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Abstract: Driving experience and anticipatory driving are essential skills for humans to operate
vehicles in complex environments. In the context of autonomous vehicles, the software must offer
the related features of scenario understanding and motion prediction. The latter feature of motion
prediction is extensively researched with several competing large datasets, and established methods
provide promising results. However, the incorporation of scenario understanding has been sparsely
investigated. It comprises two aspects. First, by means of scenario understanding, individual
assumptions of an object’s behavior can be derived to adaptively predict its future motion. Second,
scenario understanding enables the detection of challenging scenarios for autonomous vehicle
software to prevent safety-critical situations. Therefore, we propose a method incorporating scenario
understanding into the motion prediction task to improve adaptivity and avoid prediction failures.
This is realized by an a priori evaluation of the scenario based on semantic information. The evaluation
adaptively selects the most accurate prediction model but also recognizes if no model is capable
of accurately predicting this scenario and high prediction errors are expected. The results on the
comprehensive scenario library CommonRoad reveal a decrease in the Euclidean prediction error by
81.0 % and a 90.8 % reduction in mispredictions of our method compared to the benchmark model.

Keywords: autonomous vehicles; motion prediction; self-evaluation; Graph Neural Network

1. Introduction

Human driving skills depend on the driver’s experience [1]. The analysis by Rah-
man et al. [2] reveals that the lack of experience in interactive situations is the primary
influence factor of fatal accidents. Moreover, the missing ability to recognize dangerous
situations [3,4] and the higher likeliness for critical errors of inexperienced drivers [5,6]
increase the risk of accidents. So, it becomes apparent that driving experience is essential
to drive safely. Consequently, if we assume the human driver as the reference for an
autonomous vehicle (AV) system, the question arises of how scenario understanding, the
algorithmic equivalent of driving experience, can be integrated into the AV’s software to
improve its safety, especially in interactive scenarios. The current state of the art focuses
on motion prediction algorithms without explicitly considering scenario understanding to
solve these interactive scenarios. There are several competitions on large datasets [7–9] to
foster the development of motion prediction methods. Deep-learning algorithms with high
accuracy regarding low average Euclidean error are currently at the top of the competition’s
leaderboards. However, the leaderboards also reveal the high miss rate of these algorithms,
which specifies the rate of erroneous predictions across all objects. Thus, there is a discrep-
ancy in the state of the art that low mean prediction errors are achieved, but prediction
failures with high maximum Euclidean errors can not be prevented. Furthermore, Schöller
et al. [10] show that the accuracy of a prediction model depends on the object type and
traffic scenario. Therefore, it is also desirable to adaptively select the model depending
on the present scenario. These two points emphasize the need to incorporate scenario
understanding into motion prediction to detect prediction failures a priori and to adaptively
apply the prediction model for the respective scenario.
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The presented research in this work addresses this need. Our proposed method,
Self-Evaluation of Trajectory Predictors, is outlined in Figure 1. Depending on the semantic
information, the method evaluates the current scenario in which the AV operates by means
of scenario understanding. The evaluation output is either the selection of the most accurate
valid trajectory prediction out of multiple available prediction models or the classification
of the scenario as invalid. A scenario is classified as invalid if none of the given prediction
models, the predictors, can output a trajectory with an error below a defined threshold of
a specific metric. By this, safety-critical prediction scenarios with a high expected error
are a priori detected. The method aims to imitate the human driving experience in terms
of recognizing dangerous situations and adapting to scenarios. In summary, our main
contributions are as follows:

• A self-evaluation method for trajectory predictors, which adaptively selects the best
prediction model for a present scenario or classifies the scenario invalid if no prediction
model is suitable to avoid mispredictions.

• A hybrid prediction method consisting of three different prediction models, which are
adaptively called by the algorithmic scenario understanding.

• A Proximity-Dependent Graph Neural Network for interaction-aware trajectory pre-
diction.

The code used in this research is available as open-source software at https://github.
com/TUMFTM/SETRIC (Initial Release, version 1.0.0) (14 February 2024).

Predictor 𝟏

Predictor 𝑵

...

Invalid

Evaluation

Based on Scenario 

Understanding

Figure 1. Overview of the proposed method: self-evaluation of trajectory predictors for au-
tonomous driving.

2. Related Work

The following section reviews the broad field of motion prediction algorithms but
focuses on prediction algorithms considering scenario understanding. The presented state
of the art is then discussed to terminate the section.

