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Abstract: Industrial knowledge graphs (IKGs) have received widespread attention from researchers
in recent years; they are intuitive to humans and can be understood and processed by machines.
However, how to update the entity triples in the graph based on the continuous production data to
cover as much knowledge as possible, while applying a KG to meet the needs of different industrial
tasks, are two difficulties. This paper proposes a two-stage model construction strategy to benefit
both knowledge graph completion and industrial tasks. Firstly, this paper summarizes the specific
forms of multi-source data in industry and provides processing methods for each type of data. The
core is to vectorize the data and align it conceptually, thereby achieving the fusion modeling of
multi-source data. Secondly, this paper defines two interrelated subtasks to construct a pretrained
language–knowledge graph model based on multi-task learning. At the same time, considering the
dynamic characteristics of the production process, a dynamic expert network structure is adopted for
different tasks combined with the pretrained model. In the knowledge completion task, the proposed
model achieved an accuracy of 91.25%, while in the self-healing control task of a blast furnace, the
proposed model reduced the incorrect actions rate to 0 and completed self-healing control for low
stockline fault in 278 min. The proposed framework has achieved satisfactory results in experiments,
which verifies the effectiveness of introducing knowledge into industry.

Keywords: industrial knowledge graph; blast furnace ironmaking process; multi-task learning; fault
diagnosis; self-healing control

1. Introduction

Industrial knowledge graphs are commonly utilized as an effective method for repre-
senting knowledge within industrial processes. Despite their widespread use, there is a
limited amount of research dedicated to the application of industrial knowledge graphs
(IKGs) in industrial tasks. Instead, the current emphasis is on the extraction of triples from
diverse data sources for the purpose of constructing knowledge graphs [1–3].

This is a significant concern within the realm of general knowledge graphs; however,
industrial data possess inherent characteristics that set them apart from the data utilized in
the construction of general knowledge graphs:

• The abundance of structured data and the limited utilization of unstructured data
pose challenges in the extraction and articulation of knowledge.

• The dynamic nature of data necessitates that models possess the capability to effec-
tively process dynamic data.

• Industrial activities cover a broad spectrum, and it is challenging to find a single
model that can be universally applied to all tasks. At present, industrial tasks are
predominantly tailored to specific models for their respective functions.

To overcome the above challenges and promote the wider use of IKGs, this paper aims
to address this issue through two approaches. The first involves maximizing the utilization
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of diverse industrial multi-source data to enhance the graph’s quality. The second entails
constructing fundamental application models grounded in knowledge graphs, thereby
enabling knowledge graphs to fulfill a wide range of industrial tasks.

This paper presents a model that is developed based on the operational context of the
blast furnace ironmaking process (BFIP). The BFIP is a fundamental process within the iron
and steel industry, serving as a crucial step in the conversion of energy and mass flows.
The BFIP involves the utilization of coke and flux to reduce iron from iron ore within a high-
temperature and high-pressure environment, subsequently directing it to the steelmaking
process in the form of liquid pig iron. The BFIP reactor and its associated systems are
depicted in Figure 1. The reactants, namely iron ore and coke, are sequentially layered at
the top of the furnace through the ore and coke feeding system, resulting in the formation
of a lumpy zone that descends gradually due to gravitational forces. Concurrently, high-
pressure and high-temperature air, combined with oxygen and pulverized coal processed
by the hot blast system, is injected into the reactor via a pipe, creating a tuyere raceway and
moving upward. A modern blast furnace can possess a volume of up to 7000 cubic meters,
leading to variations in pressure and temperature across different areas of the furnace,
thereby influencing diverse reactions. In the cohesive zone, characterized by elevated
temperatures, iron oxides are reduced to iron, which is facilitated by the carbon framework
formed by the coke to create a dropping zone, ultimately resulting in the collection of liquid
iron at the furnace hearth. Periodically, liquid pig iron is discharged from the tap hole and
directed to subsequent processing stages [4,5].

Figure 1. The blast furnace ironmaking process.

In typical furnace operating conditions, the optimization of control variables is essen-
tial for enhancing the quality of molten iron or reducing energy consumption, a practice
referred to as operation control. Conversely, during abnormal conditions, adjustments
to control variables are necessary to rectify faults, a process known as restorative control.
A novel control category, termed self-healing control, has emerged, involving the automatic
implementation of restorative control using a computer. This approach is gaining attention
due to its superior accuracy and response speed compared to manual operation [6].

