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Abstract: In environmental monitoring systems based on the Internet of Things (IoT), sensor nodes
(SNs) typically send data to the server via a wireless gateway (GW) at regular intervals. However,
when SNs are located far from the GW, substantial energy is expended in transmitting data. This
paper introduces a novel unmanned aerial vehicle (UAV)-based environmental monitoring system.
In the proposed system, the UAV conducts patrols in the designated area, and SNs periodically
transmit the collected data to the GW or the UAV. This transmission decision is made while taking
into account the respective distance between both the GW and the UAV. To ensure a high-quality
environmental map, characterized by a consistent collection of a satisfactory amount of up-to-date
data while preventing energy depletion in the SNs and the UAV, the UAV periodically decides on
three types of UAV operations. These decisions involve deciding where to move, deciding whether
to relay or aggregate the data from the SNs, and deciding whether to transfer energy to the SNs.
For the optimal decisions, we introduce an algorithm, called DeepUAV, using deep reinforcement
learning (DRL) to make decisions in UAV operations. In DeepUAV, the controller continually learns
online and enhances the UAV’s decisions through trial and error. The evaluation results indicate that
DeepUAV successfully gathers a substantial amount of the current data consistently while mitigating
the risk of energy depletion in SNs and the UAV.

Keywords: Internet of Things (IoT); unmanned aerial vehicle (UAV); deep reinforcement learning (DRL)

1. Introduction

In the last few years, the Internet of Things (IoT) has been rapidly growing across the
world, which enables users to experience various environmental monitoring services [1]. In
these services, the monitoring server periodically updates its service (e.g., a traffic and air
quality monitoring map) by analyzing the received fresh data (e.g., the air quality and traffic
intensity on each location) from sensor nodes (SNs) during the service update cycle [1–3].
To provide high-quality environmental monitoring services, fresh data need to be collected
steadily from as many SNs as possible [1,4]. Nonetheless, gathering consistent data from
numerous SNs is challenging because of their limited battery capacity. To address this is-
sue, various systems have incorporated intermediate nodes capable of relaying data and/or
transmitting RF energy [5,6]. However, the efficiency of incorporating intermediate nodes
can be not enough due to numerous obstacles and significant propagation loss. Deploying
intermediate nodes in an ultra-dense manner can yield substantial benefits, such as energy
savings. However, this approach comes with a notable drawback as it significantly escalates
the deployment costs. To mitigate this problem, a number of works (e.g., directional an-
tenna transmission [7], scheduling [8,9], and energy waveform optimization [10,11]) have
been investigated in the literature. One of the most promising solutions is introducing
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unmanned aerial vehicles (UAVs) [12–21] as intermediate nodes to collect data and/or
transfer energy, because UAVs can achieve flexibly shorter distance and line-of-sight (LoS)
links thanks to their mobility. These solutions fall into two main categories: (1) UAV-based
data collection [12–16]; and (2) UAV-based wireless power transfer [17–21]. However, as
these studies did not jointly optimize policies for both data collection and wireless power
transfer via a UAV, achieving high service quality becomes challenging.