Motion prediction algorithms can be divided into the three classes of physics-based,
pattern-based, and planning-based approaches [11]. The most reputable motion prediction
competitions [7–9] have been dominated by pattern-based approaches. Graph Neural
Networks (GNNs) [12], especially transformer architectures or similar forms of attention
mechanisms [13], are currently the most performant architectures because of their ability to
model non-Euclidean interactions between road users, efficiently encode semantic informa-
tion [14–16], or combine both tasks [17–20]. The prediction accuracy in these competitions
is evaluated by mean Euclidean distance metrics such as the Root-Mean-Square Error
(RMSE), the Average Displacement Error (ADE), and the Final Displacement Error (FDE).
However, these metrics only reflect mean values and ignore outliers that could lead to
safety-critical scenarios. However, there is still a considerable amount of outliers with high
prediction errors, which is shown by the high miss rates of the prediction algorithms in the
competitions. In the NuScenes prediction competition [8], the MissRate2k is defined as the
proportion of mispredictions of all samples. If the maximum pointwise Euclidean distance
between the prediction and ground truth is greater than 2 m, a misprediction is given. For
each object, the k most likely predictions are taken and evaluated to see if any of them are
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mispredictions. Due to the fact that the miss rate is not graded in the competition, the
algorithms are not optimized to prevent mispredictions but instead only focus on the lowest
mean distance error on the dataset. One approach to consider potential misprediction in the
prediction output is the usage of uncertainty metrics. The Negative Log Likelihood (NLL)
outputs the standard deviation to quantify the uncertainty of a trajectory [21–23]. In the
case of maneuver predictions, the specification of probabilities [24] can be used. However,
both approaches can not differentiate between the case of several possible options for the
future motion or if the model can not understand the current scenario, which both lead to
high uncertainty. In summary, none of the top-ranked models in the prediction competi-
tions are able to prevent safety-critical mispredictions or to evaluate its own capability to
accurately predict the future motion of surrounding objects in a scenario.

An approach that incorporates scenario understanding into motion prediction to im-
prove adaptivity is presented by Ben-Younes et al. [25]. The authors introduce a method for
context awareness by leveraging blind predictions, which aims to incorporate contextual
information in addition to motion history. The model is trained using a training procedure
designed to promote the use of semantic contextual cues. Two novel metrics, dispersion
and convergence-to-range, are introduced to measure the temporal consistency of succes-
sive forecasts. The model outperforms previous works, as well as alternative de-biasing
strategies. The results show that the method improves both the accuracy and stability of
trajectory predictions compared to state-of-the-art methods. Novo et al. [26] propose a self-
assessment framework for safety evaluation that focuses on prediction as a key component
for safety. The concept involves three time constraints: a physical constraint based on the
time required for emergency braking, a maneuver constraint based on the time needed
to complete a driving maneuver, and a prediction model constraint based on the time
horizon of a deep learning-based trajectory prediction model. The authors demonstrate the
feasibility of the concept through specific use cases, such as lane changes in urban areas and
on highways. Farid et al. [27] present a probabilistic run-time monitor that detects harmful
prediction failures. The monitor uses trajectory prediction errors to reason about their
impact on the AV and detects failures only if they are harmful to the AV’s safety. The results
show that the monitor achieves the highest area under the receiver operating characteristic
curve compared to the baseline methods, indicating its strong performance in detecting
prediction failures. Carrasco et al. [28] propose a multi-modal motion prediction system
that integrates evaluation criteria, robustness analysis, and interpretability of outputs.
They analyze the limitations of current benchmarks and propose a new holistic evaluation
framework that considers accuracy, diversity, and compliance with traffic rules. To enhance
interpretability, they propose an intent prediction layer that clusters the output trajectories
into high-level behaviors. The authors assess the effectiveness of their approach through
a survey, confirming that multi-modal predictions and intention clustering improve the
interpretability of the system’s output. The authors provide a comprehensive evaluation
framework that considers both accuracy and interpretability. Shao et al. [29] argue that
uncertainty estimation can be used to quantify the confidence of the model’s predictions
and to detect potential failures. The proposed framework considers motion and model
uncertainty and formulates various uncertainty scores for different prediction stages. The
authors evaluate the approach using different prediction algorithms, uncertainty estima-
tion methods, and uncertainty scores. The results show that uncertainty has potential for
failure detection in motion prediction. Gomez-Huelamo et al. [30] propose a prediction
method that combines deep learning with heuristic scenario understanding to achieve
accurate trajectory forecasting. Attention mechanisms with GNNs are used to enhance
the interactions among objects. The authors introduce heuristic proposals that provide
preliminary plausible information about the future trajectories. These proposals consider
the type of object and the scene geometry, such as lane distribution and possible goal points.
The results of the experiments show that the proposed model achieves state-of-the-art
performance with improved scenario understanding.
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In the related field of human motion prediction, Fridovich-Keil et al. [31] introduce a
confidence-aware method. The proposed method uses a Bayesian belief network to reason
about the accuracy of a model’s predictions of human behavior. The authors demonstrate
the effectiveness of their approach through experiments with a quadcopter navigating
around a pedestrian. The results show that confidence-aware predictions lead to safer and
more efficient motion planning than fixed confidence predictions. However, the approach
is limited due to its computational complexity. Alternatively, social value orientation,
which quantifies the ego objects’ rating of the surroundings’ welfare compared to their
own, can be used to model interactions of pedestrians in a scenario [32]. The results
show improved interaction behavior at pedestrian crossings but are limited in scaling
the number of pedestrians. With a focus on object detection, Shao et al. [33] propose a
framework called the Interpretable Sensor Fusion Transformer (InterFuser) for autonomous
driving. The framework aims to address safety concerns and the lack of interpretability.
It utilizes multi-modal multi-view sensors for comprehensive scenario understanding
and adversarial event detection. The framework incorporates a transformer encoder to
fuse information from different sensors and generate intermediate interpretable features.
The AV’s actions are constrained by these features to safe sets. Extensive experiments on
CARLA benchmarks [34] show that InterFuser outperforms prior methods and ranks first
on the CARLA Leaderboard at the time of its publication. Focusing on the planned ego
trajectory, a failure prediction is proposed by Kuhn et al. [35]. The authors also state that
detecting critical traffic situations in advance is desirable to increase safety. The proposed
approach uses machine learning to detect patterns in sequences of planned trajectories
that indicate impending failures. The method is trained using data with disengagements
by the safety driver. The results show that the proposed approach outperforms existing
state-of-the-art failure prediction methods by more than 3 % in terms of accuracy.

