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Abstract: Due to the advantages of parallel architecture and low power consumption, a field-
programmable gate array (FPGA) is typically utilized as the hardware for convolutional neural
network (CNN) accelerators. However, SRAM-based FPGA devices are extremely susceptible to
single-event upsets (SEUs) induced by space radiation. In this paper, a fault tolerance analysis and
fault injection experiments are applied to a CNN accelerator, and the overall results show that SEUs
occurring in a control unit (CTRL) lead to the highest system error rate, which is over 70%. After that,
a hybrid hardening strategy consisting of a finite state machine error-correcting circuit (FSM-ECC)
and a triple modular redundancy automatic hardening technique (TMR-AHT) is proposed in this
paper to achieve a tradeoff between radiation reliability and design overhead. Moreover, the pro-
posed methodology has very small workload and good migration ability. Finally, by full exploiting
the fault tolerance property of CNNs, a highly reliable CNN accelerator with the proposed hybrid
hardening strategy is implemented with Xilinx Zynq-7035. When BER is 2 × 10−6, the proposed
hybrid hardening strategy reduces the whole system error rate by 78.95% with the overhead of an
extra 20.7% of look-up tables (LUTs) and 20.9% of flip-flops (FFs).

Keywords: convolutional neural network; single-event upsets; field-programmable gate array

1. Introduction

Convolutional neural networks (CNNs) have emerged as the most successful algo-
rithms in the field of artificial intelligence (AI) due to their superior performance in tasks
such as image classification [1], object detection [2], and real-time analysis [3]. Com-
pared to CPU or GPU solutions, CNN accelerators implemented on SRAM-based field-
programmable gate arrays (FPGAs) have the distinct advantages of high flexibility and low
power consumption. However, when an SRAM-based FPGA is hit by high-energy particles,
the logic level of the affected region is easily flipped, which is known as the single-event
upset (SEU). After that, the normal operation of the CNN will be disrupted, and operation
errors may be induced, such as disorders in program execution, incorrect calculation results,
and even system crashes. Thereby, several studies have recently investigated the impact of
SEUs on neural networks, algorithm-based fault-tolerance (ABFT) strategies, such as the
quantization technique, and redundancy techniques, which are represented by redundant
PEs, and so on.

With the aid of fault injection technology, ref. [4] evaluated the resilience of a CNN
to SEUs and found that convolutional and pooling layers are more resilient than fully
connected layers. Ref. [5] analyzed the susceptibility of a deep neural network (DNN)
and artificial neural network (ANN) to SEUs through partial reconfiguration technology.
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The analyses showed that the effects of SEUs on these neural networks are inversely
proportional to the data flow distance from the hit network layer to the last layer. SEUs in
processing elements (PEs) are more critical than those occurring in RAMs. If one PE out of
6000 PEs crashes, the accuracy of GoogLeNet and MobileNetV2 would drop by more than
20% [6].

The principle of the quantization technique is converting the data format from a float-
ing point to a fixed point. Ref. [7] applied binary quantization to convolutional layers and
found that CNNs with quantized convolutional layers can effectively reduce sensitivity to
radiation. Compared to a 32-bit floating-point implementation, an 8-bit integer design can
provide more than six times the fault-free execution [8]. A dynamic fixed-point quantization
was presented to reduce the bit width of the data from 32-bit to 8-bit. The symbol error
rate (SER) of quantized ZynqNet was reduced by 71.36%, and the circuit area was reduced
by 44.76% compared with standard ZynqNet [9]. Ref. [10] performed a comprehensive
layer-by-layer fault analysis of isomorphic and heteromorphic quantized DNNs. The re-
search results indicated that quantizing the DNN model to fewer bits can help improve
the resilience of the model. However, quantization bits that are too small may sacrifice
the resilience and accuracy of the model. Similarly, through modifying the configuration
memory, ref. [11] performed fault injection experiments on a binary neural network (BNN).
Compared with a sequential circuit, including registers and BRAMs, the reliability of a
BNN was obviously degraded when the SEUs occurred in the configuration memory.

The redundancy technique is another popular solution for hardening the CNN. The
error-detecting mechanism of a PE array was adopted in [6]. During the idle status of the
CNN accelerator, the algorithm checks the function of all LUTs and DSPs, locates incorrect
PEs, and informs the controller to avoid using the disrupted PEs. Ref. [12] proposed a
hybrid computing architecture (HyCA) and a dot-production processing unit (DPPU) to
recalculate all operations mapped to faulty PEs in a two-dimensional computing array.
Multiply-and-accumulate units (MACs) and memory cells (MEMs) are hardened by the
triple modular redundancy (TMR) technique [9]. Ref. [13] adopted TMR technology to
selectively harden the last network layer, which has been proven to be the most susceptible
layer to SEUs in CNN accelerators. However, the approach of hardening an entire network
layer level does not achieve a good trade-off between radiation reliability and design
overhead. Ref. [14] developed an ensemble of weak CNNs to build a low-cost robust
classifier. The system reliability was improved when suffering from soft errors, and the
overhead was much lower than that when using TMR.

