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Abstract: As online shopping is becoming mainstream, driven by the social impact of Coronavirus
disease-2019 (COVID-19) as well as the development of Internet services, the demand for autonomous
delivery mobile robots is rapidly increasing. This trend has brought the autonomous mobile robot
market to a new turning point, with expectations that numerous mobile robots will be driving on
roads with traffic. To achieve these expectations, autonomous mobile robots should precisely perceive
the situation on roads with traffic. In this paper, we revisit and implement a real-time traffic light
recognition system with a proposed lightweight state recognition network and ratio-preserving
zero padding, which is a two-stage system consisting of a traffic light detection (TLD) module
and a traffic light status recognition (TLSR) module. For the TLSR module, this work proposes
a lightweight state recognition network with a small number of weight parameters, because the
TLD module needs more weight parameters to find the exact location of traffic lights. Then, the
proposed effective and lightweight network architecture is constructed by using skip connection,
multifeature maps with different sizes, and kernels of appropriately tuned sizes. Therefore, the
network has a negligible impact on the overall processing time and minimal weight parameters while
maintaining high performance. We also propose to utilize a ratio-preserving zero padding method
for data preprocessing for the TLSR module to enhance recognition accuracy. For the TLD module,
extensive evaluations with varying input sizes and backbone network types are conducted, and
then appropriate values for those factors are determined, which strikes a balance between detection
performance and processing time. Finally, we demonstrate that our traffic light recognition system,
utilizing the TLD module’s determined parameters, the proposed network architecture for the TLSR
module, and the ratio-preserving zero padding method can reliably detect the location and state of
traffic lights in real-world videos recorded in Gumi and Deagu, Korea, while maintaining at least
30 frames per second for real-time operation.

Keywords: traffic light recognition; autonomous vehicle; mobile robot; real time; lightweight; deep
learning

1. Introduction

In recent years, online transactions have rapidly become a mainstay of the shopping
industry. Especially, the Coronavirus disease-2019 (COVID-19) pandemic has significantly
impacted shopping behavior, with people preferring to purchase all kinds of essentials,
including groceries, food, and clothing, online [1]. Even though the pandemic is almost over,
many newcomers to online shopping are expressing continued interest in online shopping [2].

Due to the growth of the e-commerce market, along with the increase in online
shoppers, the demand for autonomous delivery mobile robots is rapidly increasing, as well
as due to a severe labor shortage. In line with this trend, the autonomous delivery mobile
robot market will reach a new turning point, growing at a CAGR of 20.4% from 2021 to
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2026 [3]. In addition, various fields require employing autonomous mobile robots [4–6].
Therefore, in the near future, numerous mobile robots are expected to drive on traffic roads
to deliver groceries, food, parcels, and other necessities.

In order for the era of autonomous mobile robots to become a reality, it is important
for robots to accurately perceive their surroundings on roads with traffic. Specifically, to
enable mobile robots to operate autonomously on traffic roads, the real-time identification
of traffic lights is of utmost importance.

Several works have been proposed for this purpose, classified into one-stage systems [7–10]
and two-stage systems [11–15]. The one-stage system detects the location and state of traffic
lights by using a single network. In [7], the authors utilized modified Alexnet networks
to analyze detection performance. The works in [8–10] exploited SSD [16], R-CNN [17],
and YOLOv3 [18] to detect the location and state of traffic lights. On the other hand, a
two-stage system sequentially performs two steps: first finding the location of the traffic
light and then checking the signal status of the detected traffic light. In [11], they used
a convolutional neural network (CNN) to detect traffic lights, which generated saliency
maps. The authors of [13] utilized YOLO [19] to locate traffic lights, with a CNN being used
for traffic light status recognition. The works in [12,14] adopted a histogram of oriented
gradients (HOG) for the detection of traffic lights and also used a CNN for checking the
status of traffic signals. In [15], the proposed system used deep learning networks for all
components of the system to detect traffic signs.

However, achieving good recognition performance with a one-stage system can be
difficult due to its network structure. In one-stage systems, a network predicts the location
and state of traffic lights simultaneously, while two-stage systems consist of two sepa-
rate networks for each task. The use of a single network to perform two different tasks
simultaneously may potentially hinder performance in the one-stage approach. In fact,
the work in [8] presented low precision and recall performance for red and yellow signals.
Previous works on one-stage systems also have some limitations. Table 1 summarizes the
comparison between our work and related studies. As shown in Table 1, the system in [7]
can only recognize a limited number of traffic light states, while the works in [9,10] provide
limited evaluation results of the traffic light state recognition (TLSR) networks.

Table 1. Comparison between related works and this work for traffic light recognition.

Approach Number of Traffic Light States Performance Metric Use of CNN Advanced Features Used

[7] One-stage 3 Precision, recall - -

[8] One-stage 3 Precision, recall - -

[9] One-stage 5 No detailed evaluation - -

[10] One-stage 3 Precision, recall but limited evaluation - -

[11] Two-stage 2 Precision, recall Yes No

[12] Two-stage 2 Precision, recall Yes No

[13] Two-stage 3 Accuracy Yes No

[14] Two-stage 5 Accuracy Yes No

Ours Two-stage 7 HF score obtained with precision and recall Yes FPN [20], skip connection [21]

The two-stage system is composed of two networks, where the first network identi-
fies the location of traffic lights and the second predicts their state. As shown in Table 1,
all previous works on the two-stage system [11–14] have built a network that predicts
traffic light states using only a basic CNN constructed by sequentially stacking multiple
convolutional layers. Recently, however, several advanced network structures have been
developed [20,21]. By utilizing these features to design a new network architecture, we can
improve recognition performance while reducing the number of weight parameters. In-
deed, the TLSR module proposed in this paper utilizes advanced network structures [20,21],
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leading to improved recognition performance. Additionally, we conducted a comprehen-
sive evaluation of both the proposed model and previous works using a larger number of
traffic light states.