In summary, the presented state of the art in motion prediction is extensively inves-
tigated with prediction competitions on large-scale datasets. In contrast, the feature of
scenario understanding is covered sparsely. The existing work that incorporates scenario
understanding either uses overly conservative (physics-based) heuristics or focuses on
the adaptability of the predicted trajectory but does not evaluate mispredictions. Other
approaches need the ground truth for failure evaluation. None of the approaches com-
bine multiple predictors into a hybrid module to adaptively output the best trajectory
prediction. Our approach offers these features and provides an a priori evaluation based
on comprehensive scenario understanding, which considers map information and object
interaction. The evaluation either determines the best predictor from physics- and pattern-
based prediction models for the respective scenario or classifies the scenario invalid if no
model is suitable. By this, the evaluation improves the prediction accuracy and prevents
safety-critical mispredictions. The hybrid prediction approach, which incorporates multiple
methods and adaptively switches between them, is unique to the state of the art.

3. Method

In the following section, the architecture of the self-evaluation method is presented.
In addition, the data processing and the training procedure are described. In the current
implementation, illustrated in Figure 2, the self-evaluation method comprises Scene Image
Encoding, three trajectory predictors (ntp = 3), and the Selector Model to evaluate the
scenario, which are explained in detail below. The three trajectory predictors are as follows:

• A Constant Velocity Model (CV)
• A Linear LSTM Model (L_LSTM)
• A Proximity-Dependent Graph–LSTM Model (DG_LSTM)

Thus, a physics-based model, a pattern-based linear model, and a pattern-based
model with GNN-interaction representation are given. With this hybrid approach, a
diverse range of scenarios and object behaviors can be accurately modeled. In general, the
evaluation method can be built from various prediction models and is not limited to the
presented implementation. This is beneficial to optimize the predictor selection for specific
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Operational Design Domains (ODDs), such as Highway scenarios (e.g., NGSIM [36]) with
a high amount of constant velocity behavior or roundabout scenarios with a high amount
of interactions (e.g., OpenDD [37]).

Evaluation

Metric

Scene Image 

Encoding
Rasterized Image

Neighbors

Object History

Model Selection

DG_LSTM 

Encoding

CV

L_LSTM 

Decoding

DG_LSTM 

Decoding

L_LSTM 

Encoding

Prediction 

Output

Best 

Trajectory

or

Invalid

G_SEL

Selector Model

Figure 2. The network architecture of the self-evaluation method for trajectory predictors comprises
Scene Image Encoding, three trajectory predictors (CV, L_LSTM, DG_LSTM), and the Selector Model.
Inputs are a rasterized image of the road network, the object’s history, and the surrounding objects’
states. All information is encoded and input into the evaluation. As a result of the evaluation, the
Selector Model outputs the best trajectory predictor for the present scenario based on a specified
metric. In the case that none of the predictors achieves the required accuracy, the prediction scenario
is classified as invalid to avoid mispredictions.

3.1. Scene Image Encoding

To enhance semantic understanding, a Scene Image Encoder is implemented, which
is adapted from Geisslinger et al. [22]. Due to the vector representation of CommonRoad’s
map, the road network is first processed into a rasterized scene image. The resulting
image is of size 256 × 256 × 3 with dedicated colors for the central lanes of the road
network. The advantage of this representation is the independence from the road geometry
and the number of roads since the input size remains unchanged compared to vector
representations. For each object, the scene image is cut in a square around the object’s
current position with a size of dmap × dmap. The encoder comprises eight sequential
convolutional neural network (CNN) layers with equal amounts of filters nfilt. Each
layer halves the image dimensions, so an output array of size nfilt results, which ensures
compatibility with the latent spaces of the LSTM encodings. As depicted in Figure 2, the
encoded scene image is input to the Selector Model and to the decoders of the L_LSTM and
DG_LSTM trajectory predictors. Thus, like the other encodings, the Scene Image Encoding
is used multiple times to optimize the size of the network and to maximize the available
information for the evaluation.

