost stable when the number of LEDs is larger
than 30.
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Figure 5. RMSE comparison for user position estimation in scenario 4 as M varies, SNR = 40.
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Scenario 5: Similar to the case of a KUO, the SNR is set to 40 for a UUO. Thus,
the stage-one WLS solution can provide a reliable estimate and perform stably. The RMSE
performance of user position and orientation estimation is shown in Figure 6a,b as the
number of LEDs is increased from 25 to 70. As the number of LEDs increases, the per-
formance of these solutions becomes better. The stage-one WLS provides a solution that
does not require any initialization, although it performs poorly. The GNM and SLLS-SPAO
perform well based on the initial solution of the stage-one WLS. However, they are still
unable to provide a solution, the performance of which is sufficiently close to the CRB
accuracy. In comparison, the performance of the stage-two WLS solution is closest to the
CRB accuracy, which is consistent with the above observations.
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(a) RMSE performance for user position estimation.
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(b) RMSE performance for user orientation estimation.

Figure 6. RMSE comparison in scenario 5 as M varies, SNR = 40.

6.4. Performance with a Varying Room Size

In the above simulations, the dimensions of the room were set at 9 m × 9 m. In this
subsection, we examine the performance of these solutions with a varying room size.
Similarly, we consider two different cases: a KUO and a UUO.

Scenario 6: The performance of the KUO case was investigated as the room size varies.
The number of LEDs and the SNR are set at 30 and 40, respectively. Both the length and
the width of room are varied from 10 m to 100 m, and the height of the LEDs is also
randomly generated from (4, 5) m. The RMSE of the estimated user position is plotted in
Figure 7. As shown in the figure, the RMSE performance degrades as the length of the
room increases. The trilateration-based method performs worst among these solution due
to its inaccurate ranging information, although it also does not require an initial guess for
the solution. Compared with the stage-one WLS solution, our proposed stage-two WLS
solution performs better by exploiting the constrained relationships among the variables.
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Figure 7. RMSE comparison for user position estimation in scenario 6 as room size varies, M = 30,
SNR = 40.

Scenario 7: Similar to scenario 6, the room size was varied, and the performance of a
UUO was examined. Both the number of LEDs and the SNR are set at 40. Figure 8 shows
the RMSE of the user position as the length of the room was varied from 10 m to 100 m.
As shown, the stage-two WLS solution still performs well even if the length of the room is
increased to 100 m, and the RMSE of stage-two WLS solution is closest to the CRB accuracy
among these solutions. The disadvantage of the GNM and SLLS-SPAO is that they require
an initial guess. If the initial guess is not near the truth, the solutions may be trapped in
local optima. In comparison, our proposed stage-one WLS can provide a solution that does
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not require initialization. In addition, the proposed stage-two WLS refines the estimates
obtained from the stage-one WLS.

10 20 30 40 50 60 70 80 90 100

length of room (m)

10-2

10-1

100

101

R
M

S
E

 (
x
) 

(m
)

GNM

SLLS-SPAO

stage-one WLS

stage-two WLS

CCRB (xo)

Figure 8. RMSE comparison for user position estimation in scenario 7 as room size varies, M = 40,
SNR = 40.

6.5. Performance with a Varying User Height

In the above simulations, the user height was kept at 1 m. As is known, the user
height can be adjusted. In this subsection, we also examine the performance with a varying
user height.

Scenario 8: We considered the KUO case, where the number of LEDs and the SNR
are set at 30 and 40, respectively. The user position in the x-axis and y-axis direction is
kept at (5, 5), and the user height is varied from 0.5 m to 5.0 m. Figure 9 illustrates the
RMSE performance in the user position estimation as the user height increases. As shown
in the figure, the RMSE is reduced with the increase in user height. When the user height is
increased, the range between the user and LEDs becomes smaller. As a result, the measured
RSS is accurate, and the performance improves. The height of the LEDs is also restricted to
the range of (4, 5) m. Hence, the performance is stable when the user height is larger than
4.0 m. The gap between stage-two WLS solution and the CRB accuracy is the lowest among
these solutions, indicating the advantage of stage-two WLS solution in the estimation of
user position.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

user height (m)

10-2

10-1

R
M

S
E

 (
x
) 

(m
)

Trilateration

NLS

stage-one WLS

stage-two WLS

LS

CRB (xo)

Figure 9. RMSE comparison for user position estimation in scenario 8 as user height varies, M = 30,
SNR = 40.