In addition, for the network that detects the location of traffic lights, all the mentioned
previous studies provide limited evaluations, which do not take into account the trade-
off between detection performance and processing time for different input images and
backbone network types. The TLD module should provide good detection performance
while ensuring real-time operation. As the size of the input image increases, detection
performance increases, but processing speed becomes slower. Therefore, extensive evalua-
tion is required to determine the input image size and backbone network type suitable for
real-time operation. In this work, we conduct extensive evaluations with varying input
image sizes and backbone network types.

In this paper, we revisit the implementation of a real-time traffic light recognition
system from a two-stage viewpoint, comprising a traffic light detection (TLD) module
and a traffic light state recognition (TLSR) module. The contributions of this work are
summarized as follows:

• To improve the recognition performance of the TLSR module and reduce the number
of its weight parameters, we propose a lightweight and effective network using ad-
vanced features [20,21], while the existing research utilized a simple CNN stacking
convolution layers sequentially. Through evaluation, it was confirmed that the pro-
posed network architecture shows superior recognition performance for seven traffic
signals compared with the simple CNN used in [11–14] while using fewer weight
parameters. The reduction in the weight parameters allows the proposed model to be
used on devices with limited resources. Furthermore, through evaluations, this work
also shows how the use of advanced features affects the recognition performance.

• Additionally, in order to enhance the TLSR’s performance, we propose to utilize a
ratio-preserving zero padding (RZP) approach for data preprocessing. This approach
maintains the aspect ratio of traffic lights in images, preventing distortions that can
arise from scaling.

• By using the determined system parameters for the TLD module and proposed net-
work architecture trained with the RZP for the TLSR module, the real-time traffic light
recognition system is demonstrated using actual videos recorded in Gumi and Deagu,
Korea. This demonstration shows that the system operates in real time at over 30 FPS
while it stably detects traffic lights and identifies the state of detected traffic lights.

The rest of this paper is organized as follows. The design of our system is presented
in Section 2, where two essential system modules are outlined: the traffic light detection
(TLD) module and the traffic light state recognition (TLSR) module. In Section 3, to
propose a lightweight network structure for the TLSR module, we conduct a comprehensive
evaluation by comparing the performance across various network architectures, with and
without ratio-preserving zero padding, and assess performance metrics such as HF score–
confidence curves, average HF scores, trainable parameters, and the number of convolution
layers used. For the TLD module, we provide a comprehensive evaluation, assessing its
performance over various input image sizes and network types. This analysis utilizes
multiple performance metrics such as precision–recall curves, mean average precision, and
frames per second. Based on the results, we determine system parameters, such as input
image size and network type, and then present the demonstration results. Finally, Section 5
concludes the paper.

2. Two-Stage Traffic Light Recognition System

In this section, we present the implementation of a system designed to detect traffic
lights in image frames captured by a camera on autonomous vehicular robots and to
determine the state of the detected traffic lights. The system comprises two key modules:
a traffic light detection (TLD) module and a traffic light state recognition (TLSR) module.
The TLD module is designed to detect the presence and location of traffic lights in images,
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while the TLSR module determines the state of each detected traffic light. The TLSR
module section describes several candidate network structures for the TLSR module, the
construction of the output layer, a loss function, and ratio-preserving zero padding. The
TLD module section presents the network structure for this module with a description of
the loss functions.

Figure 1 shows the block diagram of the entire system, showing what function each
module performs. The TLD module receives video frames from a camera or video file,
which are then processed in the TLD network to detect the location of traffic lights. The
detected traffic lights are cropped from the input frames, and the cropped images are
resized by using the ratio-preserving zero padding. Finally, the resized images are passed
through the TLSR network to recognize the status of detected traffic lights.

Figure 1. Block diagram of the overall system: the TLD module detects traffic lights and the TLSR
module recognizes the status of the detected traffic lights.

2.1. TLSR: Traffic Light State Recognition

For the TLSR module, the objective is to design a lightweight and effective recognition
network. As mentioned in Section 2, the system in development is a two-stage system
in which the TLSR module follows the TLD module. In the two-stage architecture, the
TLD module has a complex network structure and numerous weight parameters, which
inevitably increases the processing time. Therefore, the processing time of the TLSR module
should be much smaller than that of the TLD module to allow the entire system to operate
in real time.

In this section, we examine six different network structures, while explaining how
to predict the status of the traffic lights and calculate a loss function. These network
architectures are constructed by incrementally adding several features in [20,21] and using
kernels of appropriately tuned sizes. Furthermore, we describe a ratio-preserving zero-
padding method, which enhances the performance of the TLSR module.

2.1.1. Candidate Network Architectures

This section introduces a baseline CNN used in [11–14] and creates five network
architectures by leveraging distinct characteristics of [20,21] and adjusting filter sizes in
convolution layers. The created structures reduce the number of weight parameters while
simultaneously increasing convolution layers by exploiting the distinct features, which
improves recognition performance. As previously stated, our aim is to ensure minimal
processing time with this secondary module to lessen its impact on the overall processing
time of our system. Therefore, in order to reduce the processing time of this TLSR module,
the number of weight parameters should be decreased. Furthermore, the network’s ability
to extract intricate features can be enhanced by increasing the number of convolution layers,
which would counteract the degradation caused by reducing weight parameters.

Figure 2 presents the network structures considered: ‘CONV’, ‘CONV-FIT’, ‘FPN’,
‘FPN-FIT’, ‘FPN-RES’, and ‘FPN-RES-FIT’. The ‘Conv’ network represents a base structure,
built by sequentially stacking convolution layers. The other structures are constructed by
integrating supplementary attributes from [20,21] into the base structure. The term ‘FPN’
refers to utilizing the pyramid structure described in [20], and the networks labeled with
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‘RES’ are designed using the skip connection structure of [21]. For the networks labeled
with ‘FIT’, some convolution layers use filters whose shape corresponds to the height
dimension of the incoming feature map.