3.2. CV Model

In addition to the pattern-based models with Encoder–Decoder architectures, a CV-
model, a physics-based approach, is incorporated into the self-evaluation method. It
assumes that the object continues with constant speed and constant heading based on
the current object’s state. Due to the transformation of the coordinate system in the data
pre-processing step into the object’s view, the CV-prediction simplifies to

xm = x0 + v0 tm, {m ∈ Z | 0 < m ≤ npred} (1)

In the given equation, xm refers to the m-th predicted longitudinal position at the future
time step tm within the prediction length npred. v0 represents the current longitudinal
speed of the object. The lateral future positions ym are zero because of the coordinate
transformation. The output of the CV-model is the predicted trajectory of the object xpred
with its x-, y-positions over the prediction horizon of 5 s. This output format applies to all
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prediction models to ensure consistency independent of the selected model. As inputs, only
the object’s current position, orientation, and speed are considered. The CV-model does not
require any training data and is computationally efficient. However, since it relies only
on the current object state specified by the position, heading, and velocity, the model is
sensitive to noise in these values. This makes the CV-model performance highly dependent
on the upstream object tracking to reduce input noise. The model approach is chosen
because of its high accuracy in the case of steady-state object behavior.

3.3. Linear LSTM Model

The L_LSTM-model consists of an LSTM-based single-layered Encoding with linear
embedding and an LSTM-based Decoding (Figure 2). The encoder uses only the object’s
history as input, so no interactions with other road users are considered. The L_LSTM-
Encoding is input to both the Selector Model and to the L_LSTM-Decoding. The L_LSTM-
Decoder is based on [38]. Compared to common LSTM-Decoders, temporal enrollment
is realized by a direct expansion of the latent space up to the desired prediction length
and one execution of the LSTM and not by iteratively calling the LSTM function up to the
desired length. Experiments revealed an improved prediction accuracy of this approach.
Even though the smoothness of the predicted trajectory deteriorates with this approach, it
still stays around one magnitude below the displacement error. Thus, overall, the approach
improves the prediction performance.

3.4. Proximity-Dependent Graph-LSTM Model

The DG_LSTM-model is constructed out of Proximity-Dependent GNN embedding
and an LSTM-based encoder and decoder. The GNN embedding consisting of Graph
Convolution (GC) layers models interactions between surrounding objects. For this pur-
pose, the target object and its surrounding objects are processed into an undirected graph
G =

{
N , E

}
as input to the model. The objects are represented by the nodes N , their

interactions by the edges E between the nodes. The objects’ states, namely their historical
positions, angles, and class, are stored as node feature vectors z. Only interactions between
traffic participants with a proximity of less than the threshold δ throughout the sampled
historic and future time steps are considered. Hence, nodes of objects with greater Eu-
clidean distances are not connected. A schematic depiction of this graph representation is
shown in Figure 3.

Figure 3. Schematic depiction of the proximity-dependent graph representation for a traffic scenario.
The orange circle represents the threshold δ, which filters the relevant objects (orange edges). Objects
with a distance above the threshold are not connected to the target object (black edges).
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The constructed undirected graph is input into the GC layers. Due to the fact that
GC layers are more susceptible to vanishing gradients during backpropagation compared
to classic convolution operations [39], the GNN embedding only stacks two GC layers.
However, this still ensures interactions of second order. A single GC layer consists of three
elementary steps that yield an updated embedding of all node feature vectors. In order to
update the node feature vector of object i at time t, the following calculations are performed

z′i,t+1 = ψ
(

φi

(
zi,t

)
+ Γj∈N |j ̸=i φj

(
zi

j,t

))
(2)

At first, positions and angles of the connected surrounding objects j are transferred into
the coordinate system of the target object i, which results in the modified feature vector zi

j,t.
For subsequent GC layers, this coordinate transformation is not required because the node
feature vectors are already embedded in a latent space. Next, the modified node feature
vectors of the surrounding objects zi

j,t are processed via a common message function φj.
Similarly, the node feature vector of the target object zi,t is processed by the message
function φi. In our case, the message functions φi and φj are given by a linear-dense
layer with subsequent ReLU activation. In the third step, the messages from all connected
surrounding objects j, the output of φj, are aggregated via the function Γ. These aggregated
messages and the embedded node feature vector of the target object i are added element-
wise and passed through an update function ψ. Its output yields the final embedding z′i,t+1
as the new node feature vector of the target object i at time t + 1.

After the GNN embedding, the LSTM-Encoder is applied to incorporate temporal
dependencies. Similar to the L_LSTM-model, a single-layered LSTM is utilized with an
LSTM-cell number equivalent to the dimension of the embedded node feature vector. To
output a trajectory prediction, the encoding is concatenated with the Scene Image Encoding
and passed to the DG_LSTM-Decoding. By this, the DG_LSTM-model combines non-Euclidean
interaction knowledge and rasterized road graph knowledge. The utilized decoder for
this predictor has the same architecture as the L_LSTM-model and outputs the object’s
future prediction by an LSTM layer. In addition, the DG_LSTM-Encoding is also input to the
Selector Model.

