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Abstract: The thermal vacuum test (TVT) is an important verification process in the development of
spacecraft and load. There are often multiple temperature points on the device under test (DUT) that
require control. The interaction among multiple channels poses a challenge for temperature control
in the TVT. To solve this problem, a multi-channel Smith proportional–integral–derivative (PID)
controller based on a grouping neural network (Grouping-NN) is proposed. Firstly, the mathematical
derivation for a typical multi-channel temperature control model of the TVT is carried out. Then, the
multi-channel interaction system is identified using a Grouping-NN to predict the output temperature
of each channel by grouping the hidden layer neurons according to the number of channels. Finally,
two Grouping-NNs are utilized to update the Smith predictor, and the time-delay error is fed back to
the PID controller, which is used to optimize the control effect of the multi-channel interaction system
under high time delay. The proposal is compared with the traditional PID controller and Smith
predictor-based PID controller through simulation. The simulation results show that the proposed
method has better suppression of overshooting. In addition, the algorithm is verified by controlling
the temperature of six channels in a practical thermal vacuum test.

Keywords: thermal vacuum test; system identification; multi-channel temperature control; Smith
predictor; PID controller

1. Introduction

The thermal vacuum test, which provides an environment close to a vacuum and
simulates high temperature caused by solar irradiation as well as low temperature without
the sun [1], is an important procedure in the development of spacecraft and loads to test
their ultimate working performance [2–4]. The thermal vacuum chamber (TVC) is the
most important equipment of the TVT, and can provide an environment close to vacuum
by extracting air. During the TVT, the DUT, temperature sensors, and infrared heating
equipment are all placed in the chamber. By adjusting the output power of the heating
equipment in real time, the temperature of the measuring point on the DUT is stabilized
to the set value [5–7]. The nonlinear model predictive controller (NMPC) is established
in the TVT to control the shroud temperature and change the DUT temperature to the
set value [8]. In order to test the performance of the DUT at extreme temperature, the
temperature control requirements inside the chamber are strict, and the PID controller is
generally used in the TVT to achieve precise temperature control. In [9], a TVT based on
silicone oil cooling was constructed, and the design of an automatic temperature control
based on fuzzy PID control was carried out, and the Cohen–Coon method was used to
adjust the initial PID. In [10], an adaptive PID controller based on a radial basis function
(RBF) neural network was designed for a thermal vacuum test. The control strategy can
automatically adjust the neural network weights and the control parameters of the PID
controller online to reduce the system tracking overshoot.
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The proportional, integral, and differential coefficients of PID controllers need to be
tuned before control [11]. For some scenarios where the coefficients need to be adjusted
in real time, some adaptive control methods have been proposed, such as fuzzy PID
methods [12–14] and neural network-based PID methods [10,15]. In addition, in order to
reduce the impact of time delay, many Smith predictor-based methods are used to modify
PID controllers [16,17]. Due to the nonlinear heating response of infrared radiation heaters,
as well as the inconsistent heating transfer function at high and low temperatures [18], it
is extremely important to identify the transfer function of the system. The major system
identification methods include the step response method, least squares method, neural
network method, etc. In [19], Xu derived a Newtonian iterative algorithm that can be
used to identify the parameters of second-order systems from experimental data on step
response. In [20], the study uses three-layer feed-forward neural networks to estimate the
transfer function model, deriving the mathematical relationship between the ARMA and
ANN models.

These methods have been validated to have good accuracy on a single input/single
output (SISO) control system. However, in the TVT, larger DUTs are often tested, requiring
more heaters to control multiple temperature nodes on the DUT. For this multi-input/multi-
output (MIMO) control system, there is interaction among channels. Especially in multi-
channel temperature control applications, the channel that reaches the set temperature
earliest will continue to be heated up under the action of adjacent heaters, leading to a large
overshoot. In the TVT, if the local temperature of the DUT exceeded its limit temperature
significantly or for a long time, it may have irreversible effects on the performance of
the device.

Due to the complexity of MIMO control applications, different studies have proposed
various optimization strategies for respective systems. Hagiwara et al. modeled the input–
output characteristics as well as the disturbance attenuation characteristics for the MIMO
system, and optimized the PID controller to attenuate the unknown disturbances [21,22].
Falguni proposed an LQR-based PID controller for a 2-DOF MIMO system. The method
addresses the interaction of two cross-coupled channels by introducing state feedback of
the augmented uncertain system in the PID controller [23]. Ignacio presents a model-free
goal-based algorithm for MIMO PID self-tuning. The control disorder caused by frequent
regulation of multiple control channels is avoided by the deep reinforcement learning-based
adaptive structure. [24]. In [25], the article analyzes the model-free PID tuning methods for
the MIMO system and uses the simultaneous perturbation stochastic approximation (SPSA)
method in MIMO plants. The performance of several SPSA-based PID tuning methods
for MIMO systems is compared, and the effect of disturbances on MIMO PID controllers
is analyzed. Stephen et al. view MIMO PID controllers as an optimization problem of
non-convex quadratic matrix inequalities. By replacing non-convex matrix inequalities with
linear matrix inequality constraints, the calculation and iteration process are simplified,
achieving the coefficients tuning of MIMO PID controllers [26]. Wang proposed a parameter
identification method for MIMO systems, using an auxiliary method and a data filter to
identify the MIMO system with ARMA noise as interference [27].

In most of the MIMO controller applications, the interaction among channels remains
a problem that needs to be continuously optimized. For the multi-channel TVT, channel
interactions and time delay are the key points to be considered. We introduce a neural
network system identifier to predict the temperatures of the interacting channels. The
MIMO system identifier is applied to the controller with a Smith predictor, and a Grouping-
NN-based Smith PID controller is proposed. The main contributions of this paper are
as follows:

(1) Based on the first-order plus dead-time (FOPDT) transfer function model, a discrete
multi-channel mathematical model of the interaction system is established.