The faults of the BFIP can be categorized into two groups: (1) single-factor faults,
which stem from equipment malfunctions or irregular production scheduling, such as
low material line caused by hopper jamming; and (2) systemic faults, which arise from
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physical movement or chemical reaction irregularities resulting from mismatches between
raw materials and the control system, such as the pipeline caused by abnormal gas flow
distribution. Therefore, the goal of self-healing control is to correct the fault and restore the
control system to its normal operating state, thereby meeting the strict safety requirements
of the BFIP.

Therefore, based on the top-down construction of blast furnace knowledge graphs
based on ontology, this article explores the use of production data and unstructured text
to complete the graph, further improving the quality of the graph, while constructing
a model that can meet different industrial tasks, improving the generality of the model,
and reducing the difficulty of completing subsequent industrial tasks based on knowledge
graph construction models.

The contributions of this paper are as follows:

• The specific forms of multi-source data in industry are summarized and processing
methods for each type of data are provided.

• A pretrained language–knowledge graph model is introduced, which can align graph
nodes with text concepts. This model leverages masked entity prediction and link
prediction tasks to facilitate the extraction and integration of information from both
textual and graphical data components.

• A two-stage model construction strategy is suggested, involving the segmentation of
the model into pretraining and fine-tuning stages. The pretraining phase is designed
to be applicable to various subsequent tasks, while the fine-tuning phase is optimized
using a dynamic expert network structure to enhance its adaptability to industrial
process dynamic data and to yield a more precise model for industrial applications.

2. Related Work
2.1. Knowledge Graph Completion

The construction and application of an IKG is a long process, as shown in Figure 2.
The process of extracting triples from diverse sources of data, such as text, sensor, and digi-
tal twins data, is followed by the alignment of entities, disambiguation, and other related
operations. Subsequently, the acquired knowledge can be stored in various database
formats and regularly verified to maintain the quality of the graph. The application of an in-
tegrated knowledge graph (IKG) is extensive, encompassing areas such as recommendation
systems and various other domains [7,8].

In recent years, there has been a growing demand for high-quality knowledge, leading
to an increased emphasis on the reliability of information within the context of an integrated
knowledge graph (IKG). Consequently, the issue of knowledge graph completion, which
involves determining the validity of triples within the knowledge graph, has garnered
significant attention. Various studies have been undertaken to explore knowledge graph
completion, focusing on methods for modeling the connectivity patterns between entities in
the IKG and developing scoring functions to assess the validity of triples [9–11]. However,
these approaches primarily rely on the graph structure and relational information within
the existing knowledge graph, limiting their predictive capabilities for triples containing
less common entities. To address this limitation, a method combined with a language
model has been proposed for knowledge graph completion, leveraging entity descriptions
and pretrained language models to enhance predictive accuracy [12].

2.2. Knowledge Graph Embedding

There are two approaches to managing IKGs. One method involves converting the
graph into an adjacency matrix and employing graph neural networks and other method-
ologies to analyze the graph structure represented by the matrix. The other feasible and
commonly used approach is to utilize knowledge graph embedding (KGE) techniques to
train a low-dimensional vector for each entity and relation, while maintaining the inherent
structure of the IKG. The resulting vectors obtained through KGE can then be utilized to en-
hance the representations of entities in the IKG [13–17]. However, it is noted that although
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KGE is specifically tailored for tasks related to knowledge graphs, it is not optimized for
applications in industrial settings. Therefore, there is a need for the development of more
effective KGE methods to improve industrial tasks.

Figure 2. The construction and applications of IKG.

In light of the connection between graph completion and related tasks, some scholars
have explored the application of multi-task learning (MTL) strategies to mitigate the im-
pact of disparities between KGE and recommendation tasks, and to enhance the overall
performance of both tasks. MTL involves the collective acquisition of knowledge and
simultaneous or sequential learning of multiple tasks, which is deemed more advanta-
geous than training them in isolation [18]. In the context of MTL-based recommendation
systems, the establishment of links between multiple tasks and the training of these tasks
are recognized as pivotal concerns. Recently, a novel MTL approach for knowledge graph
enhancement recommendation, known as MKR, has been introduced, demonstrating com-
mendable performance and efficiency in facilitating collaborative enhancement between the
KGE task and the recommendation task [19]. Diverging from other MTL-based knowledge
graph recommendation systems (KGRSs) that directly utilize vectors derived from KGE to
represent users or items in the recommendation system, or simply employ a summation
operator to establish connections between the two tasks, MKR achieves interaction between
items in the recommendation system and entities in KGE through the utilization of a soft
parameter sharing mechanism. MKR employs an alternating training approach within the
MTL framework to achieve satisfactory performance, thereby underscoring the efficacy of
the parameter sharing mechanism.

