An Improved Dual-Gate Compact Model for Carbon Nanotube Field Effect Transistors with a Back-Gate Effect and Circuit Implementation
Abstract
:1. Introduction
2. Improved Dual-Gate CNTFET Model
2.1. Back-Gate Effect
2.2. Transmission Probability Optimization
current_sub11 = (T11 × fermi_s11 − T11_0 × fermi_d11) × Coeff_J11;
3. Experimental Results and Circuit Implementation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solomon, P.M. Contact Resistance to a one-dimensional quasi-ballistic nanotube/wire. IEEE Electron. Device Lett. 2011, 32, 246–247. [Google Scholar] [CrossRef]
- Knoch, J.; Appenzeller, J. Tunneiling phenomena in carbon nanotube field-effect transistor. Phys. Status Solidi A 2008, 205, 679–694. [Google Scholar] [CrossRef]
- Ossaimee, M.I.; Gamal, S.H.; Kirah, K.A.; Omar, O.A. Ballistic transport in Schottky barrier carbon nanotube FETs. Electron. Lett. 2008, 44, 336–337. [Google Scholar] [CrossRef]
- Kazmierski, T.J.; Zhou, D.; Al-Hashimi, B.M.; Ashburn, P. Numerically efficient modeling of CNT transistor with ballistic and nonballistic effect for circuit simulation. IEEE Trans. Nanotechnol. 2010, 9, 99–107. [Google Scholar] [CrossRef]
- Bejenari, I.; Schröter, M. Analytical drain current model of 1-D ballistic schottky-barrier transistor. IEEE Trans. Electron. Devices 2017, 64, 3904–3911. [Google Scholar] [CrossRef]
- Najari, M.; Fregonese, S.; Maneux, C.; Mnif, H.; Masmoudi, N.; Zimmer, T. Schottky barrier carbon nanotube transistor: Compact modeling, scaling study, and circuit design applications. IEEE Trans. Electron. Devices 2011, 58, 195–205. [Google Scholar] [CrossRef]
- Gelao, G.; Marani, R.; Diana, R.; Perri, A.G. A Semiempirical SPICE model for n-type conventional CNTFETs. IEEE Trans. Nanotechnol. 2010, 10, 506–512. [Google Scholar] [CrossRef]
- Wei, L.; Frank, D.J.; Chang, L.; Wong, H.S.P. Noniterative Compact Modeling for Intrinsic Carbon-Nanotube FETs: Quantum Capacitance and Ballistic Transport. IEEE Trans. Electron. Devices 2011, 58, 2456–2465. [Google Scholar] [CrossRef]
- Luo, J.; Wei, L.; Lee, C.S.; Franklin, A.D.; Guan, X.; Pop, E.; Antoniadis, D.A.; Wong, H.S.P. Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated with Experimental Data Down to 9-nm Gate Length. IEEE Trans. Electron. Devices 2013, 60, 1834–1843. [Google Scholar] [CrossRef]
- Guo, J.; Lundstrom, M.; Datta, S. Performance Projections for Ballistic Carbon Nanotube Field-Effect Transistors. Appl. Phys. Lett. 2002, 80, 3192–3194. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Mukhopadhyay, S.; Roy, K. A Circuit-Compatible Model of Ballistic Carbon Nanotube Field-Effect Transistors. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2004, 23, 1411–1420. [Google Scholar] [CrossRef]
- Dwyer, C.; Cheung, M.; Sorin, D. Semi-empirical SPICE models for carbon nanotube FET logic. In Proceedings of the 4th IEEE Conference on Nanotechnology, Munich, Germany, 16–19 August 2004. [Google Scholar]
- Natori, K.; Kimura, Y.; Shimizu, T. Characteristics of a Carbon Nanotube Field-Effect Transistor Analyzed as a Ballistic Nanowire Field-Effect Transistor. J. Appl. Phys. 2005, 97, 034306. [Google Scholar] [CrossRef]
- Lin, Y.; Appenzeller, J.; Knoch, J.; Avouris, P. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 2005, 4, 481–489. [Google Scholar] [CrossRef]
- Frégonèse, S.; Maneux, C.; Zimmer, T. A Compact Model for Dual-Gate One-Dimensional FET: Application to Carbon-Nanotube FETs. IEEE Trans. Electron. Devices 2011, 58, 206–215. [Google Scholar] [CrossRef]
- Deng, J.; Wong, H.-S.P. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region. IEEE Trans. Electron. Devices 2007, 54, 3186–3194. [Google Scholar] [CrossRef]
- Deng, J.; Wong, H.-S.P. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking. IEEE Trans. Electron. Devices 2007, 54, 3195–3205. [Google Scholar] [CrossRef]
- Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L.; Gagliano, S. Imperfections in Integrated Devices Allow the Emergence of Unexpected Strange Attractors in Electronic Circuits. IEEE Access 2021, 9, 29573–29583. [Google Scholar] [CrossRef]
- Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Wong, H.S.P.; Mitra, S. Scalable Carbon Nanotube Computational and Storage Circuits Immune to Metallic and Mispositioned Carbon Nanotubes. IEEE Trans. Nanotechnol. 2011, 10, 744–750. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Yang, T.; Zhang, Y. A Compact Physical Drain Current Model of Multitube Carbon Nanotube Field Effect Transistor Including Diameter Dispersion Effects. IEEE Trans. Electron. Devices 2021, 68, 6571–6579. [Google Scholar] [CrossRef]
- Rahman, A.; Guo, J.; Datta, S.; Lundstrom, M.S. Theory of ballistic nanotransistors. IEEE Trans. Electron. Devices 2003, 50, 1853–1864. [Google Scholar] [CrossRef]
- Michetti, P.; Iannaccone, G. Analytical model of one-dimensional carbon-based schottky-barrier transistors. IEEE Trans. Electron. Devices 2010, 57, 1616–1627. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, X.; Lee, T.S.; Ang, L.K.; See, G.H.; Lin, S.; Chin, Y.K.; Pey, K.L. A Compact Model for Undoped Silicon-Nanowire MOSFETs with Schottky-barrier source drain. IEEE Trans. Electron. Devices 2009, 56, 1100–1109. [Google Scholar] [CrossRef]
- BSIM Group. BSIMSOIv4.4 MOSFET MODEL Users’ Manual; University of California: Berkeley, CA, USA, 2010. [Google Scholar]
Parameter | Description |
---|---|
Lch | Channel length |
Lgeff | Mean free path in the channel region of intrinsic CNTFET with imperfect elastic scattering |
Lss | Source extended region length of CNTFET |
Ldd | Drain extended region length of CNTFET |
Efi | Fermi energy |
Kgate | Dielectric constant of high-K top-gate dielectric material |
Tox | Thickness of high-K top-gate dielectric material |
Csub | Coupling capacitor between channel and back gate (back-gate effect) |
Ccsd | Coupling capacitor between channel and source/drain region |
CoupleRatio | Percentage of Ccsd corresponding to the coupling capacitor between channel and drain |
Vfbn, Vfbp | Flat band voltage of n-CNFET and p-CNFET |
Pitch | Distance between centers of two adjacent CNTs in the device |
CNTPos | Position of carbon nanotubes under gate |
n1, n2 | Chirality of CNTFET |
tubes | Number of carbon nanotubes in device |
coeffvg0, coeffvg1, coeffvg2 | Fitting parameters |
Parameter | [11] | [12] | [14] | [15] | [16] | This Work |
---|---|---|---|---|---|---|
Technology (nm) | - | 20 | - | 200 | 32 | 90 |
Gate structure | single gate | single gate | dual gate | dual gate | dual gate | dual gate |
Simulation tool | Hspice | Hspice | Hspice | Hspice | Hspice | Hspice |
Method | polynomial fitting | semi- empirical | numerical analysis | numerical analysis | numerical analysis | numerical analysis |
Convergence | Normal | Normal | Normal | good | good | good |
Characteristics | ballistic transport, DIBL | conductance vs. gate voltage | drain leakage current, unipolar behavior | Schottky barrier, electrostatic modeling, tunneling | quantum confinement, scattering, screening effect | back-gate effect, transmission probability, tunneling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, Y.; Jiang, J.; Chen, C. An Improved Dual-Gate Compact Model for Carbon Nanotube Field Effect Transistors with a Back-Gate Effect and Circuit Implementation. Electronics 2024, 13, 620. https://doi.org/10.3390/electronics13030620
Chen Z, Zhang Y, Jiang J, Chen C. An Improved Dual-Gate Compact Model for Carbon Nanotube Field Effect Transistors with a Back-Gate Effect and Circuit Implementation. Electronics. 2024; 13(3):620. https://doi.org/10.3390/electronics13030620
Chicago/Turabian StyleChen, Zhifeng, Yuyan Zhang, Jianhua Jiang, and Chengying Chen. 2024. "An Improved Dual-Gate Compact Model for Carbon Nanotube Field Effect Transistors with a Back-Gate Effect and Circuit Implementation" Electronics 13, no. 3: 620. https://doi.org/10.3390/electronics13030620
APA StyleChen, Z., Zhang, Y., Jiang, J., & Chen, C. (2024). An Improved Dual-Gate Compact Model for Carbon Nanotube Field Effect Transistors with a Back-Gate Effect and Circuit Implementation. Electronics, 13(3), 620. https://doi.org/10.3390/electronics13030620