To minimize the design cost, the ABFT strategy was also studied recently. Aiming to
operate a multiply matrix in convolutional kernels of the YOLO network, the error checking
and correction technique was adopted in [15], and it was found that 50% to 60% of multiply
faults induced by SEUs can be detected and corrected. Selective multiply accumulate zero-
optimization (SMART) checks whether the input value provided to the neural network
neuron is zero [16]. If the value is zero, the corresponding multiply accumulate operation
is bypassed, and the fault tolerance of the tested neural network is increased by 1.78 times.
Ref. [17] proposed a retraining-based solution, which utilizes fault results induced by SEUs
in the CNN as samples and introduces a penalty mechanism to retrain the CNN. However,
the retraining procedure needs many samples and resources, and it is time-consuming.
Therefore, the retraining-based solution is not fit for the mobile hardware platform. During
training, ref. [18] added the fault resilience principle to pretrained networks of DNNs with
the cost of a few fine-tuning steps. The results showed that the failure rate of neuronal
activation can be significantly reduced for single- and multiple-bit flip failures.

In summary, it is hard to improve the radiation reliability performance with a small
design overhead using the existing hardening techniques. There are two main reasons.
Firstly, the scale of CNNs is huge, and hardening a large number of circuits will consume
significant resources. Secondly, the CNN algorithm is complex, and the computations in
CNNs are very intensive, so it is very difficult to efficiently correct or mask the SEU errors
of CNNs.
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In this paper, the SEU tolerance of CNN accelerators is analyzed in detail. Based on
the analyzed results, SEU fault experiments are carried out to search the most sensitive
components (MSCs) against SEU errors. Thereafter, a hybrid hardening strategy that
combines a finite-state machine error-correcting circuit (FSM-ECC) and the triple modular
redundancy automatic hardening technique (TMR-AHT) is proposed to obtain a good
balance between radiation reliability and design overhead. Meanwhile, the workload of
the proposed methodology is very small, and the migration ability is also very good. The
experimental results show that the proposed hybrid hardening strategy applied to the
control unit (CTRL) of all layers reduces the whole system error rate by 62.5% with the cost
of 20.7% look-up tables (LUTs) and 20.9% flip-flops (FFs).

The remainder of this paper is organized as follows. Section 2 outlines the basics of
CNN accelerator and SEU fault simulation. SEU tolerance analysis of CNN and identifica-
tions of MSCs are presented in Section 3. Section 4 proposes a hybrid hardening strategy
for a CNN accelerator. In Section 5, the hardening performance and the design overhead of
a CNN accelerator are evaluated and analyzed. Finally, conclusions and future works are
given in Section 6.

2. Basics of CNN Accelerator and SEU Fault Simulation
2.1. CNN Accelerator

As one of the most typical CNN networks, Lenet-5 is composed of three convolutional
layers, two pooling layers, and two fully connected layers. Figure 1a shows the model of
CNN networks and the dimensions of each layer. Convolutional layers (Conv1, Conv2,
Conv3) utilize a lot of MACs, and extract key features from input images or features. The
dimensions of key features are reduced further by pooling layers (Pool1, Pool2), which
include many comparators. Convolutional and pooling layers are connected alternately,
followed by fully connected layers (Fc1, Fc2). The fully connected layers then complete the
classification or prediction task based on these features.
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As seen from Figure 1b, the CNN accelerator consists of the CTRL, the MEM, and
the PE array to implement the function of the CNN model shown in Figure 1a. The CTRL
transfers reading/writing addresses to the MEM, and sends specific instructions to PEs,
such as convolution or pooling calculations. The MEM stores CNN parameters which
usually are input/output feature maps, weights, and biases of each layer, and so on. The PE
array contains lots of PEs to perform parallel operations, and each PE consists of numerous
MACs, adders, comparators, and so on. In other words, for the convolutional layer, pooling
layers, and fully connected layers shown in Figure 1a, the operations of these layers are
controlled by the CTRL, the related data are read from MEM, computed by the PE array,
and then written back to the MEM.

The design of the CNN accelerator shown in Figure 1b is written in Verilog HDL first.
The Xilinx EDA tool is then utilized to synthesis and implement the CNN design, and
generate the configuration file for SRAM-FPGA. When the hardware platform shown in
Figure 1c is powered on, the corresponding FPGA, which is Xilinx XC7Z035FFG676-2, is
configured based on the configuration file.