2.3. The Application of IKGs in the BFIP

The BFIP, as a conventional industrial process on a large scale, encounters challenges
related to standardizing knowledge, insufficient fault data resulting in subpar data-driven
modeling, and stringent production safety standards. This presents an opportune situation
for implementing an IKG to facilitate knowledge standardization and utilization.

Numerous research studies have been carried out to develop ontological models for
the steel industry. These inquiries cover a range of topics including knowledge modeling
and information management in the steelmaking process [20], planning and scheduling
in primary steel production [21], scheduling and control decision frameworks for process
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industries [22], and supply chain decision support for steel manufacturers [23]. However,
the focus of the majority of these studies is primarily on supply chain and scheduling issues,
with limited attention given to normal production tasks.

This paper aims to improve the knowledge quality of IKGs through multi-source data
as well as to complete the production tasks in the BFIP.

3. Methodology
3.1. Industrial Data Collation

Industrial data are commonly sourced from multiple channels and comprise struc-
tured, semi-structured, and unstructured data. Structured data, such as sensor-collected
variable data stored in databases, are organized in tabular form. Semi-structured data
encompass web page content and knowledge graphs containing textual information, while
unstructured data include production logs and expert knowledge documents. It is essential
to effectively combine and incorporate multi-source data into BFIP modeling in order to
enhance the precision and dependability of the model.

Taking the BFIP as an example, the data involved in daily production of the blast
furnace include the following categories:

• Structured data: This refers to a tabular dataset housed within a database, compris-
ing information collected from diverse sensors. This typically encompasses process
variable data generated during production, such as blast furnace top pressure, hot air
pressure, cold air flow, furnace wall temperature, and top temperature. These data
are consistently refreshed at a regular sampling rate and centrally archived within
the database.

• Semi-structured data: This refers to a localized knowledge graph that encompasses
various types of nodes and their interconnections. The information within the graph is
typically categorized into three main groups. Firstly, topological data are represented
through graph structures and can be articulated in the form of adjacency matrices.
Secondly, semantic data are conveyed through heterogeneous triples, which primarily
define diverse types of nodes and relationships to facilitate the association of triples
for expressing information and knowledge. Lastly, dynamic node information data
are preserved through node attributes, which delineate the state of a node within the
graph. For instance, the node attribute of a process variable node denotes the value of
the node variable at a specific time, while the node attribute of a valve node signifies
the opening of the valve.

• Unstructured data: This refers to the maintenance of updated blast furnace logs and
expert knowledge documents in the context of blast furnace production. The pro-
duction process involves a shift system for overseeing and managing production
activities, with on-duty conditions being documented in textual format. This includes
recording the smelting and tapping conditions of the blast furnace, as well as any
adjustments made to the feeding and blowing systems. Consequently, blast furnace
logs serve as crucial resources for reflecting the production status of the blast furnace
and documenting manual operations. Meanwhile, expert knowledge documents serve
as comprehensive compilations of the principles governing blast furnace smelting and
control, encompassing the abstraction, summarization, analysis, and generalization of
production laws related to blast furnaces.

The three aforementioned data types undergo dynamic updates, although the fre-
quency and methodology of these updates may differ. Additionally, the format and storage
approach for each type of data exhibit significant differences. To integrate and model the
diverse, multi-source heterogeneous data within a unified framework, it is imperative to
preprocess the distinct data types individually. The fundamental concept involves the
vectorization of all forms of information and their fusion into vector format, subsequently
transmitting them to the network model for processing to achieve the fusion modeling of
multi-source information. Given that structured data can be viewed as node attributes of
knowledge graphs, it is plausible to combine structured data and knowledge graphs for
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processing. Consequently, this paper outlines the processing procedure for semi-structured
and unstructured data.