(a) (b)

(c) (d) (e)

Figure 2. Network architectures for the TLSR module: (c–e) Subnetwork structures. (a) ‘CONV’
and ‘CONV-FIT’; (b) ‘FPN’, ‘FPN-FIT’, ‘FPN-RES’, and ‘FPN-RES-FIT’; (c) For’FPN’ and ‘FPN-FIT’;
(d) ‘FPN-RES’; (e) ‘FPN-RES-FIT’.

In Figure 2a, the structure of the ‘CONV’ and ‘CONV-FIT’ networks comprises four
convolution layers, which is similar to the basic style presented in [22]. In addition, a batch
normalization layer and an activation function are followed by each convolution layer,
where the Sigmoid Linear Unit (SiLU) function is used for the activation function [23]. For
the ‘CONV’ network, the variable D is set to 3, while set to match the height of the input
image I for the ‘CONV-FIT’ network. This approach could allow the network structure to
extract comprehensive features from the input image in a holistic manner.

Figure 2b shows a network design utilizing multiple feature maps with different
shapes for predicting the state of traffic signals, which is used for the ‘FPN’, ‘FPN-FIT’,
‘FPN-RES’, and ‘FPN-RES-FIT’ networks. This structure includes three convolution layers
within the main network flow. An output feature map from each main convolution layer is
denoted as Fi ∈ RCi×Wi×Hi and i ∈ [1, 3], where Wi, Hi, and Ci are the width, height, and
channel of a feature map, respectively. Each output is passed through a subnetwork as

ri = Rsub,i(Fi) = Lsub,i(Csub,i(Fi)), (1)

where Rsub,i represents a subnetwork that follows the i-th main convolution layer, ri ∈
RNreg×1, and Nreg is the number of traffic signals. The subnetwork consists of Csub,i and
Lsub,i, where Csub,i is built by stacking two convolution layers, with a 1× 1 kernel and a
D× D kernel. Finally, Lsub,i has an adaptive average pooling and a linear layer.

By using ri, the number of bulbs in a traffic light is predicted as

b = Lbulb(rsub), (2)

where b ∈ RNbulb×1, Nbulb is the total number of bulbs, Lbulb is a classifier consisting of a
linear network, and rsub ∈ R3Nreg×1 is obtained by concatenating all ri, ∀i.

Finally, a score vector so ∈ RNreg×1 is obtained by using rsub and b as

so = Lreg(rsub, b), (3)
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where Lreg is a recognizer consisting of a linear network. The bulb vector b is used as a
conditional vector. Since the position of the green bulb in a traffic light can vary depending
on Nbulb, the condition vector could help Lreg accurately predict the traffic signal state.

Figure 2c presents a subnetwork Rsub,i used for the ‘FPN’ network, where the variable
D is set to 3. The 1× 1 convolution layer reduces the number of channels in Fi by half.
Afterward, the following 3× 3 convolution layer increases the number of channels twofold.
The ‘FPN-FIT’ network also employs the subnetwork structure shown in Figure 2c, except
that the value of parameter D is adjusted to correspond to the height of Fi.

As shown in Figure 2d, the ‘FPN-RES’ network uses a subnetwork that adopts the
skip connection of [21]. Therefore, Rsub,i can be rewritten as

ri = Rsub,i(Fi) = Lsub,i(Csub,i(Fi) + Fi). (4)

The ‘FPN-RES-FIT’ network utilizes a subnetwork structure shown in Figure 2e, and
the value of parameter D is set to match the height of Fi, similar to the ‘FPN-FIT’ structure.

For both the ‘FPN-RES’ and ‘FPN-RES-FIT’ networks, a score vector is obtained in the
same way as in (2) and (3).

2.1.2. Prediction and Loss Function

For each network structure, the final recognizer Lreg generates a score vector
so ∈ RNreg×1. In this work, seven traffic signal classes are considered: red, yellow, green,
left arrow, left top arrow, left down arrow, and right top arrow (the number of traffic signals
may vary depending on the road, city, country, etc.). Hence, each element of so represents
the score of each traffic signal.

By passing so through a sigmoid function, the predicted vector p ∈ RNreg×1 is cal-
culated, where pi represents the i-th element of p and has a value between 0 and 1. In
other words, pi means the probability that the i-th traffic signal is active. As a result, the
TLSR module determines that the i-th traffic signal is active if pi is greater than a certain
threshold, and thus can recognize multiple active traffic signals.

In addition, all pi are below a specific threshold, which indicates that the image
received from the TLD module does not contain any traffic lights. Therefore, this TLSR
module is capable of filtering out erroneous detection results from the TLD module.

Finally, we compute the total loss Etotal, which is

Etotal = Ereg + Ebulb, (5)

where Ereg is the recognition loss, and Ebulb is the classification loss. The loss value Ereg is
calculated by using the focal loss [24] between so and ts, which is

Ereg = −
Nreg

∑
i=1

[ts]i ·
(

1− exp([so]i)

∑
Nreg
c=1 exp([so]c)

)γ
log

( exp([so]i)

∑
Nreg
c=1 exp([so]c)

)
, (6)

where ts is a multi-hot-encoded ground truth vector, [ts]i is the i-th element of ts, [so]i is the
i-th element of so in (3), and γ is a hyperparameter with γ = 2. Additionally, the loss value
Ebulb between b and tb is calculated by using a cross-entropy loss function, which is

Ebulb = −
Nbulb

∑
i=1

[tb]i · log
( exp([b]i)

∑Nbulb
c=1 exp([b]c)

)
, (7)

where tb is a one-hot-encoded ground truth vector, [tb]i is the i-th element of tb, and [b]i is
the i-th element of b in (2).
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2.1.3. RZP: Ratio-Preserving Zero Padding

To train a network, input images must be scaled to a fixed size. However, simply
scaling an image to fit a specific size can distort objects within the image. In Figure 3, the
images in the second and third columns show traffic light images scaled to a fixed size of
20 × 20 pixels and a fixed size of 20 × 100 pixels. For objects with a large width-to-height
ratio, such as traffic lights, simply resizing without considering the ratio can distort the
position or shape of the light bulb representing the traffic light status. The distortion can
degrade the model’s prediction performance.