(2) A grouping neural network (Grouping-NN) is proposed to be used for system identi-
fication of the multi-channel interaction environment.
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(3) Combine two Grouping-NNs for updating the time-delay model and the model
without time delay of the Smith predictor to optimize the PID controller.

The remainder of the paper is organized as follows. Section 2 introduces the control
system components of the TVT and derives a mathematical model of the multi-channel
interactions under this system. Section 3 describes the proposed Grouping-NN method
and its combination with the Smith PID controller. System identification simulation and
temperature control simulation of multi-channel interactions are presented and discussed
in Section 4. Section 5 describes a practical multi-channel interaction experiment and
analyzes the controller’s performance. Finally, conclusions are given in Section 6.

2. Preliminary

This section introduces the components of a temperature control system in the TVT,
and models the transfer function of a multi-channel heating system.

2.1. The Structure of Temperature Control System

The TVT verifies the DUT at high and low temperatures in a near-vacuum environment.
The tests are conducted using a multi-layer TVC to provide a low-pressure environment
and a low-temperature background. A vacuum pump is used to extract air from the
chamber, and a cold plate is utilized to assist in further reducing the pressure. The middle
layer is between the inner and outer walls of the vacuum chamber, which is lined with
spiral pipes that can fill with liquid nitrogen to provide heat sinking for the chamber.

The temperature control system for the TVT consists of temperature sensors, sampling
equipment, heaters, programmable power supplies, and a host computer, and is shown in
Figure 1. The temperature sensors, heaters, and DUT are arranged in the TVC according to
the test requirements. Depending on the temperature range of the TVT, the temperature
sensor is generally selected as a T-type thermocouple, which is attached to the surface of the
DUT. These sensors are connected via a flange to temperature-sampling equipment outside
the TVC, which sends the temperature data to the host computer through the Ethernet.
According to the temperature data, the host computer calculates the output current of
heaters by running the control program. Meanwhile, the calculated current values are sent
to programmable power supplies to implement the temperature control.

Figure 1. The structure of the infrared radiation temperature control system in the TVT. The vacuum
chamber shown is a cross−sectional view.



Electronics 2024, 13, 697 4 of 21

The heater needs to be chosen from the infrared heating cage, infrared heating tube,
etc., according to the type of DUT. Since infrared heating tubes are more sensitive and
difficult to control, this experiment uses infrared heating tubes as an example to verify the
proposed algorithm. When multiple infrared heating tubes are operating at the same time,
the heat radiated from each heater affects the adjacent temperature control area, which is
called multi-channel interaction. This makes the temperature adjustment of each control
area complicated.

2.2. The Transfer Function of Multi-Channel Heating System

The infrared radiation temperature control system utilizes infrared radiation to heat
objects in space. Due to different absorption efficiencies from DUTs, infrared radiation
often exhibits nonlinear and time-delay characteristics in temperature control. The transfer
function of an infrared radiation temperature control system is a high-order model, which
brings a challenge to the design of temperature control systems. Therefore, in the TVT, the
model of the infrared radiation temperature control system is approximated to a FOPDT
model, whose transfer function is shown in Equation (1).

G(s) =
K

Ts + 1
e−τs (1)

where K is the magnification factor, T denotes the time constant, and τ indicates the time delay.
For a multi-channel interaction system, assuming that the same specification heater is

used for each channel, the transfer function can be approximated as Equation (2).

G(s) = β1
K

Ts + 1
e−τs + β2

K
Ts + 1

e−τs + · · ·

=
∑N

i=1 βiK
Ts + 1

e−τs (2)

where β is the influence coefficient of the different heaters on the current temperature sensor.

Gd(z) = G(s)|s= 2
ts

z−1
z+1

=
(1 + z−1)(K + ∑N

i=2 βiK)
(1 + 2T/ts) + (1 − 2T/ts)z−1 z−τ . (3)

Equation (3) utilizes the bilinear transformation method to discretize the transfer
function. The ts is the sample period.

In practice, the transfer function in the algorithm is mostly in the form of a differential
equation, which is easy to implement. The differential equation for the transfer function of
the multi-channel interaction system is shown in Equations (4)–(6).

Y(z)
U(z)

= Gd(z) (4)

(1 + 2T/ts)Y(z) + (1 − 2T/ts)z−1Y(z) = (U(z)z−τ + U(z)z−τ−1)(
N

∑
i=1

βiK) (5)

y(k) =
2T/ts − 1
1 + 2T/ts

y(k − 1) +
K ∑N

i=1[βiui(k − τ) + βiui(k − τ − 1)]
1 + 2T/ts

(6)

where N indicates the number of channels. In the thermal vacuum test, a channel is defined
as a heater with a sensor directly opposite to it. U(z) and Y(z) are the system input and
output, respectively, ui(k) denotes the input value of the i-th channel at moment k, and
y(k) indicates the output value of the current channel. In a multi-channel interaction
transfer function, the input is the current value of the heating device and the output is
the temperature.
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3. Proposed Method

In this section, a temperature control system is designed for a high time-delay char-
acteristic and multi-channel interaction environment. This control system incorporates a
conventional PID controller and a grouping neural network (Grouping-NN)-based multi-
channel identifier. The Grouping-NN is used to predict the temperature in the presence of
the interaction with multiple heating channels.

Based on the principle of the Smith predictor, two neural networks are used to predict
the time-delay error. The block diagram of the proposed control system is shown in Figure 2.
Each part of the system is described as follows.

Figure 2. Block diagram of the multi−channel Grouping−NN Smith PID controller. Multiple PIDs,
Grouping−NNs, and the Smith predictor are the main parts of this controller.