7. Conclusions and Future Works

Closed-form solutions are proposed to estimate the user position and orientation of
IOT devices for the RSS-based VLP problem when the user orientation is assumed to be
known or unknown. In the closed-form solutions, the user position and orientation are
jointly estimated in two stages. The stage-two WLS solution refines the estimates obtained
from the stage-one WLS. As a result, the performance becomes better by making use of the
constrained relationships among the variables. When the SNR is larger than 40, the pro-
posed closed-form solutions are able to accurately estimate the unknown parameters.

In the proposed problem, the user height is randomly generated from a specific range
of rooms. In many situations, LEDs are always installed on the ceiling of a room, and the
heights of all LEDs are the same. For this case, the unknown variables in the pseudo-linear
form need to be redefined, and the dimensions of the variables can be further reduced.
As a result, the required minimum number of LEDs is less than that of our VLP problem.
In future work, the proposed closed-form solution will be further extended in new scenarios,
such as LEDs with different orientations and users with known heights.
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Appendix A. Detailed Derivation for (16)

The definition of φo gives xo = [φo]1:3. Thus, we arrive at

xo − [φ]1:3 = −[∆φ]1:3. (A1)

From ρo = [φo]4:9, the definition of ρo gives

[φ]j[xo]j − [φ]j+3 = [xo]j[∆φ]j − [∆φ]j+3, j = 1, 2, 3,

[φ]k[x
o]j + [φ]j[xo]k − 2[φ]j+6 ≃ [xo]j[∆φ]k + [xo]k[∆φ]j

− 2[∆φ]j+6, (j, k) = (1, 2), (2, 3), (3, 1). (A2)

Note that xoTxo = [φo]4 + [φo]5 + [φo]6. Applying the definition of [φo]10:12 = xoTxoxo

produces

([φ]4 + [φ]5 + [φ]6)[xo]j − [φ]9+j = −[∆φ]9+j

[xo]j([∆φ]4 + [∆φ]5 + [∆φ]6), j = 1, 2, 3. (A3)

Applying [φo]13 = [φo]T10:12xo, we arrive at

[φ]T10:12xo − [φ]13 = xoT [∆φ]10:12 − [∆φ]13. (A4)

According to (A1)–(A4), the linear form with respect to xo is represented as (16), where
G2 and h2 are defined by

[G2]1:3,1:3 = I3, [G2]3+j,j = [φ]j, j = 1, 2, 3,

[G2]6+j,j = 0.5[φ]k, [G2]6+j,k = 0.5[φ]j, (j, k) = (1, 2), (2, 3), (3, 1),

[G2]j+9,j = [φ]4 + [φ]5 + [φ]6, j = 1, 2, 3,

[G2]13,1:3 = [φ]T10:12, h2 = φ. (A5)

In addition, B2 is obtained by

[B2]1:3,1:3 = −I3, [B2]j+3,j = [xo]j ≃ [φ]j, [B2]j+3,j+3 = −1, j = 1, 2, 3,

[B2]6+j,j = 0.5[xo]k ≃ 0.5[φ]k, [B2]6+j,6+j = −1,

[B2]6+j,k = 0.5[xo]j ≃ 0.5[φ]j, (j, k) = (1, 2), (2, 3), (3, 1),

[B2]9+j,4:6 = [xo]j13 ≃ [φ]j13, [B2]9+j,9+j = −1, j = 1, 2, 3,

[B2]13,10:12 = xoT ≃ [φ]1:3, [B2]13,13 = −1, (A6)
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where the elements in xo are replaced by the estimated φ of the stage-one WLS solution.