To address this issue and achieve high service quality, we introduce a UAV-based
environmental monitoring system designed to optimize UAV operations for data collection,
wireless energy transfer, and trajectory. To accomplish this objective, UAV navigates the
specified region, and SNs intermittently send their collected data to the gateway (GW)
or UAV by taking into account the respective distances to both the GW and UAV. To
optimize the service quality of the environmental map (to ensure sufficient fresh data
without depleting the energy of the SNs), the UAV periodically makes three types of
decisions: (1) determining its movement, (2) deciding whether to relay or aggregate data
from SNs, and (3) determining whether to transfer energy to SNs. To achieve these optimal
decisions, we introduce a deep reinforcement learning (DRL)-based UAV operation decision
algorithm named DeepUAV. Due to the huge scale of the decision space, it is difficult to
apply the conventional optimization techniques to our problem. Thus, we introduce the
reinforcement learning-based approach for deciding the operation of the UAV. In DeepUAV,
the controller commands the optimal decisions of the UAV (i.e., trajectory, data relay, and
wireless power transfer). These decisions are made by taking into account the transmission
distance between the UAV and GW, the freshness of the aggregated data in the UAV, and
the energy levels of the UAV and SNs. It is important to highlight that the controller
undergoes continuous online learning, refining the three kinds of decisions through a
process of trial and error. Specifically, the information derived from state observation and
learning experiences are integrated into a nonlinear function approximator (i.e., a neural
network). This neural network undergoes iterative training to provide the controller with
near-optimal decisions corresponding to each state. To evaluate and compare the service
quality of DeepUAV with that of the related works, we perform an event-driven simulation
in an environment where the general crowdsensing map application is requested. From
the evaluation results, we demonstrate that DeepUAV can increase the service quality
by up to 44% compared to the trajectory and wireless power transfer optimal scheme
because DeepUAV simultaneously optimizes three types of UAV operations based on the
given environment.

The main contribution of this paper is three-fold: (1) The joint optimization of the
trajectory, data relay, and wireless power transfer of the UAV is conducted and thus
a sufficient number of fresh data can be collected, leading to the high service quality
of the environmental monitoring systems. The previous works focused on optimizing
individual UAV operations, such as the trajectory, data relay, or wireless power transfer
operations. (2) Because DRL can be exploited in the high-dimensional decision-making
problems, DeepUAV can be implemented in practical systems. (3) Extensive evaluation
results are presented and scrutinized across diverse environments, offering insights for the
development of systems involving UAV-based data collection and wireless power transfer.

The remainder of this paper is structured as follows: Section 2 provides a summary
of the related works, and Section 3 presents the system model. Section 4 details the
development of DeepUAV. Then, the evaluation results are given in Section 5, followed by
the concluding remarks in Section 6.

2. Related Works

To improve the service quality in an environmental monitoring system, a number
of works to exploit a UAV have been reported in the literature [12–21], which can be
categorized into (1) UAV-based data collection [12–16] and (2) UAV-based wireless power
transfer [17–21].
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Dai et al. [12] presented a centralized solution based on DRL, focusing on regulating
the UAV trajectory and scheduling SNs for data collection. The primary goal is to reduce
UAV energy usage while maintaining data freshness. Li et al. [14] proposed a scheme
known as the DQN-based Flight Resource Allocation Scheme (DQN-FRAS) to minimize
network data loss by determining the UAV data trajectory and data collection schedule.
Sun et al. [15] presented an Age of Information (AoI)- and energy-aware data collection
scheme tailored for UAV-assisted IoT networks, focusing on minimizing the weighted
sum of the expected average AoI and UAV propulsion energy. Liu et al. [13] introduced
a distributed control framework for maximizing energy efficiency, the data collection
ratio, geographic fairness, and minimizing energy consumption through UAV trajectory
planning with charging stations. Dai et al. [16] introduced a UAV crowdsensing framework
that prioritizes both minimizing energy consumption across all UAVs and ensuring data
freshness while also aiming to maximize the collected data amount and geographical
fairness simultaneously.

Yang et al. [17] proposed a novel UAV-enabled hybrid communication system jointly
optimizing the UAV’s transmission power and trajectory and the SNs’ transmission power
and duration to maximize the total energy efficiency (EE) of the SNs. Suman and De [18]
analyzed UAV-aided RF energy transfer performance and then they provided a closed-form
expression on the received power from a UAV. Jiang [19] analyzed a degradation of the
received power at SNs due to the inappropriate movement of the UAV in UAV-assisted
wireless information and energy transfer systems. Liu et al. [20] developed closed-form
expressions for the energy outage probability and rate outage probability, formulating an
optimization problem aimed at minimizing the overall outage probability of SNs. Nguyen
et al. [21] explored a simultaneous wireless power transfer and information transmis-
sion scheme with reconfigurable intelligent surface (RIS)-assisted UAV communication,
optimizing the UAV trajectory, power allocation, and phase-shift matrix of the RIS.