Figure 3. Comparison of various resizing approaches.

In order to improve the performance of the TLSR module, we propose to utilize a
ratio-preserving zero padding (RZP) approach to detect traffic light images. With RZP, the
width-to-height ratio is preserved so that the position and shape of a bulb do not change
after resizing, as shown in the last column image in Figure 3.

To explain RZP, the height and width of a resultant resized image by RZP are H and W.
While the value of H is set to a given value, the value of W is determined as W = H × Rw
and Rw ≥ max(R), where R is written as

R = {w/h | w = W(D(i)), h = H(D(i)), i ∈ [i, ND]}, (8)

where D represents a dataset used to train the TLSR module, D(i) is the i-th image, ND
is the number of images in the dataset D, and W(·) and H(·) are the operators obtaining
the width and height of an image D(i). That is, R is the set including the ratio of width to
height of all the images in the dataset D.

Using the determined H and W with Rw set to a value satisfying Rw ≥ max(R), the
width w of a detected traffic light image is resized as

w′ = w× h′

h
, (9)

where h and h′ are the height of a detected traffic light image and the resized height,
respectively. Specifically, h′ = H.

Since the size of a detected traffic light image varies, the resized width w′ can be
smaller than W. If w′ < W, the remainder (W − w′) is padded with zeros so that the
resized width w′ becomes equal to the determined width W.

2.2. TLD: Traffic Light Detection

Figure 4 shows the overall architecture of the TLD module, consisting of three blocks: a
backbone block, a neck block, and a detection block. In the backbone block, a convolutional
neural network extracts feature maps and consists of Nlayer convolution layers, denoted
as Bi, i ∈ [1, Nlayer]. The output feature map of a layer Bi defines F(b,i) ∈ R(Ci×Hi×Wi) and
i ∈ [1, Nlayer]. The neck block consists of two convolution layers denoted as N4 and N3.
From a convolution layer Ni, a feature map F(n,i) is extracted by adding a feature map F(b,i).
To recognize information about traffic lights, the detect block processes each feature map
F(n,i) with an efficient decoupled head block (EDH), denoted as DEDH,i. More specifically,
the EDH block consists of two parts: anchor-based and anchor-free-based parts. In the
anchor-based part (or anchor-free-based part), a classifier head detects the existence of
traffic lights OH×W×3

cls, ab (or OH×W×1
cls, af ) while a regressor head predicts the information of

bounding boxes of traffic lights OH×W×12
reg, ab (or OH×W×68

reg, af ).
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Figure 4. The architecture of the TLD module.

2.2.1. Network Structure

Backbone: A backbone block is built based on [21] and is at the front of the TLD
module to extract various pieces of feature information from the input data. It should be
able to extract both low-level and high-level complex features from arbitrary input data.
There have been many previous works that proposed network structures extracting mean-
ingful features. In [22,25], they propose a method using numerous layers to increase the
network depth. To enhance extraction performance, the works in [25–28] propose network
blocks suitable for specific applications. In [21,29], the proposed network structures solved
gradient vanishing/exploding problems caused by the increasing depth. Additionally, the
network structure in [21] is used in various research, and thus, we also adopt it for the
backbone network.

Neck: A neck block is constructed based on the feature pyramid network [20]. This
block generates new feature maps F(n,3) and F(n,2) by using F(b,3) and F(b,2) extracted from
B3 and B2. Then, F(n,4) is from F(b,4). For instance, F(n,3) is obtained by adding F(b,3) with
the result from N4 where a relatively low-level feature map F(b,4) is upsampled. In the neck
block, the output is calculated as

F(n,i) = Clateral(F(b,i)) + N(i+1)(F(b,i+1)), (10)

where Clateral(·) represents a lateral connection consisting of convolution layers with a
1 × 1 filter, and Ni(·) is an upsampling function using transposed convolution layers or
interpolation functions.

The reason for using multiple feature maps of different sizes is that small objects in an
input image can be detected from a low-level feature map. In particular, traffic lights can
become smaller depending on the distance between a car and a traffic light, and thus, this
method allows better detection of traffic lights of various sizes. In addition, the neck block
adds high-level features to low-level features, making low-level features more powerful in
representing semantic information.

The backbone network with Nlayer = 4 generates four feature maps, F(b,1), F(b,2), F(b,3),
and F(b,4) (unlike [20], we remove the convolution layers following F(b,4) to reduce weight
parameters). The neck block utilizes the backbone’s feature maps, excluding F(b,1), since it
has too low-level feature information.

Detection: This predicts the bounding boxes of traffic lights using the neck’s feature
maps, F(n,i). Since the initial research that pioneered object detection used anchors to predict
bounding boxes, subsequent studies have consistently adopted this methodology, called
anchor-based detector. In recent years, several works using an anchor-free detector have
been introduced, and they are Yolox [30], CornerNet [31], CenterNet [32], and Fcos [33].
Anchor-based object detection places numerous anchor boxes in an image, yet only a
small percentage of these anchors actually match the ground truth. The anchor-free object
detection solves this inefficiency in anchor-based approaches.

In this paper, the detection block consists of both anchor-based and anchor-free-based
detectors, which are trained simultaneously. The anchor-free detector might have difficulty
accurately predicting the corner points of bounding boxes in the early stages of training,
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which can be alleviated by simultaneously training an anchor-based detector. After training,
the detection block predicts bounding boxes using only the anchor-free detector.

Each detector is constructed using an efficient decoupled head, consisting of a regres-
sion head and a classification head [34,35], as shown in Figure 4. This structure can solve a
misalignment between classification confidence and localization accuracy. For an anchor-
based detector (an anchor-free-based detector), the classification head predicts the presence
or absence of traffic lights in predicted boxes, which is represented by Ocls, ab ∈ RWi×Hi×3

(or Ocls, af ∈ RWi×Hi×1), while the regression head predicts the bounding box information
of objects in an image, which is denoted as Oreg, ab ∈ RWi×Hi×12 (or Oreg, af ∈ RWi×Hi×68).