3.1. PID Controller

The PID controller is the basic and the most common module in a discrete control
system. The input of the PID controller is the deviation between the set value and the
measured value. Proportional operation assists in reducing errors. The integral operation
is a great way to compensate for steady-state errors, and the differential operation can
help suppress the rate of temperature change and oscillations. The expression of the PID
controller in each channel is shown in Equation (7), and the discrete PID is shown in
Equations (8) and (9).

ui(t) = KPei(t) + KI

∫ t

0
ei(t)dt + KD

dei(t)
dt

(7)

∆ui(k) = KP[ei(k)− ei(k − 1)] + KIei(k)ts + KD[ei(k)− 2ei(k − 1) + ei(k − 2)]/ts (8)

ui(k) = ui(k − 1) + ∆ui(k) (9)

where ui(t) is the controller output of the i-th channel, and ei(t) denotes the error between
the set value and the measured value of the i-th channel, and KP, KI , and KD are the
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coefficients of proportional, integral, and differential parts that affect the result of entire
control system.

3.2. Grouping Neural Network Identifier

Facing the thermal radiation interaction among multiple equipment, the SISO model
is not adapted to the practical temperature test, making the control effect of the traditional
Smith PID unable to meet the practical requirements. Therefore, a multi-channel Grouping-
NN identifier is proposed to respond to the heating system with multiple interaction
channels. The neural network architecture is shown in Figure 3.

Figure 3. Grouping neural network model for interaction multi−channel system identification. The
hidden layer neurons are divided according to the number of channels.

According to Equation (5), the temperature change of each channel is related to
u1(k − τ), u2(k − τ), . . . , uN(k − τ) and y(k − 1). Therefore, the temperature and current of
each channel are used as input terms to the Grouping-NN, and the output is the predicted
value of the temperature of all individual channels. The network’s output becomes a
function of past inputs and outputs, which is given in Equation (10):

ŷnet(k) = f (y1(k − 1), y2(k − 1), . . . , yN(k − 1),

u1(k − τ), u2(k − τ), . . . , uN(k − τ),

u1(k − τ − 1), . . . , uN(k − τ − 1)) (10)

where uN(k − τ) is the current of the infrared heating device corresponding to channel N
at the k − τ moment, and yN(k − 1) denotes the temperature value captured by channel N
at moment k − 1.
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The temperature at each measuring point is influenced by the nearby heaters, and the
temperatures at other measuring points have little impact on it. As a result, during the
neural network design process, the hidden layer neurons are categorized into N groups
according to the channel number. Each group of neurons is linked to all the heater inputs
but only to the measured input of this channel.

Due to the different connection, the weight matrix between the input layer and the
hidden layer is split into wy and wu. wy indicates the weight matrix between the tempera-
ture input and the hidden layer, and wu denotes the weight matrix between current inputs
and the hidden layer.

As the output of the Grouping-NN, ŷnet(k) = [ŷ1(k), ŷ2(k), . . . , ŷN(k)] indicates the
predicted temperature of each channel. The weight matrix between the hidden layer and
the output layer is denoted as v. wy and v need to perform Hadamard product operations
with the sparse matrices during initialization and weight update.

The network’s mathematical operations are shown in Equations (11) and (12).

nh(j) = fh

(
m

∑
i=1

wu(i, j)u(i) +
n

∑
a=1

wy(a, j)y(a)

)
(11)

ŷnet(p) = fo

(
q

∑
j=1

nh(j)v(j, p)

)
(12)

where nh(j) is the output of the j-th node in hidden layer, fh is the activation function of the
hidden nodes, ŷnet(p) is the output of the p-th node in the output layer, fo is the activation
function of the output nodes, and q denotes the length of hidden layer. In this network, fo
uses a linear activation function. The hidden layer activation function, fh, uses leakyReLU,
shown in Equation (13).

f (x) =
{

x , x ≥ 0
αx , x < 0

(13)

where α takes the value of 0.01.
The goal of the Grouping-NN is to find the optimal network weights to minimize the

error between predicted and actual values. The loss function is computed independently
for each channel, shown in Equation (14). The partial derivative of the loss function vector
for ŷnet(k) is shown in Equation (15).

loss =
1
2
(y(k)− ŷnet(k))2 (14)

err =
∂loss

∂ŷnet(k)
= −(y(k)− ŷnet(k)). (15)

The network can be trained using the gradient descent method. The loss function is
searched based on the negative gradient direction of the weight coefficients. The partial
derivative of the loss function relative to the weights is found, so that the weights can be
updated to obtain the global minimum of the error.

The gradient descent weight update method is shown in Equation (16).

wij(k + 1) = wij(k)− η
∂loss
∂wij

(16)

where η is the learning rate for the neural network training. According to the chain rule,
∂loss
∂wij

of layer 1 could be expressed as:

∂loss
∂wij

=
∂loss
∂ynet

∂ynet

∂nh

∂nh
∂wij

(17)
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∂nh
∂wij

= xin(i) f ′1(np(j)). (18)

Define δ as ∂loss
∂nh

:

δ =
∂loss
∂ynet

∂ynet

∂nh
= v · errT . (19)

Substituting Equations (17)–(19) into Equation (16), the weights of layer 1 can be
updated as:

wij(k + 1) = wij(k)− ηδ(j)xin(i) f ′(np(j)). (20)

The weights of layer 2 can be expressed as:

vjp(k + 1) = vjp(k)− ηerrTnh(j). (21)

The pseudocode of the Grouping-NN for multi-channel interaction system identifica-
tion is shown in Algorithm 1 (the vectors in the code are all row vectors).