3.1.1. Vectorization of an IKG

Through the utilization of methods for constructing and instantiating ontology, it is
feasible to create a comprehensive knowledge graph containing substantial semantic and
structural data. One method, referred to as graph embedding, involves transforming the
nodes and connections within the graph into a vector space. This procedure maintains
the connections between nodes in the vector space and produces vector representations of
the nodes. This adaptable representation technique is suitable for a range of applications,
making it a widely embraced technology for processing graphs.

The challenges are compounded when a knowledge graph exhibits both dynamic
and heterogeneous characteristics. A formal description of a dynamic heterogeneous
knowledge graph is provided below.

A dynamic heterogeneous knowledge graph, denoted as G = (V(t), E(t), A, R), con-
sists of an object set V(t) and a link set E(t). A dynamic heterogeneous knowledge graph is
also associated with a node type mapping function f 1 : V(t) → A and a link type mapping
function f 2 : E(t) → R. A and R denote the sets of predefined object types and link types,
where A + R > 2.

Sampling nodes and capturing meaningful changes in the graph structure presents a
significant challenge. Recent research has focused on addressing this challenge by exploring
dynamic heterogeneous graphs, which integrate previous node embedding techniques
for heterogeneous graphs and dynamic graphs to accommodate the evolving nature of
heterogeneous graphs [13–16].

3.1.2. Vectorization of Unstructured Data

For unstructured data, in order to obtain word vectors and sentence vectors, we use
commonly used text processing processes shown in Figure 3.

• Step 1: This involves preprocessing the text to remove spaces and punctuation.
• Step 2: This focuses on dividing words into sentences and adding a specialized noun

dictionary to the BFIP to improve the accuracy of word segmentation.
• Step 3: This pertains to named entity recognition, where a matching template is

devised to extract graph nodes from sentences, facilitating effective correspondences
between nodes and text within the graph.

• Step 4: This includes utilizing Gensim to train a word vector library suitable for
industrial localization.

Figure 3. Industrial data collation.
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3.2. Two-Stage Model Construction Strategy

Various types of data in industry are stored and updated at different frequencies.
For instance, structured sensor data are updated every few seconds or minutes, while
unstructured production log data are updated every few hours, and expert documents
are updated every few days or longer. This discrepancy in update frequencies presents
challenges in information fusion and modeling. A semi-structured knowledge graph serves
as both a static knowledge base and a dynamic graph, with the attributes and relationships
of nodes constantly changing based on the type of node.

The difference in data update frequency can bring difficulties in information fusion
and modeling. In fact, there is a difference in the amount of information brought by data
with different frequencies. Data with slower update frequencies contain more informa-
tion than data with faster update frequencies, especially in describing abstract patterns.
To address the technical challenges of multi-scale information fusion and improve informa-
tion extraction for modeling, this paper proposes a two-stage model construction strategy,
as illustrated in Figure 4.

Figure 4. Workflow of the two-stage model construction strategy.

The first stage is to use text data and a static IKG as a knowledge base to construct pre-
trained models. The model is constructed within a multi-task learning framework, which
facilitates feature fusion and sharing at the lower level, and concurrently trains intercon-
nected tasks to acquire feature vectors that amalgamate diverse information. By aligning
the concepts in the production log with the nodes in the IKG, the word vectors derived
from contextual information in the text are combined with the node vectors obtained
from the graph structure. This process yields a pretrained language–knowledge graph
model capable of generating features containing comprehensive information. Subsequently,
the construction of the second stage for specific dynamic industrial tasks is predicated on
this pretrained model.

The second stage is aimed at different dynamic industrial tasks. Based on the vector
features provided by the pretrained model, the dynamic data collected from sensors are
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further incorporated. These are combined with task-specific dynamic subgraphs sampled
from the knowledge graph to facilitate training for particular industrial tasks. Using the
MTL framework, two objectives are established: one involves IKG completion, and the
other involves industrial tasks such as fault diagnosis, self-healing control, root cause
analysis, and other tasks. The feature vectors obtained from the pretrained model in the
first stage are utilized, alongside a dynamic graph feature extractor to generate a vector
that integrates sensor data and dynamic subgraph features. These two vectors are merged
and dynamically inputted into the temporal expert sequence for processing, resulting in
the development of a dynamic model capable of simultaneously completing graph tasks
and addressing specific industrial challenges.

In the subsequent section, we will furnish a comprehensive elucidation of the two stages.

• We define the production logs set P as a set of text segments P = {P}, and each text
segment P as a sequence of tokens (words), P = (P1, . . . , Pi).