2.2. SEU Fault Model

SEUs will occur in any component of a CNN accelerator. Figure 2 shows an example
of SEU fault injection and propagation. As seen from Figure 2, an SEU occurs in a storage
cell of weight BRAM. Based on control data from the CTRL, the flipped data in weight
are transferred to PEs and involved in convolutional calculations. Finally, the SEU error
propagates to activation function rectified linear unit (ReLU) and results in incorrect
convolutional results. To simulate these SEUs, the SEU fault model SFM described by
Equation (1) is utilized for fault injection.

SFM =< ST, FN, FD, BER > (1)

where ST denotes the start time of one fault injection, FN represents the flipped node
identity, FD indicates the fault duration of injected SEU, and BER is short for bit error rate,
which is determined by the intensity of radiation sources.
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The value of BER is defined by Equation (2). A higher BER value indicates that more
SEUs occur in the CNN within the same simulation time.

BER = NFN/NTN (2)

where NFN is the number of flipped nodes and NTN is the number of total nodes.



Electronics 2024, 13, 879 5 of 16

It is worthy to note that the units of ST and FD are both the cycle of the system clock.
Assuming that T is the total operating cycles of CNN accelerator for a task, the value of ST
is a random integer which ranges from 0 to T − 1. When FD is 1, it represents that an SEU
error lasts only one cycle of the system clock.

2.3. SEU Evaluation Platform

Compared to the typical SEE evaluation scheme [19,20], the proposed scheme provides
a rapid solution to analyze the vulnerable modules in the logic designs before implementa-
tion [21].

As described in Figure 3, the SEU evaluation platform performs fault injection simula-
tion into the evaluated CNN design, and analyzes the simulation results. The evaluated
CNN design is instantiated twice, named c1 and c2. The original stimuli are used for the
normal operation of the evaluated circuit. The fault injection stimuli are sent only to the
evaluated circuit c2. The fault monitor monitors the outputs of evaluated circuits c1 and
c2 simultaneously. If the outputs are different, it indicates that an error is induced by the
injected fault. The analyzed results are then stored for analysis.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 18 
 

 

Kernels

Weight 

BRAM
Bias BRAM

Output Feature

BRAM

+

× ×

+

×

+

+

ReLU

ADDR

R/W

MAC

Max-Pool

Input Feature

BRAM

CTRL

MEM

Input features @32×32

×  

+

× × ×

PE array

×

+

+

 

  

    

SEU errors

5×5

Output features

28×28

 

Figure 2. Convolution calculations with SEUs in CNN accelerator. 

The value of 𝐵𝐸𝑅  is defined by Equation (2). A higher 𝐵𝐸𝑅  value indicates that 

more SEUs occur in the CNN within the same simulation time. 

𝐵𝐸𝑅 = 𝑁𝐹𝑁/𝑁𝑇𝑁 (2) 

where 𝑁𝐹𝑁 is the number of flipped nodes and 𝑁𝑇𝑁 is the number of total nodes. 

It is worthy to note that the units of 𝑆𝑇 and 𝐹𝐷 are both the cycle of the system 

clock. Assuming that T is the total operating cycles of CNN accelerator for a task, the value 

of 𝑆𝑇 is a random integer which ranges from 0 to T − 1. When 𝐹𝐷 is 1, it represents that 

an SEU error lasts only one cycle of the system clock. 

2.3. SEU Evaluation Platform 

Compared to the typical SEE evaluation scheme [19,20], the proposed scheme pro-

vides a rapid solution to analyze the vulnerable modules in the logic designs before im-

plementation [21]. 

As described in Figure 3, the SEU evaluation platform performs fault injection simu-

lation into the evaluated CNN design, and analyzes the simulation results. The evaluated 

CNN design is instantiated twice, named c1 and c2. The original stimuli are used for the 

normal operation of the evaluated circuit. The fault injection stimuli are sent only to the 

evaluated circuit c2. The fault monitor monitors the outputs of evaluated circuits c1 and 

c2 simultaneously. If the outputs are different, it indicates that an error is induced by the 

injected fault. The analyzed results are then stored for analysis. 

 

Figure 3. Operation of SEU evaluation platform. Figure 3. Operation of SEU evaluation platform.

The whole operation is performed automatically by Python script; the workload
of SEU/SET evaluation is not large. In addition, the evaluated circuit does not need to
be modified for SEU/SET evaluation, and then making mistakes in modification work
is avoided. The reason is that the operation of fault injection is implemented by the
assignment statements “force” and “release” provided by Verilog HDL. The assignment
statement “force” can force the value of a circuit node to be the designated value when
“force” is effective. The assignment statement “release” can release the force assignment
and restore the circuit to normal operation. Complex fault injection simulations are also
able to be performed through the combination of “force” and “release”.