Algorithm 1 Grouping-NN for Multi-Channel System Identification

1: Initialization: Grouping-NN weights wij and vjp;
2: Initialization: sparse matrix ws and vs;

Input: Control data vector: u(k − τ) = [u1(k − τ), u1(k − τ − 1), . . . , uN(k − τ), uN(k −
τ − 1)];

Input: Measurement vector: y = [y1(k), y2(k), . . . , yN(k)]
Output: Weights matrix wij and vjp;
Output: Estimated vector ŷnet;

3: while k ≤ Max_k do
4: Normalised network input: xin = [y(k − 1)/100, u(k − τ)/5, u(k − τ − 1)/5];
5: Layer 1 forward propagation: nin = xin · wij;
6: Using activation function on hidden layer: nh = f (nin) = leakyReLU(nin);
7: Layer 2 forward propagation with linear function: ŷnet = nh · vjp
8: Calculate the partial derivative of the loss function: err = −(y(k)− ŷnet(k))
9: Backward propagating the err: δ = err · vT

10: Update weights, the process needs to be multiplied by the sparse matrix ws and vs:
11: for range of j do
12: for range of p do
13: v(j, p) = v(j, p)− η · vs(j, p) · err · nh(j)
14: end for
15: end for
16: for range of i do
17: for rang of j do
18: w(i, j) = w(i, j)− η · ws(i, j) · δ · f ′(np(j)) · nh(i)
19: end for
20: end for
21: Buffering the data u(k − τ) and y(k)
22: k = k + 1;
23: end while

3.3. Grouping-NN-Based Smith Predictor

The Smith predictor is an effective method to solve the time-delay problem of the
control system. The transfer function used in the Smith predictor is divided into the time-
delay model Gm(s)e−τms and the system model without delay Gm(s). In the temperature
control system, the output of Gm(s)e−τms is compared with the measured temperature,
then added to the output of Gm(s), and the sum compensates the system input through a
feedback loop. The accuracy of the transfer function greatly affects the control effectiveness.
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In practice, it is particularly difficult to estimate the transfer function of a real system,
especially in an environment with interaction among multiple channels.

The Grouping-NN proposed in Section 3.2 can approximate the real multi-channel
transfer function after training. Therefore, two Grouping-NNs, NN1 and NN2, are utilized
to update the time-delay model and the system model without delay in the Smith predictor,
which is shown in Figure 4. Here, C(s) presents the transfer function of the PID controller,
and the heating system transfer function, G(s), is divided into Gp(s) and time delay
e−τ0s. Gm(s) and τm denote the transfer function and time delay in the Smith predictor,
respectively.

Figure 4. Block diagram of the Grouping−NN−based multi−channel Smith predictor.

For the time-delay model, NN1 consists of the temperature input, y(k − 1), and the
current input. The current inputs, u(k − τ), are values recorded by the buffer before the
time delay, τ. The output of NN1 is compared with the temperature measured value
and the differences are used for back propagation, which updates the weights during the
control process.

For the system model without time delay, NN2 consists of the temperature input,
y(k − 1), and the latest current input, u(k − 1). The output of NN2 is summed with the
feedback values of the time-delay model. The weights of NN2 are provided by NN1.

The time-delay model and system model without delay in the Smith predictor share a
common transfer function model, Gm(s). If there is a deviation in the model, the deviation
will be canceled out in two subtraction operations, so it is important to ensure that both
subtraction operations use the same model. The proposed algorithm also retains this
property, so that the same structure as well as the same weights are used in the computa-
tion of both Grouping-NNs. The NN2 network in the algorithm only performs forward
propagation, and the weights are provided by the NN1. The weights are updated after
both Grouping-NNs have been computed.

The pseudocode of the Grouping-NN-based Smith predictor is shown in Algorithm 2
(the vectors in the code are all row vectors).
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Algorithm 2 Grouping-NN-based Smith Predictor

1: Initialization: PID parameters Kp, Ki, Kd;
2: Initialization: buffer of measurement data y(k − 1) and control data u(k − τ)

Input: Measured vector y = [y1(k), y2(k), . . . , yN(k)];
Input: Reference vector rin = [r1(k), r2(k), . . . , rN(k)];
Output: Controller output vector u(k);

3: while k ≤ Max_k do
4: Using Algorithm 1 with input u(k − τ) and y(k − 1) with output NN1;
5: Using Algorithm 1 with input u(k − 1) and y(k − 1) with output NN2;
6: Updating neural network weights;
7: Calculate the predicted compensation: c(k) = γc(k − 1) + NN2 − NN1;
8: Calculate the input vector of PID: e = rin − y − c(k);
9: Calculate PID output using Equations (8) and (9);

10: Buffer PID outputs and measured values;
11: k = k + 1;
12: end while

4. Simulation

In this section, the proposed method is verified by system identification simulation. In
addition, the performance of the proposed method in temperature control is evaluated by
comparing it with traditional methods.

4.1. Preparation of Simulation

The simulation builds a 6-channel interaction heating model which includes six heaters
and six sensors, shown in Figure 5. The heaters and sensors are all arranged in a 2 × 3
arrangement. Each sensor forms a channel with a heater directly opposite it.

Figure 5. Layout diagram of six channels for temperature control simulation.

When modeling, each sensor is assumed to be affected by adjacent heating units.
The temperature calculations in the simulation are in the form of discrete difference equa-
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tions. The temperature and current parameters of the transfer function in Equation (5) are
expressed in matrix form as (22)–(24).

yk = [0.9823 0.9833 0.9835 0.9823 0.9841 0.9813]T (22)

uk =



0.1513 0.0505 0 0.0417 0 0
0.0555 0.1463 0.0561 0 0.0416 0

0 0.0455 0.1663 0 0 0.036
0.0462 0 0 0.1513 0.0551 0

0 0.0567 0 0.0417 0.1625 0.0561
0 0 0.0621 0 0.0417 0.1513

 (23)

ukτ =



0.1157 0.03 0 0.0312 0 0
0.0420 0.1383 0.0365 0 0.0275 0

0 0.0318 0.1197 0 0 0.0277
0.0323 0 0 0.1089 0.0424 0

0 0.0396 0 0.031 0.1251 0.0432
0 0 0.0447 0 0.0321 0.1165

. (24)

Here, yk is the coefficient vector of y(k − 1) in the transfer function, and uk and ukτ denote
the coefficients matrix of u(k − τ) and u(k − τ − 1) in the transfer function.