• We define an IKG as a multi-relational graph G = (N ,R), where N is the set of nodes
in the IKG and R is the set of relations. E ⊆ N ×R×N is the set of triples that
connect nodes in N.

• As the IKG is often large, a dynamic subgraph for specific industrial tasks of the IKG
is considered: Gsub(T) = (N, R, T) where N =

{
n1, . . . , nj

}
⊆ N and R ⊆ R, the set

of triples with time is E(T) ⊆ N × R × N × T.
• For node nk in the IKG, we define the node attribute as Ank .

3.2.1. Pretrained Language–Knowledge Graph Model

In the context of this study, input instances for the model are generated by pairing
a production logs P with a large IKG G. The objective is to ensure semantic alignment
between the text and knowledge graph within each pair, enabling mutual information
exchange between the production logs and Gsub(T = 0) to facilitate the model’s ability to
learn interactive reasoning across both modalities. The pretrained model is constructed
using the DRAGON framework [24].

The input of the pretrained model is Input = (production logs P, local KG
Gsub(T = 0)). Initially, the input log text is processed using M layers of language model lay-
ers to convert it into initial token representations. Additionally, the input nodes of the graph
G are mapped into initial node representations using node embeddings. The embeddings
can be denoted as follows:(

P(0)
cross, P(0)

1 , . . . , P(0)
X

)
= Preprocess−Layers(Pcross, P1, . . . , Px) (1)

(
N(0)

cross, N(0)
1 , . . . , N(0)

Y

)
= Node−Embedding

(
Ncross, N1, . . . , Ny

)
(2)

In order to capture the reciprocal relationships between the text and IKG, a bidirec-
tional sequence-graph encoder fEnconder is employed. This encoder processes the text
tokens and KG nodes, facilitating the exchange of information between them across mul-
tiple layers to generate a unified representation for each token and node. Specifically,
the model utilizes K layers of fusion layers to collectively encode these representations into
the ultimate representations, denoted as:

(Pcross, . . . , PX), (Ncross, . . . , NY) = Fusion − Layers
((

P(0)
cross, . . . , P(0)

X

)
,
(

N(0)
cross, . . . , N(0)

Y

))
(3)

where for each of the fusion layers (ℓ = 1, . . . , K), the following operation is carried out:(
P̃(ℓ)

cross, P(ℓ)
1 , . . . , P(ℓ)

X

)
= Preprocess − Layers

(
P(ℓ−1)

cross , P(ℓ−1)
1 , . . . , P(ℓ−1)

X

)
(4)

(
Ñ(ℓ)

cross, N(ℓ)
1 , . . . , N(ℓ)

Y

)
= GNN−Layer

(
N(ℓ−1)

cross , N(ℓ−1)
1 , . . . , N(ℓ−1)

Y

)
(5)
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[
P(ℓ)

cross; N(ℓ)
cross

]
= Fusion

([
P̃(ℓ)

cross; Ñ(ℓ)
cross

])
(6)

We define a language–knowledge model as a combination of two functions, denoted as
fSelf( fEncoder(X)). Here, the encoder function fEncoder takes an input input = (production
logs P, local KG Gsub(T = 0)) and generates contextualized vector representations for each
text token, (P1, . . . , PX), and for each IKG node, (N1, . . . , NY). The function fSelf utilizes
these representations to carry out self-supervised tasks. Although any deep bidirectional
sequence-graph encoder can be employed for fEncoder, we opt for GreaseLM for the purpose
of conducting a controlled comparison with existing studies [25].

In practical terms, in order to carry out the masked language modeling task, the fi-
nal token in the input text, denoted as px ∈ P, is replaced with a special token [MASK].
Subsequently, the task function fSelf is implemented as a linear layer that utilizes the con-
textualized token vectors Px from the encoder to predict the original tokens. The objective
is to minimize the cross-entropy loss.