2.4. CNN Fault Type

The classification accuracy (CA) is the average probability of correct classification.
The definition of CA is given by Equation (3), and LF(x,y) is a simple logic function which
is shown in Equation (4).

CA =
1
N

N

∑
i=1

LF(argmax(vi), Lbli) (3)

LF(x, y) =
{

1, x = y
0, x ̸= y

(4)

where vi is one-dimensional vector of probability elements output by the Fc2 layer, argmax(vi)
returns the index of the maximum value of vi, and Lbli is the label index of the i-th image.

However, the classification accuracy is not accurate enough to reflect the effect of
SEUs on the operation of the CNN accelerator. In this paper, the failure status of the CNN
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accelerator caused by SEUs is divided into four types, which are system crash, serious
error, tolerable error, and benign error, as shown in Table 1. Under the case of benign
error, the classification category represented by argmax(vi) and classification accuracy of
Lentet-5 network represented by vi are both correct, and the system runs correctly. Under
the case of tolerable error, although the classification accuracy is wrong, the probability
of the corresponding category is still the largest, so this image can be correctly classified.
Serious error means that both the classification category and the classification accuracy are
both wrong. System crash indicates that no result is given on the desired time.

Table 1. Fault types induced by SEU.

Fault Types Notes

System crash No values are given on time.
Serious error Both argmax(vi) and vi are wrong.
Tolerable error vi is wrong, but argmax(vi) is correct.
Benign error Both argmax(vi) and vi are correct.

3. SEU Tolerance Analysis of CNN

The input/output features, weights, and biases are stored in the MEM. Based on
control data from the CTRL, the corresponding data in the MEM is transferred to all PEs
and participates in the calculations. Fortunately, many memory hardening techniques such
as TMR and error correcting code are reported and work very well. Therefore, only the
adverse effects of SEU errors on the PE array and the CTRL are analyzed here.

3.1. SEU Tolerance Analysis of PE Array
3.1.1. Analysis of Calculations in Pooling Layer

The function of pooling layer is a kind of data downsampling. Taking max-pooling
shown in Figure 4a as an example, n is the size of pooling kernel and coordinate (0, 0)
represents the top-left corner of feature map; IFi,j is a input feature whose coordinate is
(i, j) in the pooling kernel. The output feature of the pooling kernel OFP is equal to the
maximum value in the n × n pooling kernel, which is described by Equation (5).

OFP = max
∀i,j∈{0,1...,n−1}

IFi,j (5)
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A max-pooling with a kernel size of n × n and a stride of n can compress the feature
size by a factor of n2. Therefore, after the execution of a pooling layer, the mask probability
of SEU error that exists in a certain input feature is

(
n2 − 1

)
/n2. Figure 4b shows an

example of max-pooling with a kernel size of 2 × 2. If an SEU occurs in IFi,j, the mask
probability is 3/4. Obviously, the mask probability will approach 1 with the increase in n.
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3.1.2. Analysis of Calculations in Convolutional Layer

Based on Figure 2, the l-th channel output feature of convolutional calculation OFCl
can be described by Equation (6). When the nodes of the convolutional layer, especially the
nodes of weights, bias, and input features, are affected by SEUs, erroneous convolutional
values are generated in the convolutional layer.

OFCl = ReLU

(
m−1

∑
k=0

n−1

∑
i=0

n−1

∑
j=0

IFi,j,k × Wi,j,k,l+bl

)
(6)

where m denotes the channel size of the input feature map, IFi,j,k represents the feature
value located at coordinate (i, j) of the k-th channel of the input feature map, Wi,j,k,l
represents the weight located at coordinates (i, j) determined by the k-th input channel and
the l-th output channel, and bl is the bias of the l-th output channel.

However, it is worth noting that the last operation of convolutional calculation in
Equation (6) is ReLU. In actuality, there are three commonly adopted activation functions in
the convolutional layer, which are sigmoid, tanh and ReLU. Illustrated by Figure 5, sigmoid
and tanh effectively confine the erroneous convolutional values to ranges of [0, 1] and
[−1, 1], respectively, regardless of their magnitude. Meanwhile, ReLU restricts negative
inputs to 0, while preserving positive inputs in their original scale. Therefore, after the
operations of sigmoid and tanh, the errors induced by SEUs will be limited to the ranges of
[0, 1] and [−1, 1], respectively. In contrast, the SEU tolerance ability of ReLU against SEUs
depends on the sign of input value. When the input value is negative, ReLU is completely
immune to SEUs’ adverse effect. However, the induced SEU error in positive input will
propagate to the next stage without any reduction.
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3.1.3. Analysis of Calculations across Multiple Layers

Based on the above analysis, it can be deduced easily that activation and max-pooling
functions are able to suppress the effect of SEU errors. Since multiple convolutional layers
and pooling layers are utilized in CNNs, the inhibitory effect of a CNN on SEU errors
should be more and more obvious with the propagation of SEU errors in the CNN, which
matches the opinions presented by ref. [5] very well.