The temperature model in the simulation is calculated by the matrix product, and the
coefficient matrices are combined, as shown in Equation (25). The input matrix is shown in
Equation (26).

Kcom =


yk1 uk1τ uk1τ−1
yk2 uk2τ uk2τ−1

...
...

...
yk6 uk6τ uk6τ−1

 (25)

Xcom =
[
y uτ uτ−1

]
. (26)

The output of the transfer function is calculated in Equation (27).

y(k) = KcomXT
com + W

W ∼ N (0, 0.02) (27)

where y(k) is the temperature vector containing the temperature output data from channel
1 to channel 6. The input matrix, Xcom, includes the temperature output at time k − 1 and
the current output with time delay. W denotes the Gaussian noise, where the mean is 0 and
the variance is 0.02. The temperature model is calculated from the step response of each
single heating device with different temperature sensors, and the multi-channel interaction
transfer function is the accumulation of multiple FOPDT models.

To simulate the real situation, a saturator is added to the controller outputs, and is limited
to [0,5]. In addition, the simulation programs are coded by Matlab R2020a in Windows 10,
and the simulation is run on a computer with AMD R7 5800H and 16 GB of RAM.

4.2. Simulation Result of Identifier

In this section, the Grouping-NN for multi-channel system identification is verified.
Firstly, the generated random current is fed into the transfer function and the output
temperature is calculated. Then, the current value before the time delay of 20 s and
the temperature value at the previous moment are used as inputs to the Grouping-NN.
Finally, the output of the network is compared with the calculated output of the transfer
function. The results are shown in Figure 6, which presents the Grouping-NN’s training
and identification process for all channels. The neural network iterates per second, and the
horizontal axis in the graph indicates the time of the training process, and the vertical axis
is the temperature of each channel. In the first 400 s of the simulation, the Grouping-NN is
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in the process of convergence and the estimation accuracy is insufficient. As time passes,
the output of the Grouping-NN gradually approaches the output of the system model.
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Figure 6. Grouping−NN temperature system identification results in the simulation.

Further data statistics are performed to verify the accuracy of the proposed identifica-
tion method. In the simulation, 100 rounds of system identification training are performed,
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and each round takes 1000 times of data after network convergence for statistics. The root
mean square error (RMSE) is calculated by Equation (28).

RMSE =

√√√√ 1
N

t

∑
k=1

(y(k)− ŷnet(k))2 (28)

where y(k)denotes the temperature value, ŷnet(k) indicates the estimated output of the Grouping-
NN, N denotes the number of samples, and t is the time of network training. Figure 7 illustrates
the temperature RMSE curves in 100 epochs for the trained Grouping-NN. Each epoch refers to
the process in which the entire training dataset is trained by a neural network. This simulation
result is used to verify the stability of the proposed Grouping-NN during the training process.
As can be seen from the figure, the RMSE of the more-affected channels 2 and 5 is slightly larger
than that of the others. All RMSEs do not exceed 0.075 ◦C, which confirms the effectiveness of
the Grouping-NN in system identification.
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Figure 7. The temperature RMSE of the Grouping−NN identifier in the simulation.

The performance metrics of the trained Grouping-NN for system identification are
shown in Table 1. Avg denotes the mean value of RMSE for each channel.

Table 1. The performance of multi-channel Grouping-NN identification method.

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Avg (◦C) 0.037443 0.046753 0.036861 0.035849 0.040287 0.035392

4.3. Simulation Result of Controller

In this section, the trained Grouping-NN is combined with the Smith PID controller to
perform temperature control tests. Six PID controllers are used to control six interaction
channels, respectively. These controllers have the same coefficients of Kp = 0.1, Ki = 0.0013,
and Kd = 0.2. The set values of the temperature control are shown in Table 2, where set
indicates the target temperature and t is the time of the simulation. Under this setting, the
temperature profile of each channel is plotted to compare the temperature results between
the conventional PID, Smith PID, and Grouping-NN-PID, which is shown in Figure 8.
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Figure 8. Multi−channel temperature simulation results with different algorithms.

Table 2. The set value of temperature control.

Condition 1 Condition 2 Condition 3 Condition 4

Time (s) 0–1000 1000–2000 2000–3000 3000–5000
Set Value (◦C) set = 0.01t + 20 set = 40 set = 25 set = 5sin(0.02t + π

2 ) + 30

Overshoot is introduced to compare the performance of these controllers. Overshoot
indicates the deviation between the maximum amplitude and the set value at that moment.

From the simulation curves, it can be seen that the overshoots of channel 2 and
channel 5 are significantly larger than the other channels. According to positional rela-
tionships among these channels, channel 2 and channel 5 are indeed affected by other
channels mostly.

The performances of each channel are given in Table 3. In condition 1, the different
methods produce higher overshoots in channels 2 and 5 than in other channels. The PID
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controller has the largest overshoot of 8.112 ◦C, and the Smith PID controller has an over-
shoot of 3.144 ◦C. The maximum overshoot of the proposed method is only 1.997 ◦C, which
is the minimum overshoot among these methods. The proposed method also outperforms
the other methods in the cooling process in condition 3. These results demonstrate the
control capability of the proposed method in a multi-channel interaction system.

Table 3. The overshoot of interaction multi-channel control simulation (◦C).