2.2.2. Loss Functions

In order to train the introduced deep learning network, we utilize varifocal loss [36]
for classification loss and GIoU loss [37] and DFL [38] for regression loss.

The total loss Ltotal is obtained as

Ltotal = Laf + Lab, (11)

where Laf is the anchor-free loss and Lab is the anchor-based loss. The anchor-free loss is
calculated as

Laf = Lcls + λLdfl, (12)

where Lcls and Ldfl are classification loss [36] and probability regression loss [38], and λ is a
hyperparameter with λ = 2.5. The anchor-based loss is obtained as

Lab = Lcls + µLiou, (13)

where Liou is box regression loss [37], and µ is a hyperparameter with µ = 2.5. As a
result, the TLD module is trained using the total loss Ltotal while simultaneously training
anchor-based and anchor-free detectors.

2.2.3. Trade-Off between Detection Performance and Processing Time

In order for a TLD module to be applicable in real situations, it must satisfy two main
factors, which are high detection performance and low processing time. For detection
performance, the module should accurately detect traffic lights of various sizes because the
size of a traffic light within a video frame changes in real time with a vehicle approaching
the traffic light. Due to the rapid change in the size of traffic lights, the module should also
guarantee low processing time.

However, it is generally observed that attempting to reduce processing time can
negatively impact detection performance. That is, a trade-off exists between detection
performance and processing time. Therefore, system parameters for this module must
be carefully selected to balance the trade-off. In contrast to the existing literature, we
thoroughly investigate the TLD module in Section 3.

2.3. Overall Algorithm

The procedure of the designed system is demonstrated in Algorithm 1. In a real-world
scenario, a companion computer would execute Algorithm 1 each time it receives a video
frame from a camera. Here, Itraffic, btraffic, and Ntraffic represent the images of identified
traffic lights, the information from the bounding boxes in the identified traffic lights, and
the number of Itraffic. The Przp and Irzp notations are the operators of ratio-preserving zero
padding and padded traffic light images. Finally, B(·) is a function that draws bounding
boxes on v.
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Algorithm 1: Traffic light detection and detected object status recognition
Input: Traffic light detector D; traffic light state recognizer R; video frame v
Output: Postprocessed video frame ṽ

(1) D(v)→ Itraffic, btraffic, Ntraffic // Traffic light detection in v
(2) if Ntraffic > 0 then // Traffic lights exist

for k← 1 to Ntraffic do
- Przp(Itraffic, k)→ Irzp, k // Ratio-preserving zero padding to Itraffic, k
- R(Irzp, k)→ pk // State probability vector of Irzp, k
- B(v, btraffic,k, pk)→ v // Drawing the bounding box and state on v

end for
(3) Terminate the procedure in a video frame with v→ ṽ.

3. Evaluation of TLD and TLSR Modules and Demonstration

To achieve real-time operation, a system should ensure a minimum requirement of
30 frames per second (FPS). It is also essential to optimize the system’s detection perfor-
mance while meeting the minimum FPS requirement. However, there is a trade-off between
FPS and detection performance. Therefore, it is crucial to achieve a balance between FPS
and detection performance.

For the TLD module, the trade-off arises due to input image size and network depth.
Increasing the size of an input image can improve detection performance, but it also results
in longer network processing time and consequently reduces FPS. Furthermore, increasing
the depth of a network leads to improved detection performance; however, it results in
increased processing time.

As a result, the size of an input image and the depth of a backbone network are system
parameters for the TLD module. In this section, based on comprehensive evaluations, we
determine suitable system parameters for real-time operation.

For the TLSR module, a lightweight and effective network structure is selected from
the candidate network structures introduced in Section 2.1.1. All the network architectures
are compared in terms of HF score, number of trainable network parameters, and number
of convolutional layers. The HF score is a metric introduced in this work, which is a
harmonic mean between the F1 score of each traffic signal class and the F1 score of the
correctness of a traffic light detected by the TLD module.

3.1. Performance Metrics

In order to evaluate the performance of the TLD module, we utilize the precision–recall
curve obtained by varying the confidence threshold, which is the minimum value required
to detect the presence of a traffic light. Additionally, the metrics of average precision (AP)
and frames per second (FPS) are utilized.

To evaluate the performance of the TLSR module, we present the HF score, which is
the harmonic mean of the F1 scores for recognizing the state of each traffic signal class and
for filtering out non-traffic-light images. The HF score is calculated as

HFi = 2×
F1recog,i × F1filt

F1recog,i + F1filt
, (14)

where F1recog,i is the F1 score of the i-th traffic light signal, F1filt is the F1 score for filtering
out non-traffic-light images, and 0 ≤ HFi ≤ 1. As HFi approaches 1, the TLSR module
shows good performance in both recognizing and filtering capabilities.

As stated in Section 2.1.2, the TLSR module can filter out incorrectly cropped images
by the TLD module if all elements of p are below a certain threshold, denoted as Γi. When
a network is trained to improve its filtering performance, however, its ability to classify
the status of each traffic signal may decrease. This is due to how an activated traffic signal
is identified, where the i-th traffic signal is predicted as activated if pi > Γi. Therefore, an
evaluation considering both aspects of performance simultaneously is essential due to the
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trade-off between them. Therefore, by using the HF score, we can concurrently evaluate the
candidate network structures by simultaneously considering their ability to filter images
without traffic lights and their performance in recognizing traffic light states.

In order to evaluate the efficiency of the TLSR module, we consider two factors: the
number of trainable parameters and floating point operations (FLOPs), where FLOPs is a
metric that represents the computational complexity of a network.