LMasked = − log proba(px | PX) (7)

In this paper, the variables Head = Nh and Tail = Nt are defined, along with
Relation = Rr, where {NY} denotes the contextualized node vectors from fEncoder,
and R =

{
r1, . . . , r|R|

}
represents the learnable relation embeddings. We analyze an

IKG triple scoring function ψr(Head, Tail). A higher value of ψ indicates a greater likeli-
hood of (Head, Relation, Tail) being a positive triple (edge) rather than a negative one (no
edge). Throughout the training process, the objective is to optimize the following:

LLinked = ∑
(Head,Relation,Tail)∈Eout

− log σ(ψr(Head, Tail) + γ) +
1
w ∑

(Head′ ,Relation,Tail′)
log σ

(
ψr

(
Head′, Tail′

)
+ γ

) (8)

where the triplet (Head, Relation, Tail) is associated with w negative samples denoted
as (Head′, Relation, Tail′). The parameter γ represents the margin, while σ denotes the
sigmoid function. The underlying rationale of this objective is to encourage the model to
classify triplets from the held-out edges Eout as positive, while categorizing other randomly
selected triplets as negative.

In order to train the model, we concurrently optimize the aforementioned objectives,
denoted as L = LMasked + LLinked. This combined objective integrates the impacts of
masked language modeling and IKG link prediction, which promote the model’s ability
to both align text data with IKG structure and contextualize the IKG with production
logs. This facilitates a two-way exchange of information between text data and IKGs for
reasoning purposes. The proposed framework is shown in Figure 5.
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Figure 5. Pretrained language–knowledge graph model.

3.2.2. Dynamic Fine-Tuning Model Based on Industrial Tasks

To enhance the adaptability of the model in the first stage for dynamic industrial
tasks, we incorporate an expert network structure to refine the pretrained model. This
structure comprises a combination of experts and gates. We extract a pertinent local
Gsub(T) = (N, R, T) at time T from G. The model takes as input a sequence of
FeaturePair(T) = (Text feature P, SubgraphGsub(T), Node featureAN).

Next, we employ the pretrained model to generate the semantic feature of the text
and the topological feature of the IKG. Subsequently, we utilize a dynamic graph feature
extractor to produce the integrated topological feature and node feature, denoted as:(

PT
1 , . . . , PT

X

)
= Pretrained−Model

(
PT

1 , . . . , PT
x

)
(9)
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(
NT

1 , . . . , NT
Y

)
= Pretrained−Model

(
NT

1 , . . . , NT
y

)
(10)

(
DT

1 , . . . , DT
Y

)
= GraphFeature−Extractor

(
NT

1 , . . . , NT
y , AT

1 , . . . , AT
y

)
(11)

(
FT

1 , . . . , FT
Y

)
= Concatenate

(
PT

1 , . . . , PT
X , NT

1 , . . . , NT
Y, DT

1 , . . . , DT
Y

)
(12)

The resulting concatenated feature FT =
(
FT

1 , . . . , FT
Y
)

serves as the input for the
mixture of experts. This layer consists of a sequence of experts, each specializing in
different aspects of the task. Gate networks are employed to control the outputs of the
experts, enabling each gate to learn to “select” a subset of experts based on the input
example. This mechanism allows for the modeling of intricate interactions among diverse
variables. In mathematical terms, a data sequence with s time steps is denoted as:

S =
{

FeaturePair(1), FeaturePair(2), . . . , FeaturePair(s)
}

(13)

We engage in many-to-many sequence learning, as illustrated in Figure 6.

Figure 6. Dynamic fine-tuning model based on industrial tasks .

Given the input data sequence S, we can express the output for task v at time s + 1 in
the following manner:

Outputv
(s+1) = Towerv

LSTM

(
Expertv

(
FS

))
(14)
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where Expertv
(

FS
)
=

z

∑
i=1

gv(x)iExpertLSTMi

(
ExpertLSTM

(
Expert

(
FS

)))
(15)

The network denoted as Towerv
LSTM is responsible for handling the task labeled as

v, Expertv represents the result of the gated mixture of experts layer, while ExpertLSTMi
refers to the i-th sequential expert, with a total of z experts. The input to the network is
denoted as FS, and Towerv is the gating network that converts the input into a distribution
across the z experts, based on the input:

Towerv(FS) = softmax
(

Wv
TowerFS

)
(16)

where Wv
Tower is the weight matrix needing to optimize.

4. Experimental Results and Analysis
4.1. Experimental Setting and Data

This paper uses the pytorch framework in Python to build the model. The spe-
cific training environment is configured as follows: CPU Inter(R) Core(TM) i7-6700HQ
CPU@2.60GHz, Python version 3.8, Pytorch 1.10.0, and Windows 10.

This paper employs a simulation platform of the BFIP to authenticate the proposed
method. The primary interface of the platform is depicted in Figure 7. This platform has
the capability to simulate the values of process variables during fault occurrences and also
includes interactive functionalities. It can simulate the changes in the BFIP in response to
input control commands when faults occur.