However, experimental results show that, under the same BER, SEU errors in the
first layer will incur a worse classification accuracy performance of a CNN accelerator
compared with SEU errors occurring in later layers of a CNN. This seems to be in conflict
with the analysis described in Sections 3.1.1 and 3.1.2, but can be explained from the aspects
of circuit scale and execution time.

First, the occurrence probability of SEU errors is proportional to circuit scale. As seen
in Figure 1a, the circuit scale of the first layer is much larger than that of the other layers.
Therefore, more SEU errors will occur in the first layer.
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Second, SEU errors are a recoverable type of soft errors. Therefore, SEU errors succeed
in disrupting the operation of CNN only when the hit layer is active. It indicates that for
a specific layer, the probability disrupted by SEU errors is proportional to the execution
time. As shown in Figure 6, the Conv1 layer, which is the first layer, consumes the longest
execution time, accounting for about 80% of total execution time. The execution time of
various layers tends to decrease with the decrease in feature map size, without regard to
the parallelism mechanism of the CNN accelerator. Therefore, despite the circuit scale, the
effective probability of SEU errors occurring during the operation of Conv1 is much higher
than that occurring during the operation of other layers.
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3.2. SEU Tolerance Analysis of CTRL

The storage cells in the CTRL are mainly divided into two groups, which are state
machine registers and data registers. State machine registers are utilized to store state
transitions between and within network layers, providing necessary control information
for PEs. Most data registers are adopted to generate addresses and control flags for
reading/writing MEMs.

Figure 7a describes an example of an FSM operation which is affected by SEU. When
the status code becomes corrupted, the state of related PE jumps from Conv1 to Conv3,
and the mismatched features and weights are then transferred to the corresponding PE. In
addition, based on the current operating status, CTRL will send corresponding flag signals
to instruct the execution of corresponding PEs. As shown in Figure 7b, after the pooling
operation is carried out, the state should perform pooling operation again. But since the
flag of “Pool done” is flipped, the state turns back to the main state directly. After that, the
operation of the corresponding PE is disrupted.

3.3. MSC Identification

To locate the MSC, the CNN accelerator shown in Figure 1 is taken as the evaluated
design. The radiation performance of the CNN accelerator is evaluated through the SEU
evaluation platform shown in Section 2.3. As seen in Figure 1, the size of input features
is 32 × 32, the output of Conv1 features includes six channels, the size of each channel is
28 × 28, and is short for 6@28 × 28. The sizes of Pool1, Conv2, Pool2, Conv3, Fc1, and Fc2
are 6@14 × 14, 16@10 × 10, 16@5 × 5, 120@1 × 1, 84 × 1, and 10 × 1, respectively.

Based on the low probability of SEUs shown in refs. [4,9], we set BER to 10−6 and
performed independent experiments over 1000 times to the CNN accelerator. The clock
frequency was 100 MHz.

Figure 8a shows the fault type statistics of the CNN model view when SEU errors
are injected into different layers of the CNN separately. It was found that SEU errors
in convolutional layers have a greater impact on classification accuracy than those in
pooling and fully connected layers. For instance, SEU errors in Conv1 layer caused a
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40.7% reduction in classification accuracy, and 35.3% of these errors accounted for the flips
in control logic. In contrast, SEU errors in Fc2 had almost no effect on the classification
accuracy of the CNN accelerator. The reason is that to improve the reliability of the CNN
accelerator, a local reset operation is triggered before each layer is activated. After then, only
SEU errors occurring during Fc2 activation status are able to affect classification accuracy.
Meanwhile, the activation time of Fc2 layer is very short, and then the operations of Fc2
layer are seldom disrupted.
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The experimental results shown in Figure 8b describe the impact of SEU errors from
the architecture view. When the SEU errors occur in the CTRL, the classification accuracy
drops sharply, up to 69.5%. However, when SEU errors occur in the MEM and the PE array,
the decrease in classification accuracy is much smaller and does not exceed 5.4%.

In conclusion, the SEU effect on convolutional pooling and fully connected layers is
inversely proportional to the data flow distance. Moreover, SEU events occurring in the PE
array, such as activation functions and pooling functions, incur tolerable errors and benign
errors with a high possibility. Therefore, based on the above analysis, it is found that the
CTRL is the MSC in the CNN accelerator.
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4. Hardening Strategies

To enhance the resilience of the CNN accelerator against SEU errors with low overhead,
the FSM error-correcting circuit (FSM-ECC) and TMR automatic-hardening technique
(TMR-AHT) are proposed to harden state machine registers and data registers in the
CTRL, respectively.