Appendix B. Detailed Derivation of (29)

Since xo and uo are included in ηo, we have

xo − [η]1:3 = −[∆η]1:3,

uo − [η]4:6 = −[∆η]4:6. (A7)

The definition of ρo is similar to (6). Hence, the refinement expression, derived from
the definition of ρo, is given by

[η]j[xo]j − [η]j+6 = [xo]j[∆η]j − [∆η]j+6, j = 1, 2, 3,

[η]k[x
o]j + [η]j[xo]k − 2[η]j+9 = [xo]j[∆η]k + [xo]k[∆η]j

− 2[∆η]j+9, (j, k) = (1, 2), (2, 3), (3, 1). (A8)

The definition of τo gives

[η]4:6vTxo + v[η]T4:6xo − [η]13:15 = vTxo[∆η]4:6 + vxoT [∆η]4:6 − [∆η]13:15. (A9)

Similar to (18), applying the definition of the term xoTxoxo yields

([η]7 + [η]8 + [η]9)[xo]j − [η]15+j = −[∆η]15+j

+ [xo]j([∆η]7 + [∆η]8 + [∆η]9), j = 1, 2, 3. (A10)

From [ηo]19 = [ηo]T16:18xo, this produces

[η]T16:18xo − [η]19 = xoT [∆η]16:18 − [∆η]19. (A11)

The final term vTxoxoTuo in the defined vector gives

[η]T1:3[η]4:6vTxo − [η]20 = vTxo[η]T4:6[∆η]1:3 + vTxo[η]T1:3[∆η]4:6 − [∆η]20. (A12)

Let us define the intended unknown vector by

yo = [xoT , uoT ]T . (A13)

Accordingly, the linear form with respect to xo, derived from (A7)–(A12), is

C2yo − d2 = β2, (A14)

where β2 = D2∆η, C2 and d2 are given by

[C2]1:6,1:6 = I6, [C2]6+j,j = [η]j, j = 1, 2, 3,

[C2]9+j,j = 0.5[η]k, [C2]9+j,k = 0.5[η]j, (j, k) = (1, 2), (2, 3), (3, 1),

[C2]13:15,1:3 = [η]4:6vT + v[η]T4:6, [C2]15+j,j = [η]7 + [η]8 + [η]9, j = 1, 2, 3,

[C2]19,1:3 = [η]T16:18, [C2]20,1:3 = [η]T1:3[η]4:6vT , d2 = η. (A15)
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Moreover, D2 is obtained by

[D2]1:6,1:6 = −I6, [D2]j+6,j = [xo]j ≃ [η]j, [D2]j+6,j+6 = −1, j = 1, 2, 3,

[D2]9+j,j = 0.5[xo]k ≃ 0.5[η]k, [D2]9+j,9+j = −1,

[D2]9+j,k = 0.5[xo]j ≃ 0.5[η]j, (j, k) = (1, 2), (2, 3), (3, 1),

[D2]13:15,4:6 ≃ vT [η]1:3I3 + v[η]T1:3, [D2]13:15,13:15 = −I3,

[D2]15+j,7:9 ≃ [η]j13, [D2]15+j,15+j = −1, j = 1, 2, 3,

[D2]19,16:18 = xoT ≃ [η]1:3, [D2]19,19 = −1,

[D2]20,1:3 ≃ vT [η]1:3[η]
T
4:6, [D2]20,4:6 = vT [η]1:3[η]

T
4:6, [D2]20,20 = −1, (A16)

where xo and uo are approximated by the estimated values [η]1:3 and [η]4:6.

Appendix C. Definitions of µi and γi

Inserting (33a) into (33b) results in

dT
2 Wβ2C2(CT

2 Wβ2C2 + λP)−1P(CT
2 Wβ2C2 + λP)−1CT

2 Wβ2d2 = 1. (A17)

Let (CT
2 Wβ2C2)

−1P = UΛU−1, where Λ is a diagonal matrix. The definition gives

(CT
2 Wβ2C2 + λP)−1 = U(I + λΛ)−1U−1(CT

2 Wβ2C2)
−1, (A18)

Applying the definition of (A18) to (A17) yields

cT(I + λΛ)−1Λ(I + λΛ)−1f = 1,

c = dT
2 Wβ2C2U,

f = U−1(CT
2 Wβ2C2)

−1CT
2 W2d2. (A19)

From the definition of P, the front three eigenvalues of (CT
2 Wβ2C2)

−1P are equal to
zero. Thus, we define µi and γi by

µi = [c]i+3[f]i+3[Λ]i+3,i+3,

γi = [Λ]i+3,i+3, i = 1, 2, 3. (A20)

As a result, (A20) can be simplified to (34).
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