Figure 7. The simulation platform of the BFIP.

4.2. IKG Compeletion

To confirm the effectiveness of the graph embedding approach introduced in this
paper, several traditional graph embedding methods were chosen for comparative analysis.
A comprehensive listing of these methods and their respective characteristics are presented
in Table 1.

In this study, we utilized a simulation platform to gather dynamic data from an IKG
constructed for the BFIP. Through the creation of various failure scenarios within the BFIP
system, we were able to capture the attributes and interconnections of nodes from the
onset to the resolution of failures. A total of 51 nodes were implicated in this analysis.
Specifically, we documented the state of nodes at 3500 time points across three distinct blast
furnace failure events: low stockline, blowing out, and tuyere failure. The recorded data
encompassed the attribute values of individual nodes and their connectivity status at each
time point. We then used this recorded data for IKG compeletion experiments.
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Table 1. All graph embedding methods in experiments and their characteristics.

Method Dynamic Semantic Structure Feature Aggregation Text

GraphSAGE % % ✓ ✓ ✓ %

CTDNE ✓ % ✓ % % %

DySAT ✓ % ✓ ✓ % %

TGAT ✓ % ✓ ✓ ✓ %

Two-stage model without text ✓ ✓ ✓ ✓ ✓ %
Two-stage model ✓ ✓ ✓ ✓ ✓ ✓

First, we undertook a transductive learning task to forecast future connections between
nodes that had been identified in the training data using the aforementioned methods,
which can be seen as the same as the IKG compeletion task. Four metrics, namely accuracy,
average precision, recall rate, and F1 score, were chosen to assess their effectiveness.
The outcomes are presented in Table 2.

Table 2. IKG compeletion task performance of graph embedding methods.

Method Accury Average Precision Recall F1

GraphSAGE 0.5175 0.5090 1 0.6745
CTDNE 0.7375 0.7262 0.6557 0.7375
DySAT 0.7575 0.6734 1 0.8048
TGAT 0.81 0.7246 1 0.8403

Two-stage model without text 0.85 0.7692 1 0.8696
Two-stage model 0.9125 0.8511 1 0.9195

As illustrated in Table 2, the static graph approach utilized by GraphSAGE demon-
strates suboptimal performance in the prediction of edges within dynamic graphs. Con-
versely, dynamic graph embedding techniques generally display superior efficacy. Specif-
ically, DySAT and CTDNE exhibit a higher recall rate compared to TGAT, suggesting a
greater propensity to discern the absence of edges between nodes, potentially leading to
the exclusion of significant node associations. In contrast, the method proposed in this
study integrates text information and amalgamates both graph structure and node data
to achieve more precise node relationship prediction, resulting in superior performance
across all metrics compared to alternative methods.

Figure 8 depicts the spatial configuration of nodes derived from different graph
embedding methods. In the static method space of GraphSAGE, the interconnections
between nodes remain constant. Conversely, in the space produced by dynamic methods,
the relative positioning of nodes fluctuates over time, thereby facilitating the dynamic
forecasting of node relationships. Methods with inferior prediction outcomes exhibit
more pronounced clustering among graph nodes, such as GraphSAGE, while dynamic
embedding methods with superior prediction results disperse nodes more evenly and
densely in the space, as demonstrated by TGAT and the two-stage model without text.
The node distribution of the two-stage model resembles that of the two-stage model without
text, but it is altered, indicating the evident influence of text information on it.

Additionally, we utilized the platform to assess the efficacy of the two-stage model
in the context of self-healing control tasks within the BFIP, with a specific focus on low
stockline scenarios.
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Figure 8. The spatial configuration of nodes derived from different graph embedding methods.

4.3. Self-Healing Control Task: Low Stockline

We used dynamic graph embedding methods in our simulation experiments to com-
pare our proposed method, and proposed four quantitative metrics to measure the perfor-
mance of these methods in the task of self-healing control in the BFIP, as follows:

• Whether the fault is eliminated: The value is 0 or 1, where 0 represents failure cannot
be eliminated and 1 represents that the failure can be eliminated. This indicator is the
most important indicator to measure whether the method can achieve self-healing
control.

• Correct actions number: The number of correct control actions output during the
control process.