3.5. Evaluation

The evaluation consists of the Selector Model G_SEL and a metric, which is needed
to evaluate the predictors and to define invalid prediction scenarios. The inputs to the
Selector Model are the three encodings of the scene image, L_LSTM, and DG_LSTM. These
inputs are concatenated to a common latent space and passed through linear layers. The
reuse of the three encodings has two advantages. First, the network size only grows by the
selector head itself; no additional encoding is required for the evaluation, which enhances
the efficiency of the architecture in terms of memory usage and inference time. Second, the
selection model directly incorporates the knowledge of all predictors in a common latent
space. The Selector Model’s output dimension is ntp + 1 = 4, which comprises the options
to choose the best out of the three predictors or to classify a prediction scenario as invalid.
The latter case applies if none of the predictors are expected to output a trajectory with
a prediction error below a specified metric threshold. In the current implementation, the
average RMSE over the prediction length is the used metric. The metric is defined over the
prediction length npred between the predicted trajectory xpred and ground truth xGT for the
prediction sample l as follows:

RMSEl =

√
∑

npred
m=1 ∥xm,l,pred − xm,l,GT∥2

2

npred
(3)

While the best prediction is defined by the lowest RMSE, classifying a scenario as
invalid requires the specification of the error threshold ε. It can be set to a relative percentile
of the RMSE distribution of the pre-trained predictors, or it can be set to an absolute RMSE
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value. In the first case, the percentile is created dynamically during the training process
per batch. From an AV software engineer’s point of view, both options are useful. The
option to set a percentile of a valid prediction can be used in unknown scenarios to ensure
that the prediction output is optimized without knowing the absolute threshold value. In
contrast, an absolute RMSE value as a threshold can be used during the tuning process of
the ego-motion planner and the application of an AV software stack in a known ODD.

Since the model is executed in real-time, the metric is only used during training
to determine the best predictor and to define invalid scenarios. During inference, the
evaluation metric is unavailable because the model evaluates the scenarios a priori, and
ground truth data can not be derived in real-time. Thus, the evaluation metric is learned
by the model and is implicitly considered through the estimation of the best predictor
during application.

The whole self-evaluation model is executed in stages during inference. First, the
three encoders are executed to process the scenario. Next, the Selector Model is executed to
determine the best predictor for the present scenario. Lastly, the output is generated. In
the case that no predictor is suitable and the scenario is classified as invalid, none of the
decoders are executed, and no trajectory is outputted. In the case that one of the predictors
is selected, the respective model (CV) or decoder (L_LSTM, DG_LSTM) is executed, and the
trajectory is outputted.

3.6. Data Processing

The used dataset is the scenario library of CommonRoad [40]. The library evaluates
prediction and planning methods and consists of synthetic and real-world scenarios. There
are, on average, 10.37 objects per scenario, but half of the scenarios contain less or equal
to 5 objects. Thus, it can be assumed that interactive multi-object scenarios and isolated
scenarios with low interactions are represented. From the scenario library, 339,051 samples
are extracted with 3 s of object history and the road map as input, as well as 5 s ground
truth to be predicted. Both the history and ground truth future are sampled with 10 Hz,
which results in nhist = 30 and npred = 50 of historical and future steps. Each sample also
contains information about the surrounding objects to enable interaction awareness. The
data processing transforms the target object’s past and surrounding object’s positions into
the local coordinate system of the target object’s current pose. The transformation step
results in a normalized input to the predictors, which improves the learning process.

3.7. Training and Optimization

Due to the integrative approach of the self-evaluation model with multiple concate-
nations between the different encodings and decodings, an adaption of the trainable pa-
rameters is required to train the respective predictors. This is realized by freezing network
branches, while other branches are trained. Via this method, a specific optimization of the
predictors is possible despite the nested model architecture. The Scene Image Encoding is
always trained together with the first predictor. During the training of the other predictors,
only the linear embedding at the output of the Scene Image Encoder, which connects the
CNNs to the respective prediction decoder, is trained. The CNN layers remain frozen. The
training order of the self-evaluation model starts with the L_LSTM. The DG_LSTM is trained
afterward. This results in an advantage to the L_LSTM because the Scene Image Encoding is
tailored to it. However, the DG_LSTM benefits less from the Scene Image Encoding due to the
additional interaction knowledge from its GNN embedding, which explains why this order
yields the optimal overall performance of both predictors. The predictors of L_LSTM and
DG_LSTM are trained with the only goal of reducing their respective Euclidean prediction
errors. So, their training processes do not consider the existence of the other predictors
or the Selector Model. This choice is made because heterogeneous prediction behavior is
expected from the different classes of predictors. On the same training data, it is expected
that the respective predictors perform best in different scenario clusters because of the
different modeling approaches. It would also be possible to train specialized predictors by
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splitting the data into clusters before the training. For example, the DG_LSTM-model could
be trained only on scenarios with a high amount of traffic participants because it is expected
to perform best in dense, interactive scenarios. The generalizability of the implementation
also allows the choice of multiple identical models, which could be trained on isolated
data clusters. The Selector Model is trained last to have access to all trained encoders.
The encoders are frozen during the training, and only the Selector Model’s parameters are
trained. For the training of the classification problem, the NLL-loss is used.