3.2. Training Details

To train both the TLD and TLSR modules, we utilized the stochastic gradient descent
(SGD) optimizer with a weight decay of 5× 10−4 and a momentum of 0.834, alongside the
cosine scheduler. When training the TLD module with the scheduler, we applied an initial
learning rate of 3.2× 10−4 and a final learning rate of 3.84× 10−5. Similarly, for the TLSR
module, we established an initial learning rate and a final learning rate of 1× 10−5. The
training and demonstration are conducted utilizing the NVIDIA GeForce RTX 4090. For
the TLD module, before training with the traffic light dataset, we perform a pretraining
procedure with the coco dataset and the imagenet dataset [39,40].

In order to determine system parameters for the TLD module and a network structure
suitable for the TLSR module, both modules are trained with the traffic light dataset
provided by the Electronics and Telecommunications Research Institute (ETRI), which is
one of the most influential national research institutions in Korea [41]. This dataset consists
of 10k images obtained from real-life road environments. The limited dataset allowed
quicker testing of various models across various conditions, while also providing enough
data for training large networks. This approach is often used for the deep learning field, as
in [42]. For training the TLSR module, we intentionally crop the areas lacking traffic lights
and utilize them to enhance the TLSR module’s ability to filter out the erroneously detected
traffic light images by the TLD module.

After selecting suitable parameters and network architecture, for the demonstration,
both modules are trained using 230k additional data, collected in Seoul and nearby cities
in Korea.

3.3. Network Structure Suitable for TLSR Module
3.3.1. Comparison of HF Scores with Different Network Structures

Figure 5 shows the HF scores of six traffic light signals with different levels of con-
fidence. Note that all the existing work [11–14] on two-stage systems uses the ‘CONV’
architecture, and thus, ‘CONV’ can be used as the baseline for the performance comparison.

For the most frequent signals, namely red, yellow, green, and left, it can be observed
from Figure 5a–d that the ‘CONV’ and ‘CONV-FIT’ network designs show lower HF scores
compared with other networks for almost all confidence values. Moreover, it is evident
that neither of the network designs outperforms other network architectures.

In Figure 5e, the ‘FPN-FIT’, ‘FPN-RES’, and ‘FPN-RES-FIT’ structures outperform
other network architectures in the top-left case, while ‘FPN-FIT’ and the ‘FPN-RES-FIT’ are
better than the other networks in Figure 5f. For the top-right signal in Figure 5g, the ‘FPN’
and ‘FPN-RES-FIT’ architectures exhibit superior performance compared with the others.
The findings suggest that the feature pyramid structure in [20] has a significant impact
on improving performance. In addition, the ‘FPN-RES’ architecture shows outstanding
performance, as in Figure 5a–d, confirming that the skip connection from [21] also yields
significant performance improvements.

Table 2 presents the average of the HF scores across all traffic signals and trainable
parameters. The ‘FPN-RES-FIT’ architecture shows the highest average HF score with 27%
fewer weight parameters compared with the ‘CONV’ network design. Additionally, the
computational requirement of the ‘FPN-RES-FIT’ network structure is 0.30K FLOPs, while
that of ‘CONV’ is 0.39K FLOPs. Because of its small number of weight parameters and low
computational complexity, its processing time is negligible. As a result, the ‘FPN-RES-FIT’
network design is the most appropriate for the TLSR module.
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Figure 5. HF scores for traffic light classes.

Remark: We need to examine the results of the ‘FPN-RES-FIT’ network structure. The
‘FPN-RES-FIT’ network design shows generally better performance, but it is slightly inferior
to the ‘FPN-RES’ and ‘FPN-FIT’ networks in the top left and bottom left of Figure 5e,f. The
application of ‘RES’ or ‘FIT’ to ‘FPN’ improves performance. However, applying ‘RES’ and
‘FIT’ simultaneously results in slightly lower performance improvement compared with
applying them separately. The reason can be explained as follows. In Figure 2e, in order to
apply ‘RES’ and ‘FIT’ simultaneously, a pooling operation should be implemented in the
shortcut path. The pooling operation is applied along the width and height dimensions,
which reduces spatial information in the resulting feature maps. Due to the relatively
higher number of classes associated with the left direction, this reduction may slightly
impair the network’s ability to detect the top left and bottom left. In future work, based
on this insight, we plan to develop a shortcut block that can effectively combine ‘RES’
and ‘FIT’.

Table 2. Comparison of HF scores, number of trainable parameters, FLOPs, and total number of
convolution layers used.

CONV [11–14] CONV-FIT FPN FPN-FIT FPN-RES FPN-RES-FIT

Average of HF scores 0.9573 0.9205 0.9607 0.9699 0.9708 0.9740

Trainable parameters 98,841 117,609 52,199 72,039 52,199 72,039

FLOPs 0.39 K 0.46 K 0.23 K 0.30 K 0.23 K 0.30 K

Convolution layers 4 4 9 9 9 9

3.3.2. Comparison of HF Scores with and without Ratio-Preserving Zero Padding

This section examines the impact of the RZP method on the ‘FPN-RES-FIT’ network’s
performance. Figure 6 presents the HF scores of six traffic signals with and without the
RZP method. At all confidence levels, the network with the RZP method results in superior
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performance compared with the one without it. As a result, maintaining the aspect ratio of
traffic lights significantly increases recognition performance.
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Figure 6. Comparison of HF scores of FPN-RES-FIT with and without ratio-preserving zero padding.