Although these related works have achieved high service quality by formulating
policies for either data collection from SNs or wireless power transfer, their potential for
enhanced service quality increases significantly if these works jointly determine policies
for both data collection and energy wireless transfer. For instance, consider a situation
where no joint optimization on the trajectory and data relay is conducted. In this situation,
even when the UAV is instructed to move closer to the GW (i.e., even though there is a
chance that the UAV can relay the data with smaller energy consumption), the UAV can
relay the data to the GW at the current location, which can cause the degradation of the
service quality due to the energy depletion of the UAV. To obtain high service quality more
than the related works, we introduced a UAV system that jointly optimizes the trajectory,
data relay, and wireless power transfer in [22] and in this paper, respectively. In [22], the
proposed system follows the static data relay policy of transmitting data to the GW after
a certain number of data are aggregated. Thus, we cannot achieve high service quality.
Thus, we have extended the system in [22] to dynamically determine the policy according
to the environment.

3. UAV-Based Environmental Monitoring System

The system model in this paper is illustrated in Figure 1. It comprises two planes:
(1) the ground plane; and (2) the UAV plane. Each plane is subdivided into multiple
locations, and each location is identified by l. In the ground plane, I SNs are strategically
deployed and equipped with distinct battery capacities. Let Li denote the location of SN
i and EMAX

SN,i represent the battery capacity of SN i. Additionally, a fixed charger for the
unmanned aerial vehicle (UAV) is positioned at the charging location identified as LC on
the ground plane. It is assumed that the monitoring server and the UAV controller are
co-located at the gateway (GW).

As depicted in Figure 2, we focus on the environmental monitoring services (e.g., traffic
and air quality monitoring services). In this service, the monitoring server aggregates the
data (e.g., traffic and air quality intensity) from SNs at the location of interest (LOI) during
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the service update cycle TU . The environmental monitoring map is then updated at the end
of each cycle [1–3,23]. We assume that the data sensed by the SNs are dynamically changed.

Specifically, as shown in Figure 2, when it is assumed that the monitoring server
periodically updates the environmental map every 5 time slots (i.e., service update cycle
TU is 5), the monitoring server collects the data from SNs during 5 time slots. Then, at the
end of the service update cycle, the server updates the environmental map by analyzing
the collected data (e.g., predicting the air quality for the air quality map).

Intuitively, if the monitoring server acquires more data during the service update
cycle, it can lead to higher service quality, as discussed in [1]. To achieve this, the controller
directs the operations of the UAV, including the movement, data relay, and wireless power
transfer. Subsequent subsections provide detailed descriptions of the operations of both
the sensor nodes (SNs) and the UAV.

Figure 1. System model.

Figure 2. Operating example of the environmental monitoring service.
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3.1. Operations of SN

On the ground plane, each SN collects and/or senses its designated target (e.g., air
condition and temperature) by expending its energy eS. Consequently, when the SN runs
out of energy, it becomes incapable of collecting and/or sensing the target. After sensing
the target, the SNs transmit the data to the GW or UAV, considering the distances to both
the GW and the UAV. If the UAV emits a short signal pulse, the SNs can estimate the
distance to the UAV by analyzing the received signal power. Additionally, because the
GW and SNs are stationary, determining the distance between them is straightforward.
In particular, when the distance to the GW is shorter than that to the UAV, the SN sends
the sensed data directly to the GW. Conversely, if the distance to the GW is longer than
that to the UAV, the SN transmits the data to the UAV. This strategy can reduce the energy
consumption for data transmission.

To transmit the sensed data with the minimum energy consumption, it is assumed
that SNs use the minimum transmission power Pmin,d

T to achieve the desired bit error rate.