4.1. FSM Error-Correcting Circuit

To detect and correct SEU errors in FSM unit, the FSM-ECC was designed, and the
schematic is shown in Figure 9. As seen from Figure 9, the FSM-ECC consists of one
FSM, three DFFs, one XOR array, two multiplexers (MUXs), and one ROL-1bit, where the
function of the ROL-1bit is shifting the input left by 1 bit cyclically.
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One-hot coding is adopted for the state codes, which include next state nt_state, current
state ct_state, delayed current state ct_state_d, corrected delayed current state cct_state_d,
and corrected state cd_state. We assume that an FSM comprises n states, collectively forming
a set S. Each state is represented by n-bit Si (Si ∈ S), as shown in Equation (7).

Si = {sn−1
i , · · · sk+1

i , sk
i , sk−1

i , · · · s0
i }, i, k ∈ [0, n − 1] (7)

where sk
i represents the k-th bit in Si.

Furthermore, the value of sk
i is given by Equation (8), where LF() is described by

Equation (4).
sk

i = LF(i, k), i, k ∈ [0, n − 1] (8)

Assuming that cd_state is Si and jump signal jp_flag is active, FSM sends Si+1 to nt_state
if i ̸= n − 1. If i = n − 1, it indicates that FSM reaches the last state, so S0 will be assigned
to nt_state. If jp_flag is invalid, nt_state keeps the state Si. With the trigger of system clock,
ct_state is then updated by nt_state.

If one bit of ct_state is flipped by SEU, the flipped ct_state is no longer any value in the
set S. Therefore, there are two logic-1s or no logic-1 in the flipped ct_state. According to
the operation of XOR array, whose function is given by Equation (9), err_n will be active.
When the delayed jump signal jp_flag_d is active, cd_state is assigned to be cct_state_d.

err_n = ĉt_state (9)

The timing waveforms in Figure 10 illustrate the operation of FSM-ECC. At t1, no
registers are affected by SEU, so err_n is not asserted. Meanwhile, since jp_flag is invalid,
the signals of ct_state, ct_state_d, and nt_state are the same. At t2, ct_state [2] is affected
by SEUs and jumps from 0 to 1. Based on the operation of XOR array, err_n is asserted.
When jp_flag is invalid, it means that there is no state transition in the previous clock cycle.
Since ct_state_d is the delayed cd_state, the value of ct_state_d is directly reloaded to cd_state.
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At t3, ct_state [1] is flipped by SEU, and then err_n is asserted. Considering jp_flag_d is
valid, ct_state_d cannot be sent to cd_state directly. Instead, cct_state_d is transmitted to
cd_state through two MUXs. At t4, an SEU error occurs in ct_state_d. However, since err_n
is inactive, ct_state is sent to cd_state directly. Therefore, the SEU error does not have any
impact on the FSM operation.
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4.2. TMR Automatic-Hardening Technique

In terms of circuit reliability, TMR is a successful solution that sacrifices area to obtain
better radiation-reliability performance. Except for the registers of FSM, the CTRL still
includes many other registers, where most of them are utilized as counters and control
flags. These registers occupy very few hardware resources but play a crucial role in the
CNN accelerator. Therefore, hardening these registers with TMR can obviously raise the
radiation reliability with minimal hardware overhead.

Because the scale of the CTRL is huge, a hardening script was developed to locate
and harden the rest unhardened registers of the CTRL automatically. The flowchart of the
proposed script is presented in Figure 11. At first, the script searches all registers with
register transfer level (RTL) with the keyword “reg”. However, if there is no clock signal
included in the sensitive list of the registers, the corresponding variables with the keyword
“reg” will be implemented by combination circuit. These kind of register-type variables
will be ignored by the script. After then, the registers in one-hot coding state logic are
also ignored, since the registers of FSM are hardened by FSM-ECC. The left register-type
variables located in the sequential logic are recorded in a register list. Finally, these recorded
registers are hardened automatically by the proposed script.

As one example, shown in Figure 12, the unhardened register is named as DFF, the
input of the register is D, and the output of the register is Q. During the hardening operation,
the register DFF is copied three times. The three registers are named as DFF0, DFF1, and
DFF2, respectively. The inputs of the three registers are all D. The outputs of the three
registers are Q0, Q1, and Q2, respectively. After that, a three-input majority voter circuit,
which is combinational logic, is added. The three inputs of the majority voter circuit are
connected with the outputs of the three registers separately. The output of the majority voter
circuit is Q. Since SEU errors are highly unlikely to occur in any two circuits simultaneously,
a correct output result can be guaranteed by TMR-AHT.
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5. Evaluations and Verifications
5.1. Verifications of FSM-ECC and TMR-AHT