Large parts of the network architecture and hyperparameters are optimized by Bayesian
Optimization [41]. The focus of the optimization is multi-modal. The optimization goal is a
combination of the lowest overall RMSE of the model’s output and the best selection rate
of the Selector Model. While a misselection between two approximately equally accurate
predictors is acceptable because only a small increase in the prediction error is caused in
the output, a misselection between two divergent predictors has a considerable impact on
the output prediction error. So, both effects have to be considered in the optimization goal
λ, which is defined as follows:

λ =
Φ − Φmin

1 − Φmin
+

RMSEtrg

RMSEval
(4)

The equation shows the relation between the optimization goal λ, the selection rate
Φ of the Selector Model, and the RMSEval of the model’s output. The minimal acceptable
selection rate Φmin is empirically set to 0.7. The RMSE-threshold RMSEtrg is set to 0.3 m.
By means of these two variables, the optimization goals are balanced against each other.
The optimization is conducted with a relative error threshold εrel = 0.8 of the model’s
output RMSE distribution to consider the dynamic improvement of the RMSE value during
the optimization. After the optimization is finished, the RMSE-threshold for an invalid
scenario is set to an absolute value of εabs,RMSE = 0.6221 m for the validation on the test
data, which is the 80% quantile of the best single predictor on the test data.

4. Results

In the following section, the performance of the self-evaluation method is validated
on the CommonRoad dataset. The Wale-Net [22] serves as a benchmark model. Its base
architecture [21] was, at the time of its release, in first place on the Argoverse dataset [7].
The model considers interactions between road users by Social Pooling and uses the same
Scene Image Encoding as the self-evaluation model. It is re-trained on the same scenario
split with the hyperparameters provided in Wale-Net’s open-source repository. In addition,
the three individual predictors of the self-evaluation method are used for comparison to
emphasize the effect of the combined hybrid evaluation model. Besides the analysis of
the prediction error and the classification rate, analyses are conducted on the sensitivity of
the Selector Model’s choices and on the actual improvement of the self-evaluation method
compared to single predictors.

The RMSE over the prediction horizon of the self-evaluation method by means of
the Selector Model G_SEL, compared to the single predictors and the benchmark model,
is shown in Figure 4. The benchmark model is outperformed by both pattern-based
predictors of the self-evaluation method. Only the physics-based CV-model shows a worse
prediction behavior. It can be seen that the CV-model has a high accuracy on a short-term
horizon up to tpred = 0.3 s but diverges with increasing prediction horizon. The L_LSTM-
model performs best among the single predictors and also outperforms the DG_LSTM-model,
even though it does not consider interactions between the surrounding objects. It can be
interpreted that the dedicated training of the Scene Image Encoding in parallel to the L_LSTM
outweighs the graph interaction knowledge of the DG_LSTM. In addition, the high ratio of
highway scenarios in the CommonRoad dataset opts for a linear approach because of straight
street geometry. The self-evaluation method, which combines the three predictors and
additionally detects invalid predictions by means of the Selector Model G_SEL, outperforms
all single predictors and achieves an average RMSE of 0.44 m. The FDE is reduced to 1.24 m
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compared to 5.84 m of the benchmark model. However, the ratio between the final and the
mean RMSE RMSEfinal/RMSEmean is only improved to 2.43 compared to the benchmark
model’s ratio of 2.56. So, the progressive increase in the prediction error over the prediction
horizon could not be mitigated.

0 1 2 3 4 5

tpred in s

0

2

4

6

8
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CV

L LSTM

DG LSTM

G SEL

Figure 4. RMSE over the prediction horizon of the benchmark model, the three single predictors (CV,
L_LSTM, DG_LSTM), and the self-evaluation method by means of the Selector Model G_SEL. The error
threshold for an invalid prediction is εabs,RMSE = 0.6221 m.

To validate the self-evaluation method’s capability to avoid inaccurate predictions,
the distribution of the RMSE is investigated (Figure 5). Like the RMSE over the prediction
horizon, the benchmark model is already outperformed by the two single predictors.
By means of the self-evaluation method, which additionally detects invalid predictions
through the Selector Model G_SEL, the error distribution can be further reduced to a 90%
quantile of q90G_SEL = 0.33 m, which is a reduction of 78.8 % compared to the benchmark
model. The reliability of the self-evaluation method is also validated by the MissRate21
(k = 1). The MissRate21 is reduced from the best single predictor, the L_LSTM, with 14.53 %
to 2.00 % by the Selector Model. In comparison, the benchmark model’s MissRate21 is
21.83 %. Thus, considering the scenario understanding induces an awareness of the model
to detect predictions with high RMSE and avoids mispredictions.