The minimum transmission power can be calculated as Pmin,d
T =

Pmin
R
|h|2 [24] where h and d

are the channel coefficient and the distance between the source node and the destination
node, respectively, and Pmin

R is the receiving minimum power at the destination node. On
the other hand, h is defined as

√
βĥ where ĥ and β are denoted by the large-scale fading

effect and the small-scale fading, respectively. Especially, β is 1
η (

4ϕ fcd
c )−α, where fc and c

represent the carrier frequency and the speed of light, respectively. α and η denote the path
loss exponent and the additional path loss. Therefore, the energy consumption of the SNs
for data transmission increases in accordance with the distance.

Meanwhile, upon receiving data from the SN, the application server dispatches an
acknowledgment message to the SN. Subsequently, the SN reevaluates its target by moni-
toring and/or sensing it, before transmitting the data to either the UAV or GW. The energy
status of the SN is included in the packet for the sensed data.

3.2. Operations of UAV

On the UAV plane, the UAV maintains a constant altitude denoted as z. In practical
systems, the altitude is typically set to the minimum level that avoids obstacles, such as
buildings and trees, without the need for frequent descent and ascent [25]. The operations
of the UAV fall into three categories: (1) movement; (2) data relay; and (3) wireless power
transfer. In other words, the controller makes determinations and issues commands for
these operations to the UAV at each time epoch.

For the movement operation, the UAV possesses the capability to either hover in its
current position or traverse to an adjacent location, utilizing energies eH and eM, respectively.
Meanwhile, a fixed charging station for the UAV is stationed at a specific location identified
as LC. Staying in proximity to the charging location enables the UAV to undergo frequent
charging and thus it can sustain operations without energy depletion. However, this scenario,
where the UAV remains close to the charging location, poses a challenge for SNs deployed far
from the charging point. In such instances, these SNs cannot receive assistance from the UAV,
i.e., they are unable to transmit sensed data to the UAV or be charged by it. Consequently,
the lifetime of the SNs is expected to be shortened, resulting in inadequate data collection.
To prevent this situation, the decision regarding the movement operation of the UAV must
account for the energy levels of both the UAV and SNs.

As a relay node between the SNs and GW, the UAV has the capability to aggregate
data. If the UAV were to relay data to the GW immediately upon receiving it from the SNs,
its energy could be depleted rapidly. To avoid this, the UAV can aggregate data and thus it
does not have to transmit it to the GW right away upon reception. Instead, it can wait until
a certain amount of data are accumulated and/or until the UAV is in close proximity to
the GW. At that point, the UAV can deliver the aggregated data simultaneously using a
single packet. However, if the data are excessively aggregated, there is a risk of the current
service update cycle concluding before the data are transmitted to the GW, rendering the
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aggregated data obsolete. Therefore, the decision regarding the transmission operation of
the UAV should consider the energy levels of both the UAV and the service update cycle.

To facilitate efficient wireless power transfer, we assume that the UAV utilizes the
directional antenna with the fixed angle [26]. Specifically, the UAV at location i in the
UAV plane can transfer the energy to only the SN at location i in the ground plane, and
this power transfer consumes the energy eP. It is unnecessary to conduct wireless power
transfer to SNs that already possess sufficient energy. Additionally, if the UAV is positioned
far from its charging location and excessively engages in wireless power transfer, it may
face challenges returning to the charging location due to energy depletion. In summary, the
decision regarding the wireless power transfer should consider the current location of the
UAV and the energy levels of the UAV and SNs, jointly.

To simultaneously optimize the three types of operations (i.e., movement, data relay,
and wireless power transfer), a DeepUAV algorithm is introduced in the subsequent
section. In DeepUAV, the controller undergoes continuous online learning, refining the
UAV’s policies (i.e., sequences of operations) through trial and error. More precisely,
state observation information and learning experiences are integrated within a nonlinear
function approximator (i.e., a neural network). This neural network is iteratively trained,
providing the controller with near-optimal decisions for each state.