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

PID
Condition 1 1.432 7.412 1.162 1.092 8.112 2.317
Condition 2 0.837 3.817 1.243 1.118 4.206 1.212
Condition 3 1.6039 3.2811 1.93021 1.39131 2.0214 1.62766

Smith PID
Condition 1 0.423 2.743 1.025 0.382 3.144 0.202
Condition 2 0.111 1.403 0.456 0.119 1.638 0.048
Condition 3 0.42951 2.6375 0.94365 0.66076 3.08603 0.5192

Grouping-NN PID
Condition 1 0 1.997 0 0 1.613 0
Condition 2 0 1.415 0.09 0 1.715 0
Condition 3 0.05184 2.42311 0.53559 0.28183 2.41493 0.20145

The PID controller acts on the object by outputting the current. The simulation records
the current output of each controller, as shown in Figure 9, which is meant to provide a trend
of the controller changes and to analyze the cause of the overshoot difference in Figure 8.
From the current curves, it can be seen that the current changes of the PID and Smith PID
controllers are more direct. Once the target temperature changes drastically, the output of
the PID and Smith PID increases rapidly, which leads to a large overshoot. The proposed
algorithm can adapt well through the Grouping-NN Smith predictor. It can be seen that the
current callback time of the proposed method is earlier than the conventional controllers.

Even though the simulation transfer function is obtained based on the step response
data of the actual TVT, it is likely that the actual system parameters are also different
from the design parameters. Therefore, the control response of the proposed method is
also verified in the simulation when the system parameter, τ, is changed. This simula-
tion result is shown in Figure 10, and verifies the adaptability of the controller under
uncertain parameters.
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Figure 9. Current output curves of each controller in the simulation.
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Figure 10. Temperature simulation results with different time delays.

The simulation uses the same controller as before, and the red curve in the figure is the
same as the temperature profile of the Grouping-NN PID in Figure 8. As can be seen from the
figure, the system overshoots are similar for the time delay τ <= 20, and the overshoot and
settling time are significantly large in the results for τ > 20. The proposed controller has good
adaptability for systems with a time delay that is less than the design requirements.

5. Experiment

In this section, the real thermal vacuum test is carried on for algorithm verification.
The experiment settings and results are as follows.
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5.1. Experiment Setting

A temperature control system is set up in a TVC to validate the proposed algorithm.
As the DUT, a 2.5 m × 1 m test panel is placed in the chamber. Six T-type thermocouples
are attached to the surface of the DUT in a two-row and three-column layout. An array of
infrared heating tubes are placed opposite to the DUT, and six of them directly opposite to
the sensors are chosen as heaters for this experiment. The experimental scenario is shown
in Figure 11.

Figure 11. Experimental scenario: (a) vacuum chamber, and (b) infrared heating system.

The infrared heating tubes are controlled by a programmable power supply outside the
chamber, which is the N5750A, produced by Keysight Technologies, Inc. Thermocouples
are connected to L4421A and 34465A for up to 40 channels of temperature acquisition. All
devices above are connected to the host computer via an Ethernet switch. Based on the
measured temperature, the proposed algorithm sends the calculated current values to the
power supply for output. The experimental program is designed in C# language, running
on a computer with a CPU of R7-5800H and a memory of 16 GB.

After the equipment is connected correctly, the chamber is closed and vacuumed.
When the air pressure is less than 10 × 10−4 Pa, liquid nitrogen is injected into the middle
layer, which is arranged in multiple spiral pipes to provide heat sink for the test. Meanwhile,
the temperature control program is started to stabilize the temperature at 20 ◦C and prepare
for the test.

5.2. Experiment Results and Analysis

The program is started to validate the proposed algorithm when the DUT temperature
stabilizes at 20 ◦C, and the moment is marked as 0 s. In condition 1, the temperature is set
to 40 ◦C and stabilized for a period of time to 1000 s. Then, in condition 2, the temperature
is set to 60 ◦C, stabilized, and maintained to 2000 s. In condition 3, the temperature is set to
30 ◦C to the end of the test. The acquisition interval and control interval of this experiment
are set at 1 s.

Figure 12 shows the curves of temperature changing with time for the trained Grouping-
NN PID algorithm. In order to provide a better comparison between the simulation and
experimental results, the simulation curves with the same set value are also added to the
figure. According to the detailed zoomed-in graph, it can be seen that, in the actual TVT,
the more-affected channels 2 and 5 have a lower time delay and a faster temperature rising
speed compared with the simulation results. Although there is a certain deviation between
the experimental curve and the simulation curve, the temperature control trend is similar,
proving the effectiveness of the simulation. The corresponding performance characteristics
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of the TVT result are shown in Tables 4–7. The control time, settling time, and steady-state
error are introduced to show the performance of the proposed controller. The control time
indicates the time taken from 10% to 90% of the steady-state value. The settling time means
the time taken from the start value to the maximum error under 0.2 ◦C. The steady-state
error is the RMSE value after settlement.
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Figure 12. The comparison of simulation and experimental results.
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Table 4. The overshoot of the experiments.

Overshoot (◦C)
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Condition 1 0.302 1.276 0.443 0.199 2.059 0.148
Condition 2 0.579 2.010 0.912 0.476 2.422 0.295
Condition 3 0.736 3.339 1.459 0.789 4.095 0.338

Table 5. The steady-state error of the experiments.

Steady-State Error (◦C)
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Condition 1 0.1019 0.1261 0.1271 0.0922 0.1459 0.1069
Condition 2 0.0718 0.1231 0.0888 0.1037 0.0852 0.0854
Condition 3 0.0973 0.1079 0.0875 0.1102 0.0670 0.0897

Table 6. The settling time of the experiments.

Settling Time (s)
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Condition 1 240 298 311 204 369 232
Condition 2 312 293 323 248 356 295
Condition 3 356 291 354 266 402 228

Table 7. The rise time of the experiments.