To evaluate the reliability performance of our proposed hardening strategies, the
evaluation platform presented in Section 2.3 is utilized to perform a large number of
experiments on the CNN accelerator shown in Figure 1 with different BER. As shown
in Figure 13, when BER is 10−7, only a few registers are disrupted. Due to the layer-by-
layer computational architecture and inherent fault-tolerance ability of CNN, both the
unhardened and the hardened CNN accelerator have high classification accuracy, and the
latter has a classification error rate of less than 0.1%. When BER is 10−6, the classification
accuracy of unhardened CNN decreases to 30.36%. However, the hardened CNN has only
two classification errors among 1032 independent experiments. When BER is 10−5, the
unhardened CNN fails to work completely. However, the hardened CNN still achieves
92.67% classification accuracy.
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5.2. Comparisons of Design Overhead and Fault Tolerance

To make a fair comparison with the proposed hardening strategies, the method pro-
posed in ref. [13] is implemented with our CNN accelerator design. Table 2 shows the
utilized resources of unhardened and hardened CNN accelerators on Xilinx Zynq-7035.
The clock frequency is 100 MHz.

Table 2. Utilized resources.

Unhardened Ref. [13] Proposed

LUTs 8040 (100%) 15,475 (192.5%) 9705 (120.7%)
FFs 11,932 (100%) 22,379 (187.6%) 14,427 (120.9%)
DSPs 120 (100%) 120 (100%) 120 (100%)
BRAMs 33 (100%) 33 (100%) 33 (100%)

As seen in Figure 9, FSM-ECC has two long paths. One path includes XOR array and
MUX. Another path includes ROL-1bit and two MUXs. The TMR-AHT technique also
increases the delay of critical path and reduces the slack.

But it is worth noting that the critical path of the network layer is much longer than
the critical path of the CTRL unit. Therefore, the increase in the critical path of the CTRL
unit due to the proposed methodology usually has little effect on the maximum frequency
of the CNN accelerator.

To compare and verify the effectiveness of the hardened CNN accelerator, fault injec-
tion simulations with different BERs were applied to three CNNs, which are unhardened
CNN, the CNN hardened by ref. [13], and the proposed hardened CNN. For each BER,
the fault injection simulations were performed at least 1000 times, and every simulation
time was 24,550 clock cycles, which are the cycles needed by a complete classification task.
Table 3 shows the corresponding error probabilities including the total number of serious
errors and system crashes, and energy efficiency, which is defined by Equation (10).

HF =
ERR
RIR

× 100% (10)

where HF is short for hardening efficiency. ERR is the error reduction rate, which is the
difference between the error probability of the unhardened CNN and the hardened CNN.
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RIR is the resource increase rate, which is the percentage of extra resource consumed by
the hardened CNN.

Table 3. Error probability and hardening efficiency at different BERs.

BER
Error Probability (%) HF (%)

Unhardened [13] Proposed [13] Proposed

10−8 0.6 (100%) 0.30 (50%) 0.00 (0%) 0.17 (11.81%) 1.44 (100%)
10−7 10.57 (100%) 10.49 (99.24%) 0.36 (3.41%) 0.04 (0.16%) 24.54 (100%)

2 × 10−7 20.56 (100%) 19.26 (93.68%) 1.08 (5.25%) 0.72 (1.54%) 46.80 (100%)
10−6 68.89 (100%) 70.51 (102.35%) 5.56 (8.07%) −0.90 (−0.59%) 152.17 (100%)

2 × 10−6 86.36 (100%) 82.05 (95.01%) 7.41 (8.58%) 2.40 (1.27%) 189.71 (100%)
10−5 100.0 (100%) 100.0 (100%) 39.13 (39.13%) 0.00 (0%) 146.25 (100%)

2 × 10−5 100.0 (100%) 100.0 (100%) 72.18 (72.18%) 0.00 (0%) 66.84 (100%)

When BER is 10−8, the error probabilities of the compared three CNNs are all very
small, but only the error probability of our hardening CNN is zero. With the increase in
BER, error probabilities of the three CNNs all increase. When BER is larger than 10−7,
the error probabilities of the unhardened and hardened CNN by ref. [13] rise obviously.
Furthermore, there is no significant difference in error probability between the unhardened
and hardened CNN by ref. [13], regardless of BER level. It indicates that the hardening
strategy presented in ref. [13] is not applicable to typical CNN accelerators. Meanwhile,
when BER is 2 × 10−6, our hardening strategy still works well and achieves an accuracy
rate of 92.59%. In comparison, the other two CNNs only achieve an accuracy rate of 13.64%
and 17.95%, respectively. The error probability of our hardening CNN increases sharply
only when BER is larger than 2 × 10−6.