4. A Deep Reinforcement Learning (DRL)-Based UAV Operation Decision
Algorithm (DeepUAV)

In this section, we present DeepUAV for the optimal policy on the movement, data
relay, and wireless power transfer of the UAV. For this, we first define the state space, action
space, and reward of the DRL agent (i.e., controller). Important notations in this paper are
summarized in Table A1 in Appendix A.

4.1. State Space

We define the state space S as

S = L × EU × T × ∏
i
(ESN,i × DSN,i × GSN,i) (1)

where L and EU denote the state spaces for the location and the energy level of the UAV,
respectively. T represents the state space for the remaining time to the next service update
cycle. In addition, ESN,i are the state spaces for the energy level of SN i. DSN,i and GSN,i
represent the state spaces for the numbers of aggregated data from SN i at the server and
the UAV, respectively.

L is described by

L = {1, 2, . . . , NL} (2)

where NL is the number of locations in the target area.
EU is denoted as

EU =
{

0, 1, 2, . . . , EMAX
U

}
(3)

where EMAX
U is the battery capacity of the UAV.

ESN,i is represented by

ESN,i =
{

0, 1, 2, . . . , EMAX
SN,i

}
(4)

where EMAX
SN,i is the battery capacity of the SN.

Because TU denotes the service update cycle, T can be defined as

T = {0, 1, 2, . . . , TU}. (5)
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DSN,i and GSN,i are described by

DSN,i = {0, 1, 2, . . . , Dmax} (6)

and

GSN,i = {0, 1, 2, . . . , Gmax}. (7)

where Dmax and Gmax are represented by the maximum number of the aggregated data at
the UAV and the application server, respectively.

4.2. Action Space

Because the UAV should make three types of decisions, the action space A can be
defined as

A = AM × AT × AP (8)

where AM represents the action space for the movement direction. AT and AP describe the
action space for the data relay and the wireless energy transfer, respectively.

AM can be described as

AM = {0, 1, 2, 3, 4} (9)

where AM = 0 represents that the UAV hovers at the current location. In addition, AM ̸= 0
denotes the movement direction. Specifically, when AM = 1, AM = 2, AM = 3, and
AM = 4, the UAV moves to the east, west, south, and north, respectively. The movement
action space AM can be defined with more direction. However, it is more difficult to
find an optimal policy as the action space is bigger. Thus, we defined AM by the basic
movement operation.

AT can be represented as

AT = {0, 1} (10)

where AT denotes whether to transmit or aggregate the data. In other words, if AT = 1, the
UAV transmits the aggregated data to the GW. Otherwise (i.e., AT = 0), the UAV aggregates
data to the GW.

AP can be represented by

AP = {0, 1} (11)

where AP denotes whether the UAV transfers energy for the SN at its current location. That
is, AP = 1 represents that the UAV transfers energy for the SN at its current location. On
the other hand, if AP = 0, the UAV does not transfer any energy.

4.3. Reward Function

To define the reward function r, we consider the service quality of the environmental
monitoring system. In general, the service quality increases as the number of aggregated
data increases. However, the additionally increasing service quality diminishes due to a
law of diminishing marginal utility [4]. Specifically, when the monitoring server already
receives a sufficient number of data from SN i for the current service cycle, the additional
data from SN i do not improve the service quality. Meanwhile, because the monitoring
server updates the service at the end of the service cycle (i.e., T = 0), the monitoring server
can obtain a reward (i.e., service quality) at only the end of the service cycle. Therefore, we
can define the reward function r (the reward function in this work represents the service



Electronics 2024, 13, 828 8 of 15

quality of the generalized and simplified application from environmental monitoring
applications [1–3]) as

r = δ[T = 0]
∑
i

min (
DSN,i
ND

, 1)

I
(12)

where δ[·] is a delta function that returns 1 only when the given condition (e.g., T = 0) is
true. In addition, ND is the sufficient number of data from SN i for the current service cycle.