Rise Time (s)
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

Condition 1 119 91 105 121 84 123
Condition 2 106 80 100 105 70 109
Condition 3 106 80 99 103 81 105

Channel 2 and channel 5 have the largest overshoot, with a maximum overshoot
of 2.42 ◦C during the heating process. For other channels, the overshoots are mostly
below 0.5 ◦C. The settling time of each channel is within 370 s, and the channel with less
disturbance stabilizes faster than the others. For the control time, channel 2 and channel 5
are the fastest, with just 70–91 s. The steady-state error is mainly affected by the external
environment, and the average error of each channel is about 0.1 ◦C.

After verification, the proposed method can work effectively in practical control. The
overshoot is small and the temperature does not oscillate when reaching the set value. All
performances satisfy the requirements of the thermal vacuum test.

6. Conclusions

In this paper, a Grouping-NN interaction identification-based Smith PID controller
is proposed. By grouping the neurons in the hidden layer, the irrelevant connections
of the network are reduced and the convergence speed is increased. Two Grouping-
NNs are used to update Gm(s)e−τms and Gm(s) of the Smith predictor, improving the
accuracy of the Smith PID controller. After simulation verification, the Grouping-NN can
estimate the system model in real time and accurately. By comparing with the PID and
Smith PID, the proposed method has less overshoot and a shorter settling time. In the
practical experiment, the overshoot can meet the requirements of the TVT. In summary,
the proposed method can estimate the model of each channel in real time under a multi-
channel interaction scenario. The hidden layer neurons grouping method can effectively
reduce the disturbance of the temperature input. The Grouping-NN can update the transfer
function in the Smith predictor to improve the multi-channel control effect. This method
can identify the temperature relationship among multiple channels, which is the basis
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of multi-channel uniform control. The Grouping-NN not only serves as a key for multi-
channel simulation modeling in subsequent studies, but also provides more options for
optimizing the multi-channel controller. Subsequently, we will optimize the temperature
uniformity in a multi-channel thermal vacuum test, hoping to minimize the temperature
gap between the measurement points of the DUT.

Author Contributions: Conceptualization, F.L.; methodology, F.L. and L.Y.; software, L.Y. and A.Y.;
validation, F.L., L.Y. and A.Y.; formal analysis, Z.Z.; investigation, F.L.; resources, F.L.; data curation,
L.Y. and B.S.; writing—original draft preparation, F.L. and L.Y.; writing—review and editing, F.L.,
Z.Z. and B.S.; visualization, L.Y. and A.Y.; supervision, F.L., Z.Z. and B.S.; project administration, F.L.,
Z.Z. and B.S.; funding acquisition, F.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Beijing Natural Science Foundation, grant number 3164043.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, J.; Xie, J.H.; Wang, Y.R. The application and the development trend of the measurement and control system in the

spacecraft vacuum thermal test. Spacecr. Environ. Eng. 2012, 29, 263–267.
2. Almeida, J.S.; Santos, M.B.; Panissi, D.L.; Garcia, E.C. Effectiveness of low-cost thermal vacuum tests of a micro-satellite. Acta

Astronaut. 2006, 59, 483–489. [CrossRef]
3. Salleh, N.; Daud, S.M.; Sabri, S.F.; Ahmad@Salleh, N.A.; Adam, M.Z. Enhancing Temperature Control Method of Thermal

Vacuum Chamber for Satellite Testing Using Optimization Algorithm: A Review. J. Teknol. 2016, 78, 5–7. [CrossRef]
4. Elshaer, A.M.; Soliman, A.; Kassab, M.; Hawwash, A. Experimental and numerical investigations of an open-cell copper foam

(OCCF)/phase change material (PCM) composite-based module for satellite avionics thermal management in a thermal vacuum
chamber (TVC). J. Energy Storag. 2024, 75, 109572. [CrossRef]

5. Werkhausen, A.D.; Hey, H. Temperature transition optimization in cryogenic systems: Application to liquid nitrogen expenditure
reduction in a thermal vacuum chamber case study. Appl. Therm. Eng. 2024, 236, 121863. [CrossRef]

6. Jang, B.; Lee, W.; Lee, J.J.; Jin, H. Artificial neural network-based temperature prediction of a lunar orbiter in thermal vacuum test:
Data-driven reduced-order models. Aerosp. Sci. Technol. 2024, 145, 108867. [CrossRef]

7. Zhang, X.; Wu, L.; Liu, H.; Feng, J.; Xu, M.; Cheng, R. Research and Verification of Multi-Satellite Thermal Vacuum Test Method.
In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence
(ICSMD), Xi’an, China, 15–17 October 2020; pp. 347–351. [CrossRef]

8. Park, S.; Kim, S. Nonlinear Model Predictive Control of Thermal Vacuum Chamber Temperature. Int. J. Aeronaut. Space Sci. 2023,
25, 213–228. [CrossRef]

9. Guo, J.-C.; Li, F.-Y.; Chen, A.-R.; Zhang, L.-H.; Liu, S.-W. Automatic Temperature Control Design for Thermal Vacuum Tests Based
on Fuzzy PID Control. In Proceedings of the 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety
Engineering (QR2MSE), Zhangjiajie, China, 6–9 August 2019; pp. 186–194.

