Edge-Bound Change Detection in Multisource Remote Sensing Images
Abstract
:1. Introduction
2. Related Work and Preliminaries
2.1. Edge Detection
2.2. Super Pixel
2.3. Image-to-Image Translation Network with Conditional GAN
3. Methodology
3.1. Edge Extraction
3.2. Reconstruction Network
3.3. Edge Denoising
4. Experimental Study
4.1. Experiments on Yellow River Datasets
4.2. Experiments on Dongying and Guangzhou Datasets
4.3. Experiments on Shuguang Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A deep learning architecture for visual change detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 129–145. [Google Scholar]
- Bruzzone, L.; Bovolo, F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc. IEEE 2012, 101, 609–630. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, S.; Zhao, C.; Fan, Y.; Shi, Q.; Li, W.; Tao, R. An Object Fine-Grained Change Detection Method Based on Frequency Decoupling Interaction for High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Gao, S.; Lu, X.; Tang, Y.; Liu, S. Spectrum-Induced Transformer-Based Feature Learning for Multiple Change Detection in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Geng, T.; Wang, X. GTransCD: Graph Transformer-Guided Multitemporal Information United Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Alatalo, J.; Sipola, T.; Rantonen, M. Improved Difference Images for Change Detection Classifiers in SAR Imagery Using Deep Learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Chen, Z.; Song, Y.; Ma, Y.; Li, G.; Wang, R.; Hu, H. Interaction in Transformer for Change Detection in VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Chen, K.; Zhou, C.; Chen, S.; Zou, Z.; Shi, Z. Continuous Cross-Resolution Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–20. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Y.; Qu, J.; Xiao, S.; Li, Y. Local Information-Enhanced Graph-Transformer for Hyperspectral Image Change Detection With Limited Training Samples. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, J.; Qu, J.; Xiao, S.; Li, N.; Hou, S.; Li, Y. Abundance Matrix Correlation Analysis Network Based on Hierarchical Multihead Self-Cross-Hybrid Attention for Hyperspectral Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Rußwurm, M.; Korner, M. Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 11–19. [Google Scholar]
- Seydi, S.T.; Hasanlou, M. A new land-cover match-based change detection for hyperspectral imagery. Eur. J. Remote Sens. 2017, 50, 517–533. [Google Scholar] [CrossRef]
- Farahani, M.; Mohammadzadeh, A. Domain adaptation for unsupervised change detection of multisensor multitemporal remote-sensing images. Int. J. Remote Sens. 2020, 41, 3902–3923. [Google Scholar] [CrossRef]
- Ma, W.; Yang, H.; Wu, Y.; Xiong, Y.; Hu, T.; Jiao, L.; Hou, B. Change detection based on multi-grained cascade forest and multi-scale fusion for SAR images. Remote Sens. 2019, 11, 142. [Google Scholar] [CrossRef]
- Qu, X.; Gao, F.; Dong, J.; Du, Q.; Li, H.C. Change detection in synthetic aperture radar images using a dual-domain network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhao, W.; Mou, L.; Chen, J.; Bo, Y.; Emery, W.J. Incorporating metric learning and adversarial network for seasonal invariant change detection. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2720–2731. [Google Scholar] [CrossRef]
- Wan, L.; Xiang, Y.; You, H. An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Gong, M.; Niu, X.; Zhan, T.; Zhang, M. A coupling translation network for change detection in heterogeneous images. Int. J. Remote Sens. 2019, 40, 3647–3672. [Google Scholar] [CrossRef]
- Liu, J.; Gong, M.; Qin, K.; Zhang, P. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 545–559. [Google Scholar] [CrossRef]
- Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A conditional adversarial network for change detection in heterogeneous images. IEEE Geosci. Remote Sens. Lett. 2018, 16, 45–49. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Mercier, G.; He, Y.; Pan, Q. Change detection in heterogenous remote sensing images via homogeneous pixel transformation. IEEE Trans. Image Process. 2017, 27, 1822–1834. [Google Scholar] [CrossRef]