4.4. DeepUAV

To obtain the optimal operations (i.e., movement, data relay, and wireless power
transfer) of the UAV in a huge scale of the decision space, we propose DeepUAV based
on the model-free deep RL algorithm (i.e., deep Q-network (DQN)) [27]. Even though
the traditional Q-learning algorithm can obtain the optimal operations of a UAV, it is not
practical in real environmental monitoring systems. In the Q-learning algorithm, Q-values
for every state–action pair should be calculated and stored in a table. However, in practical
environmental monitoring systems, the number of possible states can be tremendous due to
the huge scale of the systems (e.g., a huge number of SNs) and then huge memory is needed.
Moreover, it is difficult to get enough samples for each state–action pair, which means that
the Q-learning algorithm cannot be converged. For this, the optimal action-value function
Q∗(S, A) can be defined by [27]

Q∗(S, A) = max
π

E

[
rt + ∑

k
γkrt+k|St, At, π

]
(13)

where π represents a policy that maps states to actions, and γ denotes the discount factor,
determining the degree of importance given to future predictions. Subsequently, a deep neural
network, specifically a Q-network as introduced in [27], is employed to approximate an action-
value function denoted as Q(S, A, θ), where θ represents the weights of the network. This
neural network takes state information as the input and produces Q-values corresponding to
each possible action. During the training, the weights θ are adjusted iteratively to minimize
the loss function. The loss function at the ith iteration is defined as

Li(θi) = E
[
(y − Q(St, At, θi))

2
]

(14)

where y is the target value, which can be defined as (15) at the top of the next page.

y =

{
rt, if episode terminates at the next state
rt + γ max

A′
Q(St+1, A′, θi−1), otherwise (15)

To update weights θ appropriately, we utilize the experience replay and the target
network separation as similar to that in [27]. Note that the experience replay breaks the
correlation between successive experiences and allows for the model to learn the underlying
distribution of labels. Meanwhile, the target network separation is for a stable deep learning
procedure.

Figure 3 illustrates the diagram of DeepUAV, while Algorithm 1 delineates the detailed
procedure of DeepUAV. Initially, the algorithm initializes essential components, including
the replay memory D, the main deep Q-network, and the target deep Q-network (lines 1–3
in Algorithm 1). Subsequently, the DeepUAV algorithm conducts the training phase. First,
the controller obtains the initial state St (line 5 in Algorithm 1) and determines the action
At with the ϵ-greedy method (lines 7–12 in Algorithm 1). Following this, the algorithm
instructs the UAV with the chosen action At and observes the resulting reward rt and the
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next state St+1. To facilitate the experience replay, the algorithm records the experience
(St, At, rt, St+1) in the replay memory D and randomly chooses a set of experiences from
this memory (line 15 in Algorithm 1). Using these selected experiences, the algorithm sets
the target value yi by updating the target deep Q-network (line 16 in Algorithm 1) and
proceeds to train the main deep Q-network using the loss function and the gradient descent
method (line 17 in Algorithm 1). Subsequently, the target deep Q-network is updated
periodically by copying the weights from those of the main deep Q-network (line 18 in
Algorithm 1).

Figure 3. DeepUAV diagram.

5. Evaluation Results

For the performance evaluation, we compare the proposed algorithm, DeepUAV, with
the following three schemes: (1) No-UAV where there is no UAV to relay data from SNs
and to transfer energy to SNs; (2) DeepCharge, which follows the optimal policy on the
wireless energy transfer and the movement of the UAV while adhering to the fixed policy
of the always data relay (i.e., always AT = 1); and (3) DeepPush, which follows the optimal
policy on the data relay and the movement of the UAV while adhering to the fixed policy of
no wireless energy transfer (i.e., always AP = 0). Note that DeepCharge and DeepPush are
designed by generalizing the UAV-based data collection schemes and UAV-based wireless
power transfer schemes in Section 2.