Figure 7 shows the precision–recall curve (PR) of the TLD module with changes in
backbone type and input size. When the intersection over union (IoU) threshold of nonmax-
imum suppression (NMS) is set to 0.5, Figure 7a,b shows the PR curve for 30 confidence
thresholds between 0 and 1. Figure 7a presents detection performance for the input size
range [416, 640, 960, 1280, 1920], and the backbone type is fixed to resnet-18. Figure 7b
shows detection performance for the input size range [640, 960, 1280], and the backbone
type is changed from resnet-18 to resnet-34. For a detailed explanation, Figure 7c,d is an
enlargement of specific parts of Figure 7a,b. The terms ‘RES-18’ and ‘RES-34’ in the legend
of the figures signify that the results are obtained with resnet-18 and resnet-34, respectively.
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Figure 7. Precision–recall curves of the TLD module.
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3.4. System Parameters for TLD Module: Input Image Size and Backbone Network Type
3.4.1. Comparison of HF Scores with Different Input Image Sizes

Tables 3 and 4 show the average precision (AP) and FPS. AP is the area under the PR
curve, and FPS is the number of frames processed per second by the TLD module. In the
tables, AP@0.5 is the result of setting the IoU threshold to 0.5, and AP@0.5:0.95 is the result
of averaging APs measured by changing the IoU threshold from 0.5 to 0.95.

Table 3. Comparison of average precision and frame per second for various input image sizes.

Input Image Size 416 640 960 1280 1920

Average precision (AP) @ 0.5 0.8033 0.8825 0.9846 0.9885 0.9913

Average precision (AP) @ 0.5:0.95 0.7499 0.8208 0.9127 0.9115 0.9106

Frames per second (FPS) 143.2 93.3 51.1 30.8 14.5

Table 4. Comparison of average precision and frame per second for various resnet types.

Input Image Size 640 960 1280

Resnet Type 18 34 18 34 18 34

Average precision (AP) @ 0.5 0.8824 0.8860 0.9850 0.9805 0.9884 0.9160

Average precision (AP) @ 0.5:0.95 0.8202 0.8278 0.9127 0.8865 0.9115 0.8413

Frame per second (FPS) 93.3 49.6 51.1 26.4 30.8 16.6

In Figure 7a–d, for image sizes from 960 to 1920, the area of the PR curve is almost 1,
while the area for 416 and 640 is smaller. In Tables 3 and 4, the results of AP@0.5 show that
the detection performance becomes higher as the input size increases. On the other hand,
for AP@0.5:0.95, the detection performance increases up to an input size of 960 and then
decreases. For FPS, Table 3 shows that it decreases as the input size increases. Especially, for
input sizes larger than 1280, FPS is fewer than 30, which is the minimum requirement for
real-time operation. Table 4 confirms that the processing speed of resnet-18 is 46.7%, 48.3%,
and 46.1% faster than that of resnet-32 for input sizes of 640, 960, and 1280, respectively.

Finally, Figure 8 shows the resulting images for the input sizes 640 and 960. Small
traffic lights within the same image are better detected with an input image size of 960 than
with an image size of 640. This explains that the larger the image, the better the detection
performance. Furthermore, the same holds true when there are multiple traffic lights.

Figure 8. Example showing the difference in performance between 640 and 960 input image sizes.

As a result, extensive evaluations confirm that there is a trade-off between detection
performance and processing time. Therefore, since the minimum requirement for real-time
operation is typically 30 FPS, we decided to set the input size and backbone type to 960
and resnet-18, respectively, for the TLD module.
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3.4.2. Remark

In this paper, we focus on the investigation of the trade-off between detection per-
formance and processing time for the TLD module. In particular, the TLD module is
constructed following YOLOv5. The recent work in [15] also uses YOLOv5 to detect traffic
signs that are different from traffic lights. Although it is a study to find different objects,
it shows that YOLOv5 outperforms YOLOv3 and v4 when detecting objects in a driving
environment. Furthermore, through our extensive evaluation, we can confirm that the
average precision of the TLD module is almost 1 for input image sizes of 960, 1280, and
1920 for the ETRI dataset. Therefore, we believe it is appropriate to evaluate the trade-off
only for the TLD module we established.

3.5. Demonstration

Finally, we demonstrate our real-time traffic light recognition system through videos
recorded on various traffic roads in Gumi and Daegu, Korea, which are not the cities where
the dataset was collected. Based on evaluations, the TLD module utilizes an input image
size of 960 and a backbone network type of resnet-18, while the ‘FPN-RES-FIT’ network
trained with RZP is used for the TLSR module. This setting provides the best performance
while ensuring the minimum requirement of 30 FPS (if the input image size is 1280, the
FPS for the whole procedure are fewer than 30). Finally, the proposed system for this
demonstration runs on a Geforce RTX 4090, with 2.06 MB memory for the TLSR module
and 2.317 GB memory for the TLD module.

Figure 9 shows several resulting video frames, including the bounding boxes and states
of detected traffic lights, and also records the FPS of the two-stage system. Additionally,
the location of the traffic road was marked on Google Maps and displayed in the lower
left corner. Through the resulting images, it was confirmed that traffic lights of various
angles and sizes can be detected and that various types of traffic lights can be recognized in
an actual car driving environment. More video results can be found at the following link:
https://youtu.be/mQA8THT7OmE?si=-chjWc8h9_zc6Xuk, accessed on 30 January 2024.

Figure 9. Demonstration images using videos taken on various domestic traffic roads.

4. Discussion
4.1. Necessity of Real-Time Traffic Light Recognition System

We can think about how vehicles use big data from traffic lights. Two cases are
considered: (1) when big data are on remote servers and provided to vehicles through
wireless communication and (2) when big data are imported into vehicles.

https://youtu.be/mQA8THT7OmE?si=-chjWc8h9_zc6Xuk
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For the first situation, to recognize the status of the traffic lights in front of vehicles,
they need to be connected to a remote server using vehicle communication networks such
as VANET (Vehicular Ad hoc Network) or infrastructure networks such as LTE and 5G,
where networks are established using wireless communication. However, the performance
of wireless communication, such as throughput and delay, can vary. As the number of
vehicles using wireless communication increases, the throughput decreases and the delay
increases. Therefore, when wireless communication performance is poor, the vehicle has to
determine the status of the traffic lights ahead without information from the server.