• Incorrect actions rate: The proportion of the number of erroneous actions output
during the control process to the total output control actions.

• Time to eliminate the fault: The total time required to eliminate the fault.

Based on the four metrics, we conducted statistical analysis on the performance of
dynamic graph embedding methods and the method proposed in this paper in simulation
experiments. Ten experiments were conducted for each method, with the best-performing
outcome chosen for data collection. The experimental results are shown in Table 3.

Table 3. Self-healing control task performance of methods.

Method Whether the Fault Is Eliminated Correct Actions Number Incorrect Actions Rate Time to Eliminate the Fault (Min)

CTDNE 0 16 (28) 0.2728 Null
DySAT 0 20 (28) 0.2593 Null
TGAT 0 25 (28) 0.1935 Null

Two-stage model without text 0 28 (28) 0.1250 Null
Two-stage model 1 28 (28) 0 278

According to Table 3, we can see that the dynamic graph embedding methods cannot
complete the self-healing control task in the BFIP. On the one hand, it is unable to output all
the control actions required during the entire process. On the other hand, the occurrence of
incorrect actions also leads to deviations in the overall control process, which is unaccept-
able for a high-safety industrial process such as the BFIP. Compared with two-stage model
without text, the framework proposed in this paper can complete the self-healing control
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of the BFIP because it can output all correct actions without outputting incorrect actions
at the same time. This is due to the existence of text data, which enhances the exclusion
of non-existent edges. Therefore, it can be seen that obtaining richer information from
multi-source heterogeneous data can help improve the performance of the model.

The operational issue known as low stockline in the BFIP can be rectified by making
adjustments to the smelting conditions. This particular fault necessitates a comprehensive
series of control measures and has the longest control process, as illustrated in Figure 9.
In the event of low stockline occurrence, the initial step is to close the lower sealing valve.
Subsequently, the hot air pressure, top pressure, rich oxygen flow rate, and coal injection
rate are gradually reduced to diminish the smelting intensity. Following this, the control
commands involve opening the lower sealing valve and adding coke, while also adjusting
the fabric angle. It is crucial to maintain this reduced intensity smelting state for a specific
duration, during which the recovery of the stockline serves as an indicator to determine the
resolution of the fault. Once the stockline has reached approximately 2.5 m, the smelting
conditions can be restored to their original level. Figure 9c demonstrates that the top
temperature increases when the lower sealing valve is closed and returns to normal when
the valve is opened. The permeability remains stable, while the flow rate of cold air
and total pressure difference fluctuate with changes in hot air pressure and top pressure.
Therefore, the proposed method achieves a comprehensive self-healing control process.

Figure 9. The self-healing control process of low stockline based on the two-stage model. (The
coordinates of the y-axis of the graph have been deformed, the values of the different curves on the
same graph are based on the values of the y-coordinate labeled value).

5. Conclusions

In the present era, the challenges of updating entity triples in a graph using continuous
production data to maximize knowledge coverage and applying knowledge graphs to
address diverse industrial tasks are significant issues for IKGs. This paper introduces a two-
stage model construction approach aimed at enhancing both knowledge graph completion
and industrial tasks. Initially, this paper outlines the various forms of multi-source data
in the industry and presents processing techniques for each data type, emphasizing data
vectorization and conceptual alignment to achieve multi-source data fusion modeling.
Subsequently, the paper delineates two interconnected subtasks for developing a pretrained
language–knowledge graph model through multi-task learning. Additionally, to account
for the dynamic nature of the production process, a dynamic expert network structure is
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integrated with the pretrained model for different tasks. The experimental results indicate
that the proposed approach outperforms some classic methods in terms of both accuracy
and practical applicability.

However, the shortcomings of this paper are listed as follows:

• The limitation of aligning text with an IKG currently involves using named entity
recognition from text and using a word bank constructed from the IKG, which may
lead to insufficient mining of text data.

• There is a lack of certain strategies for the dynamic updating of IKGs, and when
multiple tasks update the IKG simultaneously, there may be conflicts, resulting in
negative information transfer.

Therefore, future research directions can involve the following:

• Extracting triples from text to automatically enable better interaction between text and the
IKG.

• Research on continuous learning of an IKG and developing knowledge graph updating
strategies under multi-task conditions.

In the future, we will collect more production data for training the model, with the goal
of achieving a level comparable to that of larger models. This will enable the development
of large-scale models within specific vertical domains.
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