For the performance evaluation, we consider a 10 × 10 plane (i.e., 100 locations) where
50 SNs are randomly deployed. In addition, the UAV charger and GW are located at the
center of the locations. Also, we consider the general crowdsensing map application. This
application generates the environment map (e.g., temperature map) in the urban area based
on the aggregated SNs’ data (e.g., temperature information) [1].

The energy consumption parameters are set as follows. First, we normalize the energy
consumption for sensing data eS as 1 J. Then, comparing the complexity of the operations,
eH , eM, eP, eT , and eC are set to 1, 1, 10, 0.2, and 100 J. Also, the maximum battery capacities
of the UAV and SN, EMAX

U and E[EMAX,i
SN ], are set to 500 and 70 J, respectively. The service

update cycle and a sufficient number of data from each SN for the current service update
cycle, TU and ND, are set as 5 and 2, respectively. We consider the average of the service
quality based on Equation (12) during the service operation time as the performance
parameters.
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Algorithm 1 Deep reinforcement learning (DRL)-based UAV operation decision algorithm.

1: Make and Rest replay memory D
2: Make and Rest the deep Q-network having weights θ
3: Make and Rest target deep Q-network having weights θ = θ
4: for each episode j = 1, 2, 3, . . . J do
5: Obtain the initial state St
6: for t = 1, 2, 3, . . . T do
7: Randomly Determines probability value p
8: if p ≤ ϵ then
9: select a random action At

10: else
11: At = arg max

A
Q(St, A, θ)

12: end if
13: Command the action At to UAV, and obtain and calculate the next state St+1 and

the reward rt and t
14: Put experience (St, At, rt, St+1) into replay memory D
15: Get a set of experiences (Si, Ai, ri, Si+1) into replay memory D
16: Set

yi =

{
ri, if episode terminates at the next state
ri + γ max

A′
Q
(
Si+1, A′, θ

)
, otherwise

17: Performs a gradient descent step on (yi − Q(Si, Ai, θ))2 with respect to θ
18: For every K steps, update the target deep Q-network with θ = θ
19: end for
20: end for

5.1. Convergence Process Analysis

Figures 4a,b represent the service quality and the training loss during the training
phase, respectively. In each epoch, 50 iterations are conducted. From Figures 4a,b, it can
be shown that the service quality and training loss increase and decrease as the training
epoch goes on, except for the initial epochs, respectively. This indicates that DeepUAV
effectively learns how the selected UAV operations affect the achievable service quality.
Meanwhile, at the initial training phase (i.e., epochs < 100), high training loss and low
service quality are obtained because DeepUAV has less experience in learning how the
selected UAV operations affect the service quality.
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Figure 4. Learning results. (a) Expected total rewards. (b) Training loss.

5.2. Effect of I

Figure 5 represents the effect of the number of SNs I on the service quality. In this
simulation result, DeepUAV shows the enhanced service quality by 28%∼48% when it
is compared to DeepPush and DeepCharge. Especially, in the default simulation setting,
DeepUAV demonstrates increased service quality by up to 44%. From Figure 5, it can
be found that DeepUAV has the highest service quality regardless of I. This is because
DeepUAV simultaneously optimizes three types of decisions (i.e., the decision on where
to move, decision on whether to relay or aggregate data, and decision on whether to
transfer energy).
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Figure 5. Effect of the number of SNs on the service quality.
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Meanwhile, as shown in Figure 5, the service qualities of all the schemes increase as I
increases. This is because more SNs can transmit their sensed data for the target application
and more data indicate a higher service quality.

5.3. Effect of LG

Figure 6 represents the effect of the number of locations in the ground plane, LG, on
the average service quality. DeepUAV increases its service quality by up to 31%∼60%
compared to DeepPush and DeepCharge. From Figure 6, it can be observed that the service
qualities of all the schemes are degraded as the number of locations LG increases. This
is because, when LG increases, the SNs are more sparsely deployed in the ground plane
and thus the SNs need more energy consumption to transmit their data to the GW. In
addition, the UAV needs to travel long distances to help the SNs, which causes more energy
consumption of the UAV.
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Figure 6. Effect of the number of locations on the service quality.