10. Zhan, H.; Sun, Y.; Liu, D.; Liu, H. Adaptive neural network PID controller design for temperature control in vacuum thermal tests.
In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 458–463.
[CrossRef]

11. Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 1942, 64, 759–765. [CrossRef]
12. Liu, Z.; Liu, Z.; Liu, J.; Wang, N. Thermal management with fast temperature convergence based on optimized fuzzy PID

algorithm for electric vehicle battery. Appl. Energy 2023, 352, 121936. [CrossRef]
13. Han, S.Y.; Dong, J.F.; Zhou, J.; Chen, Y.H. Adaptive Fuzzy PID Control Strategy for Vehicle Active Suspension Based on Road

Evaluation. Electronics 2022, 11, 921. [CrossRef]
14. Abdelwanis, M.I.; El-Sousy, F.F.M.; Ali, M.M. A Fuzzy-Based Proportional Integral Derivative with Space-Vector Control and

Direct Thrust Control for a Linear Induction Motor. Electronics 2023, 12, 4955. [CrossRef]
15. Ding, Y.; Ren, X.; Zhang, X.; Liu, X.; Wang, X. Multi-Phase Focused PID Adaptive Tuning with Reinforcement Learning. Electronics

2023, 12, 3925. [CrossRef]
16. Huang, H.; Zhang, S.; Yang, Z.; Tian, Y.; Zhao, X.; Yuan, Z.; Hao, S.; Leng, J.; Wei, Y. Modified Smith fuzzy PID temperature

control in an oil-replenishing device for deep-sea hydraulic system. Ocean. Eng. 2018, 149, 14–22. [CrossRef]
17. Feliu-Batlle, V.; Rivas-Perez, R. Control of the temperature in a petroleum refinery heating furnace based on a robust modified

Smith predictor. ISA Trans. 2021, 112, 251–270. [CrossRef] [PubMed]
18. Pan, Y.; Xie, J.; Zhang, C.; Zhu, X.; Zhao, P. High efficiency far-infrared barrel heating control with excess heat prediction based

on generalized predictive control in injection molding. Int. J. Heat Mass Transf. 2024, 218, 124756. [CrossRef]

http://doi.org/10.1016/j.actaastro.2006.03.003
http://dx.doi.org/10.11113/jt.v78.8688
http://dx.doi.org/10.1016/j.est.2023.109572
http://dx.doi.org/10.1016/j.applthermaleng.2023.121863
http://dx.doi.org/10.1016/j.ast.2023.108867
http://dx.doi.org/10.1109/ICSMD50554.2020.9261708
http://dx.doi.org/10.1007/s42405-023-00639-8
http://dx.doi.org/10.1109/CCDC.2016.7531028
http://dx.doi.org/10.1115/1.4019264
http://dx.doi.org/10.1016/j.apenergy.2023.121936
http://dx.doi.org/10.3390/electronics11060921
http://dx.doi.org/10.3390/electronics12244955
http://dx.doi.org/10.3390/electronics12183925
http://dx.doi.org/10.1016/j.oceaneng.2017.11.052
http://dx.doi.org/10.1016/j.isatra.2020.12.006
http://www.ncbi.nlm.nih.gov/pubmed/33308861
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124756


Electronics 2024, 13, 697 21 of 21

19. Xu, L.; Chen, L.; Xiong, W. Parameter estimation and controller design for dynamic systems from the step responses based on the
Newton iteration. Nonlinear Dyn. 2015, 79, 2155–2163. [CrossRef]

20. Tutunji, T.A. Parametric system identification using neural networks. Appl. Soft Comput. 2016, 47, 251–261. [CrossRef]
21. Hagiwara, T.; Yamada, K. A design method of modified PID controllers for multiple-input/multiple-output plants. IFAC Proc.

Vol. 2008, 41, 5825–5830. [CrossRef]
22. Hagiwara, T.; Yamada, K.; Ando, Y.; Murakami, I.; Aoyama, S.; Matsuura, S. A design method for modified PID control systems

for multiple-input/multiple-output plants to attenuate unknown disturbances. In Proceedings of the 2010 World Automation
Congress, Kobe, Japan, 28–30 May 2010; pp. 1–6.

23. Gopmandal, F.; Ghosh, A. LQR-based MIMO PID control of a 2-DOF helicopter system with uncertain cross-coupled gain.
IFAC-PapersOnLine 2022, 55, 183–188. [CrossRef]

24. Carlucho, I.; De Paula, M.; Acosta, G.G. An adaptive deep reinforcement learning approach for MIMO PID control of mobile
robots. ISA Trans. 2020, 102, 280–294. [CrossRef]

25. Ahmad, M.A.; Azuma, S.-I.; Sugie, T. Performance analysis of model-free PID tuning of MIMO systems based on simultaneous
perturbation stochastic approximation. Expert Syst. Appl. 2014, 41, 6361–6370. [CrossRef]

26. Boyd, S.; Hast, M.; Strm, K.J. MIMO PID tuning via iterated LMI restriction. Int. J. Robust Nonlinear Control. 2016, 26, 1718–1731.
[CrossRef]

27. Wang, Y.; Ding, F. Novel data filtering based parameter identification for multiple-input multiple-output systems using the
auxiliary model. Automatica 2016, 71, 308–313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11071-014-1801-7
http://dx.doi.org/10.1016/j.asoc.2016.05.012
http://dx.doi.org/10.3182/20080706-5-KR-1001.00982
http://dx.doi.org/10.1016/j.ifacol.2023.03.031
http://dx.doi.org/10.1016/j.isatra.2020.02.017
http://dx.doi.org/10.1016/j.eswa.2014.03.055
http://dx.doi.org/10.1002/rnc.3376
http://dx.doi.org/10.1016/j.automatica.2016.05.024

	Introduction
	Preliminary
	The Structure of Temperature Control System
	The Transfer Function of Multi-Channel Heating System

	Proposed Method
	PID Controller
	Grouping Neural Network Identifier
	Grouping-NN-Based Smith Predictor

	Simulation
	Preparation of Simulation
	Simulation Result of Identifier
	Simulation Result of Controller

	Experiment
	Experiment Setting
	Experiment Results and Analysis

	Conclusions
	References