BENCHMARK L LSTM DG LSTM G SEL

0.0

0.5

1.0

1.5

R
M

S
E

in
m

Figure 5. Box of the mean RMSE over the prediction samples of the two best single predictors
(L_LSTM, DG_LSTM) and the self-evaluation method by means of the Selector Model G_SEL compared
the benchmark model (εabs,RMSE = 0.6221 m). Box spans from the first to the third quartile. The
median is shown in white. Whisker reach is 1.5.

Next, the Selector Model’s G_SEL classification performance is analyzed by the confu-
sion matrix in Figure 6. The ntp + 1 = 4 classes are given by the three predictors and the
additional option of an invalid prediction. The Selector Model has to classify each scenario
regarding the best predictor to use or, in case no model is suitable, to classify the scenario
as invalid.
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Figure 6. Confusion matrix of the Selector Model (εabs,RMSE = 0.6221 m). Ground truth in italic.

In total, Φ = 87.3 % correct selections are achieved. Compared to the ground truth, it
can be seen that the G_SEL is limited in distinguishing between the L_LSTM and the DG_LSTM
with over 3 % wrong selections in both directions. It can be interpreted that the two pattern-
based prediction models, despite the graph encoding, have a similar prediction behavior.
The false positive rate, in the sense of valid predictions that are classified as invalid, is
2.3 %. In contrast, the false negative rate for invalid predictions above the threshold that
are classified as valid is 13.1 %. It can be seen that the Selector Model has higher false
negative rates towards the two pattern-based models compared to the CV-model. This
can be explained by the fact that these two models are used to predict especially complex
trajectories, which challenges the Selector Model to understand the scenario correctly and
reliably select the invalid option. The tuning of the Selector Model towards specificity, i.e.,
a low false positive rate, is made because of the low overall RMSE threshold εabs,RMSE to
avoid false positives with low RMSE and can be adjusted during the training process.

The discussed classification problem is an unambiguous task. However, the conse-
quences of a misselection can greatly differ, depending on how big the deviation between
the actual choice and the correct choice is. The analysis of this issue is important for
the full stack applicability and to interpret the selection behavior of the model. Figure 7
shows the selection sensitivity between the valid predictors with varying tolerances for the
correct selection. A tolerance of ∆c% means that the selection is counted as correct if the
RMSE error of the chosen predictor is ≤c% compared to the best predictor. The analysis
is conducted over a range of error thresholds εrel to also investigate the influence of the
threshold. The analysis reveals that the selection rate increases by 2.12 % on average over all
thresholds when a tolerance of 5 % ∆5% is defined. Thus, the gap to 100 % correct selections
is dominated by unambiguous choices, i.e., a big deviation between the best prediction
and the remaining predictors is given in the majority of the samples. This becomes even
more obvious when the selection rate with ∆10% is analyzed. The higher tolerance results
in an increase in the selection rate by 3.8 % compared to the baseline. So over 75 % of the
remaining wrong selections have a relative deviation of more than 10 % between the best
and the remaining predictors. This conclusion that the choices can be assumed unambigu-
ous is also confirmed by the error distribution of the predictors on the test data. There is a
mean difference of 0.32 m (standard deviation: 0.86 m) between the best and second-best
RMSE of the three predictors, which is an unambiguous difference compared to the mean
RMSE (Figure 4). The presented evaluation in Figure 7 also shows the selection rate Φ
over the relative error threshold εrel. It can be seen that the selection rate decreases from
εrel = 0.8 to εrel = 0.95. A small increase if all scenarios are defined valid can be observed.
Thus, the model loses classification performance if the ratio of invalid predictions decreases.
However, it has to be considered that the hyperparameter optimization is conducted with
εrel = 0.8.
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Figure 7. Analysis of the selection sensitivity between the valid predictors with varying tolerances
for the correct selection over the error threshold.

Lastly, the actual efficacy of the self-evaluation approach to improve the accuracy of
the prediction output is analyzed in Figure 8. The RMSE of the self-evaluation method
over varying error thresholds compared to an optimal selector, the best single predictor,
and a random selector is shown. In comparison to the optimal selector (yellow), the self-
evaluation method’s RMSE over the error thresholds (blue) is, on average, 0.19 m higher.
For thresholds of εrel = 0.8 and εrel = 0.85, the self-evaluation method is close to the
optimal selector, but it loses performance for higher thresholds as already observed in the
selection rate (Figure 7). Compared to the best single predictor (orange), the self-evaluation
method improves the output RMSE even for a threshold of εrel = 1.0, i.e., without any
invalid predictions. Thus, the hybrid approach is beneficial in any case. The comparison
with a random selector (gray) shows that the self-evaluation method can correctly select
the model with the lowest RMSE independent from the single predictors’ specification.
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Figure 8. Mean RMSE over the prediction samples for varying error thresholds of the self-evaluation
method (blue) compared to an optimal selector (yellow) and a random selector (gray). In comparison,
the best single predictor (orange) without self-evaluation is shown.