For the second scenario, vehicles can identify the status of traffic lights by utilizing the
big data stored in them. However, they would not be able to handle changing situations,
such as the dynamic variation in traffic light flashing patterns. In Korea, to maintain smooth
traffic flow, traffic light flashing patterns can dynamically vary based on real-time traffic
conditions, such as congestion. This is because it is difficult to include all cases of traffic
flow that varies and changes differently in every situation, making real-time management
challenging with imported data alone.

As a result, there is a need to develop technology that can be implemented in vehicles
and that allows vehicles to independently determine the status of the traffic light ahead.

4.2. Evaluation under Different Weather Conditions

In the field of computer vision, performance can be affected by weather conditions,
including brightness, darkness, cloudiness, and rain. Figure 10 shows that the system
developed in this work is capable of detecting and recognizing the location and state of
traffic lights in various conditions, such as during sunset and nighttime, in rainy weather,
and under cloudy skies. The results present that the system can also operate in different
lighting conditions. Unfortunately, however, the training dataset used does not have labels
for weather conditions, and thus, it is difficult to determine the amount of data for each
weather condition. A brief check shows that there are relatively little data for the above
weather conditions. In future work, we plan to conduct research on various weather
conditions by collecting additional data and addressing imbalances between them.

(a) Brightness (b) Darkness (c) Cloudiness and rain

Figure 10. Resulting images for several weather conditions: (a) brightness, (b) darkness, and
(c) cloudiness and rain.

4.3. Why Should a YOLO-Style Network Be Used for the TLD Module?

In the field of object detection, there are two approaches: one-stage detectors and
two-stage detectors. Although two-stage detectors show better performance than one-stage
detectors, their slower processing speeds make them unsuitable for real-time systems.
Additionally, a new technique called vision transformer has recently been proposed for
image classification, which uses transformer architecture. However, it also has limitations,
such as high processing time and high memory requirements due to the large number of
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weight parameters and high computational complexity. Therefore, it is not yet suitable for
real-time object detection systems.

The YOLO neural network family is a representative one-stage detector, while the
Faster R-CNN [43] is a representative two-stage detector. Specifically, the YOLO neural
network family is known for its exceptional balance between accuracy and speed, allowing
for the rapid and dependable identification of objects in images. Therefore, for this work,
we utilize a YOLO-style network for real-time traffic light detection.

4.4. Why Is 30 FPS Considered the Real-Time Operation Criterion in This Work?

In Korea, the speed limit for vehicles is 50 km/h in urban areas and 30 km/h in
school zones. These speed limits translate to 13.8 m/s and 8.3 m/s, respectively. Based on
30 FPS, the elapsed time of 5 frames is 0.16 s, and the vehicle’s moving distances during
only 5 frames are 2.2 m and 1.3 m, respectively. If the FPS decreases, the moving distance
increases, which results in longer reaction times for vehicles. Longer reaction times could
increase the risk of accidents. Additionally, the basic specification of commercial cameras is
typically 30 FPS. Therefore, this work considers 30 FPS for real-time operation.

5. Conclusions and Future Works

In this paper, we revisit the real-time traffic light recognition system, which is a
two-stage system comprising TLD and TLSR modules. Then, we propose a lightweight
and effective network architecture for the TLSR module, introduce a data preprocessing
approach to improve TLSR performance, and at the same time, determine the suitable
system parameters of the TLD module through a comprehensive evaluation.

For the TLSR module, our objective is to construct an effective and lightweight network
that has little impact on the overall FPS of the two-stage system. We evaluated various
network structures and proposed a network design that uses skip connections, multiple
feature maps, and filter sizes customized to the size of the incoming feature maps. The
proposed network design shows an average HF score close to 1 while using a few weight
parameters. In addition, we introduce the ratio-preserving zero padding approach in traffic
light images detected by the TLD module, which improves the recognition performance of
the TLSR module.

In the TLD module, to achieve a balance between detection performance and FPS
for real-time operation, we conducted a comprehensive evaluation that varied system
parameters such as the input image’s size and the backbone network type. We compared
precision–recall curves, average precision, and FPS to determine a suitable pair that guar-
antees at least 30 FPS with adequate detection performance.

Finally, we demonstrate a system constructed using the proposed network structure
trained with determined system parameters and ratio-preserving zero padding. This
demonstration shows that our real-time traffic light detection system can reliably detect
traffic lights. Especially, when the vehicle is close to a traffic light, the system can continu-
ously detect the traffic light and accurately identify the status of the detected traffic signal,
proving the reliability of the system.

For future work, we plan to improve our real-time system to enable the continuous
detection of traffic lights over considerable distances. Our system is also good at finding
distant traffic lights but tends to detect them relatively discontinuously compared with
nearby traffic lights. Therefore, we will develop a TLD module that considers multiple
consecutive video frames as input data. Through this, the TLD module is expected to
focus on areas where traffic lights exist in multiple video frames, rather than operating
independently for each frame. Additionally, for the development of these TLD modules,
we plan to consider one of the recent object detection networks, such as YOLOv8.
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Abbreviations
The following abbreviations are used in this manuscript:

TLD Traffic light detection
TLSR Traffic light state recognition
RZP Ratio-preserving zero padding
FPS Frames per second
FLOPs Floating point operations

The following mathematical symbols are frequently used in this manuscript:

It The input frame received from a camera or video
(OH, OW) The height and width of original image
(h, w) The height and width of detected traffic light
(H, W) The height and width of image resized by RZP
(h′, w′) Resized height and width of detected traffic lights
Fi An output feature map from each main convolution layer
ri An output of subnetwork
b The number of bulbs in a traffic light
so A score vector of TLSR module
Bi The convolution layers in the backbone block of TLD module
F(b,i) The output feature map of a layer Bi
Ni The convolution layers in the neck block of TLD module
F(n,i) The output feature map of a layer Ni
DEDH,i An efficient decoupled head block
Ocls, ab (or Ocls, af) The output of a classifier head, which is the existence of traffic lights

Oreg, ab (or Oreg, af)
The output of a regressor head, which is the information of
bounding boxes of traffic lights
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