5.4. Effect of TU

Figure 7 represents the effect of the service update cycle TU on the service quality. In
this simulation result, DeepUAV demonstrates that it can enhance the service quality by up
to 13%∼58% compared to DeepPush and DeepCharge. When TU is set to a short value, SNs
need to frequently sense the target data and report the sensed data to the monitoring server. In
this situation, SNs consume more energy within a short duration, which can cause the energy
depletion of SNs. Thus, as shown in Figure 7, the service qualities of all the schemes decrease as
TU decreases.
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Figure 7. Effect of the service update cycle on the service quality.
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Meanwhile, from Figure 7, it can be found that DeepPush has almost the same service
quality with No-UAV when a service update cycle is short (i.e., TU is 1, 2, or 3). This is
because, when a service update cycle is short, most SNs directly transmit their data to the GW
before the UAV approaches. That is, the effectiveness of introducing the UAV in DeepPush is
not significant.

5.5. Effect of EMAX
SN,i

Figure 8 shows the effect of the average battery capacity of SNs, E[EMAX
SN,i ]. When

DeepUAV is compared to DeepPush and DeepCharge, DeepUAV can enhance the service
quality by up to 24%∼100% compared to DeepPush and DeepCharge. From Figure 8, the
service qualities of all the schemes increase as the battery capacity of the SNs increases.
This is because SNs having more battery capacity can sense and transmit more data to the
GW for a longer time.
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Figure 8. Effect of EMAX
SN .

Meanwhile, when SNs have a lower battery capacity, the charging energy of SNs to
prevent the energy depletion of SNs is more important than reducing the transmission energy
consumption via the UAV relay operation. Therefore, when SNs have a low battery capacity
(i.e., E[EMAX

SN,i ] < 70), the service qualities of DeepCharge and DeepUAV are better than that
of DeepPush.

6. Conclusions

To enhance the service quality with a sufficient number of fresh data, we proposed a deep
reinforcement learning (DRL)-based UAV operation decision algorithm (DeepUAV). DeepUAV
interacts with the monitoring environment to learn and improve the UAV operation decisions
(i.e., movement, data relay, and wireless power transfer) through trial and error. The evaluation
results demonstrate that DeepUAV improves the service quality by up to 44% compared to
the scheme with non-fully optimal operations. In this work, because we focused on a single
UAV, the UAV in DeepUAV infrequently transfers energy to SNs located far from the GW and
frequently returns to the GW for recharging. Consequently, we cannot achieve better service
quality. To address our limitation, we plan to enhance our algorithm to consider multiple UAVs
by using multi-agent deep reinforcement learning as one of our future works.
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Appendix A

Important notations in this paper are summarized in Table A1.

Table A1. Summary of notations.

Notation Description

S State space

L State space for the location of the UAV

EU State space for the energy level of the UAV

T State space for the remaining time to the next service update cycle

ESN,i State space for the energy level of the SN i

DSN,i State space for the number of aggregated data from SN i at the UAV

GSN,i State space for the number of aggregated data from SN i at the GW

EMAX
U Battery capacity of the UAV

EMAX
SN,i Battery capacity of SN i

TU Service update cycle

A Action space

AM Action space for the movement direction

AT Action space for the data relay

AP Action space for the wireless power transfer

eH Energy consumption to hover at the current location

eM Energy consumption to move to an adjacent location

eS Energy consumption to sense data via the SN

eT Energy consumption per distance to transmit data energy from the SN to the UAV or GW

eP Energy consumption to transfer energy to the SN from the UAV

eC Energy consumption to transfer energy to the UAV from the UAV charger

r Reward

Q(S, A) Action-value function

π Policy mapping states to actions

γ Discount factor to control the amount of weight to future prediction

θ Weights of the deep neural network

Li(θ) Loss function at the ith iteration with weights θ

D Replay memory
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