In addition, the HF values of CNN hardened by ref. [13] are always nearly zero, and
the maximum value of HF for the CNN hardened by ref. [13] is 2.40%. When BER is lower
than 10−7, the HF value of our hardened CNN is less than 25%. The reason is that the
error probability among this range of BER is much smaller, and the corresponding ERR is
also small. When BER rises monotonically in the range of [10−7, 2 × 10−6], the HF value
of our hardening CNN also rises, and reaches the peak point when BER is 2 × 10−6. It
means that our hardening CNN achieves a good tradeoff between radiation reliability and
design overhead. The HF value of all hardened methods falls when BER approaches 10−5.
Fortunately, research has demonstrated that an SEU is a low-probability event and BER
usually does not exceed 10−5 [4,9].

The comparison results of five hardened accelerator designs and our design are shown
in Table 4, which compares the utilized resources and error probability of each scheme, and
also gives the implementation conditions of each scheme, such as fault injection method
and harden method. Ref. [7] implemented a CNN accelerator design using the hybrid of
binary and FP32 quantization accuracy. Compared to the FP32 implementation, the error
probability of this implementation is increased by 12% and the LUT resource consumption
is reduced by 31.46%.

Ref. [8] hardened the FP32 CNN accelerator design with FP16 and INT8 quantization,
resulting in 47.9% and 76.3% LUTs reduction, 28.6% and 33.3% FFs reduction, and 22% and
72% ERR, respectively.

Ref. [9] reinforced the unhardened FP32 CNN accelerator with full TMR and 8-bit fixed
quantization, and the error probabilities were reduced by 33.59% and 40.30%, respectively.
Meanwhile, the LUT and FFs used by the full TMR harden method increased by 119.3% and
95.1%, while the LUT and FFs used by the Quant Fix8 harden method decreased by 17.6%
and 31.0%, respectively. It can be seen that the quantization method can better harden the
CNN accelerator while reducing resource consumption, but too much quantization will
lead to obvious precision loss.
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Table 4. Utilized resources and error probability.

Proposed [7] [8] [9] [10] [13] [16]

CNN Model Lenet-5 Lenet-4 Lenet-4 ZynqNet MLP-3 Lenet-4 MLP-3

Platform XC7Z035 XCZU9EG ZYNQ XC7Z020 Software XCZU9EG Software

Baseline Unhardened
Fix W8A16 FP32 FP32 Unhardened FP32 Unhardened

Fix 32
Unhardened

FP32
Unhardened

FP32

Precision Fix W8A16 Binary
and FP32 FP16 INT8 - Fix 4 - -

Fault Injection
Method Software Hardware Hardware Hardware Software Hardware Hardware

Harden
Method

FSM-ECC &
TMR-AHT Quant Quant Full

TMR
Quant
Fix 8 Quant Selective

TMR
SMART+

TMR

LUTs RIR 20.7% −31.46% −47.9% −76.3% 119.3% −17.6% - 6.74% -

FFs RIR 20.9% 0% −28.6% −33.3% 95.1% −31.0% - 0% -

BER 10−7 10−6 - - - 10−1 - -

ERR 96.59% 91.93% −12% 22% 72% 33.59% 40.30% 39.96% 14% 55.52%

Ref. [13] used the selective TMR technique to harden the MNIST CNN accelerator.
Compared to the unreinforced model, selective TMR reduced the probability of critical
error by 14% with a marginal overhead of only 8%.

Refs. [10,16] utilized Quant, SMART, TMR, and SMART+TMR, respectively, to harden
the MLP, and the error probability was decreased by 39.96%, 43.84%, 53.97%, and
55.52%, respectively.

Compared with the above designs, the harden method proposed in this paper can
better harden the CNN accelerator while increasing fewer resources, and can ensure that
the error probability is reduced by more than 90%.

6. Conclusions and Future Works

This paper presents a hybrid hardening strategy consisting of a finite state machine
error-correcting circuit (FSM-ECC) and a triple modular redundancy automatic-hardening
technique (TMR-AHT). The proposed methodology can be applied to generic SRAM-FPGA,
and even can be extended to the hardened application of ASIC digital design. Moreover,
the workload of the proposed methodology is very small. FSM-ECC can harden any kind
of FSM, and the workload only involves checking the width of the state register. The other
registers in the CTRL unit are replaced by TMR registers with TMR-AHT automatically.

To validate the effect of the proposed hybrid hardening strategy, a CNN accelerator
was hardened and implemented with an SRAM-based FPGA. Our experiments reveal
that CTRL is the least resilient to SEUs compared to other layers and components. Our
FSM-ECC and TMR-AHT mapping to CTRL is an optimal scheme for CNN accelerator
design. When BER is 2 × 10−6, our hardening strategy reduces the CNN error rate by
78.95%, and the hardening efficiency is as high as 189.71%.

In the future, we will continue to research the low-overhead hardened techniques of
CNN accelerators, such as double modular redundancy (DMR) or selective TMR.
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