5. Discussion

A self-evaluation method for trajectory predictors for autonomous driving is presented
and validated on the scenario library CommonRoad. The method incorporates scenario
understanding, the equivalent of human driving experience, in the AV’s tasks of motion
prediction to improve the overall prediction performance. This improvement is realized
by an a priori scenario evaluation, which either selects the best trajectory prediction out of
multiple models for the present scenario or, if none of the prediction models is expected to
output an accurate prediction, reliably classifies the scenario as invalid to avoid mispre-
dictions. The proposed self-evaluation method outperforms the benchmark and all single
predictors in terms of average and final prediction error and reduces miss rate by 90.8 %.
This is achieved by a correct selection rate of Φ = 87.3 % and a specificity of 97.7 % of the
Selector Model during the scenario evaluation. The confusion matrix presented indicates
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that the three predictors all have a relevant share of best predictions, confirming the ad-
vantage of the hybrid approach. The CV-model has the highest ratio of best predictions but
also has the highest mean RMSE. It shows that constant velocity behavior is an accurate
approach for simple steady-state scenarios but fails in more complex non-linear scenarios.
The two pattern-based models achieve similar prediction accuracies. The influence of the
map encoding can be seen in the L_LSTM-model, which is the best single predictor in total
and even outperforms the interaction-aware Proximity-Dependent Graph-LSTM-model.
The analysis of the selection sensitivity between the valid predictors shows that the selec-
tion of the correct predictor is an unambiguous task in the majority of the cases. Only a
small improvement in the selection rate is achieved if the tolerance for a correct selection is
increased. The analysis of the self-evaluation method’s impact on the overall RMSE reveals
a nearly optimal selection behavior for error thresholds of εrel = 0.8 and εrel = 0.85. It
also reveals that even without the specification of invalid predictions, an improvement
in the prediction accuracy is achieved. So, the hybrid prediction approach is beneficial in
any case.

6. Conclusions

Regarding the intended usage of the self-evaluation prediction model in an AV stack,
the following conclusions can be drawn. At first, the used predictors must be selected to
cover the target ODD sufficiently. An essential constraint for choosing the predictors is the
scene information provided by the predictors’ encoders to conduct the Selector Model. The
presented implementation proposes three predictors with varying underlying assumptions.
Variations in the used network architectures are possible for specific use cases. In the case
of deep learning algorithms, it would also be possible to train specialized predictors on
separated data clusters to ensure the coverage of the target ODD. Next, the Selector Model’s
classification behavior, especially its specificity and sensitivity, and the error threshold must
be tuned in combination with the respective ego-motion planner. For example, the false
negative rate has to correlate with a more defensive behavior of the ego-motion planner to
take account of the undetected invalid predictions. With the knowledge of the planning
performance, an absolute error threshold to classify invalid predictions is recommended
to ensure the required prediction accuracy to enable a safe ego-motion behavior and to
base the planner parameterization on a shrunk prediction error window. It is important to
mention that the invalid choice does not necessarily mean triggering an emergency state of
the AV. With the a priori knowledge of an invalid prediction, the ego-motion planner can
dynamically adjust its behavior to avoid dangerous situations. For example, an additional
set of planner parameters can be deployed for the case of an invalid prediction scenario. The
prediction module could switch to a shorter prediction horizon, or deterministic approaches
such as the Reachable Sets [42] could be applied. Compared to the human driver, this
adjustment of the motion prediction and planning corresponds to the natural reaction
of decreasing speed and increasing the focus on the environment in unknown scenarios,
which are not yet part of the individual driving experience.

Two open topics must be mentioned regarding the application in public road traffic.
First, the definition of an invalid prediction, i.e., a prediction that is not manageable by
the motion planner, highly depends on the particular scenario. In the presented work, we
use the RMSE as a metric with an empirical threshold to define invalid predictions. It is
assumed that a high RMSE of the predicted trajectory correlates with the criticality of a
scenario. However, more comprehensive metrics are required to fully reflect a scenario’s
criticality. Focusing just on the absolute prediction error does not cover the full scenario
and does not entirely reveal its criticality. Second, even though the Selector Model achieves
high correct selection rates, the safe application in AVs has to be analyzed. A reliable
selection of the correct prediction or classification of a misprediction is essential to use
this method in an AV stack. The full impact of a wrong selection on the AV behavior and
the required safety features to handle these cases must be investigated. Furthermore, the
necessary correct selection rate for a full-stack application has to be analyzed.
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A possible future research direction to further adapt the self-evaluation method to
human driving behavior is to not only detect the invalid scenarios but also to learn from
them. One approach could be to store all scenarios that are initially classified as invalid and
apply online learning to these scenarios. In the state of the art, self-supervised approaches
for online learning [22,43,44] are presented to continuously improve a model and improve
its generalizability. However, the major drawback to ensuring the stability of the model
during the online learning process has to be considered. Despite that, the optimization
of the Selector Model regarding robustness and selection rate, the analysis of the used
metric, including the definition of invalid prediction scenarios, and the selection of the
single prediction models are also future research directions.
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