- Li, H.; Gong, M.; Zhang, M.; Wu, Y. Spatially self-paced convolutional networks for change detection in heterogeneous images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4966–4979. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Liu, Y.; Zhang, X.P.; He, Y. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1551–1566. [Google Scholar] [CrossRef]
- Kittler, J. On the accuracy of the Sobel edge detector. Image Vis. Comput. 1983, 1, 37–42. [Google Scholar] [CrossRef]
- Martin, D.R.; Fowlkes, C.C.; Malik, J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 530–549. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Yang, M.; Shan, Y.; Huang, T. Bi-directional cascade network for perceptual edge detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3828–3837. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, X.; Gao, Y.; Ma, X.; Soomro, N.Q. Superpixel segmentation: A benchmark. Signal Process. Image Commun. 2017, 56, 28–39. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; Ding, H.; Huang, X. SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5891–5906. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Liu, F.; Zhang, W.; Xiao, L.; Shi, J. Learning Transformations between Heterogeneous SAR and Optical Images for Change Detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3243–3246. [Google Scholar]
Methods | AUC | FP | FN | OE | CA | KC |
---|---|---|---|---|---|---|
SCCN | 0.9688 | 1060 | 1235 | 2295 | 0.9770 | 0.6154 |
cGAN | 0.9267 | 1652 | 1284 | 2936 | 0.9706 | 0.5466 |
HTP | 0.9526 | 2356 | 838 | 3194 | 0.9680 | 0.5771 |
Proposed | 0.9714 | 1048 | 937 | 1985 | 0.9801 | 0.6816 |
Methods | AUC | FP | FN | OE | CA | KC |
---|---|---|---|---|---|---|
SCCN | 0.9404 | 6408 | 1537 | 7945 | 0.9574 | 0.4494 |
cGAN | 0.9577 | 5223 | 807 | 6030 | 0.9676 | 0.5693 |
HTP | 0.9263 | 6930 | 1969 | 8899 | 0.9522 | 0.3869 |
Proposed | 0.9837 | 2287 | 1345 | 3632 | 0.9805 | 0.6610 |
Methods | AUC | FP | FN | OE | CA | KC |
---|---|---|---|---|---|---|
SCCN | 0.8254 | 5895 | 2710 | 8605 | 0.9923 | 0.1776 |
cGAN | 0.8149 | 5807 | 2901 | 8708 | 0.9763 | 0.1455 |
HTP | 0.8966 | 20,901 | 1610 | 22,511 | 0.9387 | 0.1423 |
Proposed | 0.9494 | 748 | 2080 | 2828 | 0.9923 | 0.5316 |
Methods | AUC | FP | FN | OE | CA | KC |
---|---|---|---|---|---|---|
SCCN | 0.8337 | 9574 | 18,190 | 27,764 | 0.9669 | 0.5233 |
cGAN | 0.7160 | 45,673 | 26,883 | 72,556 | 0.9135 | 0.1299 |
HTP | 0.7961 | 26,710 | 23,905 | 18,981 | 0.9455 | 0.3761 |
Proposed | 0.9187 | 4580 | 19,325 | 18,981 | 0.9715 | 0.5456 |
Methods | AUC | FP | FN | OE | CA | KC |
---|---|---|---|---|---|---|
SCCN | 0.9703 | 1250 | 11778 | 13028 | 0.9761 | 0.6050 |
cGAN | 0.9762 | 1933 | 9994 | 11927 | 0.9782 | 0.6616 |
HTP | 0.9301 | 9648 | 10251 | 19899 | 0.9636 | 0.5273 |
Proposed | 0.9784 | 2775 | 7293 | 10068 | 0.9816 | 0.7385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Wan, G.; Zhang, W.; Wei, Z.; Wu, Y.; Liu, J.; Jia, Y.; Cong, D.; Yuan, L. Edge-Bound Change Detection in Multisource Remote Sensing Images. Electronics 2024, 13, 867. https://doi.org/10.3390/electronics13050867
Su Z, Wan G, Zhang W, Wei Z, Wu Y, Liu J, Jia Y, Cong D, Yuan L. Edge-Bound Change Detection in Multisource Remote Sensing Images. Electronics. 2024; 13(5):867. https://doi.org/10.3390/electronics13050867
Chicago/Turabian StyleSu, Zhijuan, Gang Wan, Wenhua Zhang, Zhanji Wei, Yitian Wu, Jia Liu, Yutong Jia, Dianwei Cong, and Lihuan Yuan. 2024. "Edge-Bound Change Detection in Multisource Remote Sensing Images" Electronics 13, no. 5: 867. https://doi.org/10.3390/electronics13050867
APA StyleSu, Z., Wan, G., Zhang, W., Wei, Z., Wu, Y., Liu, J., Jia, Y., Cong, D., & Yuan, L. (2024). Edge-Bound Change Detection in Multisource Remote Sensing Images. Electronics, 13(5), 867. https://doi.org/10.3390/electronics13050867