TSRNet: A Trans-Scale and Refined Low-Light Image Enhancement Network
Abstract
:1. Introduction
- (1)
- We added all cross-level connections based on U-shaped networks for image decomposition.
- (2)
- In the reflectance refinement restoration network, in addition to the use of the U-shaped network for cross-scale denoising, we incorporate attention mechanisms and a color saturation loss to obtain clear details and natural colors.
- (3)
- In the lighting adjustment network, we train a detailed factor that can adaptively adjust the brightness of each pixel. Importantly, the brightness adjustment range of this factor is not limited.
2. Related Work
2.1. Retinex-Based Traditional Methods
2.2. Deep Learning-Based Methods
2.3. Retinex-Based Deep Learning Methods
2.4. U-Shaped Network
2.5. Obtain Inspiration
3. Materials and Methods
3.1. Image Decomposition Network
3.2. Reflectance Refinement Restoration Network
3.3. Illumination Adjustment Network
3.4. Ablation Experiment
4. Analysis of Experimental Results
4.1. Experimental Setup and Model Training
4.2. Subjective Evaluation
4.3. Objective Evaluation
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, X.; Li, Y.; Ling, H. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2016, 26, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, B. An attention mechanism and contextual information based low-light image enhancement method. Int. J. Image Graph. 2022, 27, 1565–1576. [Google Scholar]
- Ibrahim, H.; Kong, N.S.P. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 1752–1758. [Google Scholar] [CrossRef]
- Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A. A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Yang, W. Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Li, F.; Fang, F. A novel retinex-based fractional-order variational model for images with severely low light. IEEE Trans. Image Process. 2019, 29, 3239–3253. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yu, S.; Moon, B. Low-light image enhancement using variational optimization-based retinex model. IEEE Trans. Consum. Electron. 2017, 63, 178–184. [Google Scholar] [CrossRef]
- Pisano, E.D.; Zong, S.; Hemminger, B.M. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 1998, 11, 193–200. [Google Scholar] [CrossRef]
- Shin, Y.; Jeong, S.; Lee, S. Content awareness-based color image enhancement. In Proceedings of the 18th IEEE International Symposium on Consumer Electronics, Jeju, Republic of Korea, 22–25 June 2014; pp. 1–2. [Google Scholar]
- Yelmanov, S.; Hranovska, O.; Romanyshyn, Y. A new approach to the implementation of histogram equalization in image processing. In Proceedings of the 2019 3rd International Conference on Advanced Information and Communications Technologies, Lviv, Ukraine, 2–6 July 2019; pp. 288–293. [Google Scholar]
- Jobson, D.; Rahman, Z. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W. Deep retinex decomposition for lowlight enhancement. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 2, 5–8. [Google Scholar]
- Wang, W.; Wei, C.; Yang, W. Gladnet: Low-light enhancement network with global awareness. In Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition, Xi’an, China, 15–19 May 2018; pp. 751–755. [Google Scholar]
- Land, E.H. The retinex theory of color vision. Sci. Am. 1997, 237, 108–129. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Han, L. Low-light image and video enhancement using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 9396–9416. [Google Scholar] [CrossRef] [PubMed]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising with blockmatching and 3D filtering. In Proceedings of the Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, San Jose, CA, USA, 16–18 January 2006; pp. 1–2. [Google Scholar]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Lv, X.; Sun, Y.; Zhang, J. Low-light image enhancement via deep Retinex decomposition and bilateral learning. Signal Process. Image Commun. 2021, 99, 116466. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, B.; Wang, L. RetinexDIP: A unified deep framework for low-light image enhancement. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1076–1088. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y. Cbam: Convolutional block attention module. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhou, Z.; Siddiquee, M.; Tajbakhsh, N. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Ignatov, A.; Kobyshev, N.; Timofte, R. Dslr-quality photos on mobile devices with deep convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3277–3285. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A. Making a Completely Blind Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Vonikakis, V.; Kouskouridas, R.; Gasteratos, A. On the evaluation of illumination compensation algorithms. Multimed. Tools Appl. 2018, 77, 9211–9231. [Google Scholar] [CrossRef]
- Fu, X.; Zeng, D.; Yue, H. A fusion-based enhancing method for weakly illuminated images. Signal Process. 2016, 129, 82–96. [Google Scholar] [CrossRef]
- Lee, C.; Kim, C. Contrast enhancement based on layered difference representation. In Proceedings of the 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 965–968. [Google Scholar]
- Boer, J.; Cense, B.; Park, B. Improved signal-to-noise ratio in spectraldomain compared with time-domain optical coherence tomography. Opt. Lett. 2003, 28, 2067–2069. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2014, 13, 600–612. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J. Zero-reference deep curve estimation for lowlight image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1780–1789. [Google Scholar]
- Wang, Y.; Wan, R.; Yang, W. Low-light image enhancement with normalizing flow. AAAI Conf. Artif. Intell. 2022, 36, 2604–2612. [Google Scholar] [CrossRef]
- Tang, L.; Ma, J.; Zhang, H. DRLIE: Flexible Low-Light Image Enhancement via Disentangled Representations. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 2694–2707. [Google Scholar] [CrossRef]
- Wu, W.; Weng, J.; Zhang, P.; Wang, X.; Yang, W.; Jiang, J. Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5901–5910. [Google Scholar]
U-Net++ for Decomposition | U-Net for Decomposition | CBAM | |||
---|---|---|---|---|---|
TSRNet | ✓ | - | ✓ | ✓ | ✓ |
with U-Net | × | ✓ | ✓ | ✓ | ✓ |
without CBAM | ✓ | - | × | ✓ | ✓ |
without | ✓ | - | ✓ | × | ✓ |
without | ✓ | - | ✓ | ✓ | × |
Metrics | (a) | (c) | (e) | (g) | (i) |
NIQE↓ | 5.0439 | 6.4148 | 3.5612 | 2.6991 | 2.6003 |
Metrics | (b) | (d) | (f) | (h) | (j) |
NIQE↓ | 3.9901 | 5.5811 | 3.1583 | 2.5693 | 2.0392 |
Network | Epoch | Batch_Size | Patch_Size | Optimizer | Parameter |
---|---|---|---|---|---|
1 | 2000 | 10 | 48 × 48 | Adam | LR: 0.0001 |
2 | 1000 | 4 | 384 × 384 | betal: 0.9 0.999 | |
3 | 2000 | 10 | 48 × 48 | epsilon: 1 × 10−8 |
Equipment | Model |
---|---|
CPU | Intel(R) Core(TM) i7-8565 CPU @1.80GHz |
GPU | NVIDIA Tesla P100 |
Operating system | Windows 10, 64bit |
Experiment platform | Colaboratory (Colab) |
Metrics | PSNR↑ | SSIM↑ | NIQE↓ |
---|---|---|---|
RetinexNet | 16.774 | 0.649 | 8.5240 |
GladNet | 19.118 | 0.812 | 6.5391 |
KinD | 17.648 | 0.825 | 4.9479 |
Zero-DCE | 14.861 | 0.707 | 7.8211 |
LLFlow | 20.998 | 0.835 | 5.7327 |
DRLIE | 17.167 | 0.829 | 4.9848 |
URetinex | 17.278 | 0.710 | 4.3274 |
Our | 19.461 | 0.868 | 3.9639 |
Metrics | RetinexNet | GladNet | KinD | Zero-DCE |
---|---|---|---|---|
VV-Girl | 3.9877 | 3.3858 | 3.2652 | 3.5838 |
VV-Women | 3.7303 | 3.2472 | 2.8950 | 3.3505 |
DICM-Factory | 3.5245 | 3.0554 | 3.2078 | 3.3119 |
MEF-House | 4.8760 | 3.7013 | 3.5236 | 3.2645 |
LLIV-Xiaomi Mi 9 | 6.4722 | 5.0816 | 3.5295 | 5.9381 |
LLIV-Oppo R17 | 4.6039 | 3.8328 | 4.0457 | 4.3333 |
Metrics | LLFlow | DRLIE | URetinex | Our |
VV-Girl | 3.7142 | 4.5473 | 7.3672 | 2.8656 |
VV-Women | 3.2432 | 3.3482 | 7.3040 | 2.6181 |
DICM-Factory | 2.7622 | 3.9320 | 3.1259 | 2.9614 |
MEF-House | 3.0593 | 2.7757 | 2.9554 | 3.1242 |
LLIV-Xiaomi Mi 9 | 5.6132 | 8.1151 | 5.9904 | 3.6709 |
LLIV-Oppo R17 | 4.2946 | 4.4758 | 4.0551 | 3.6255 |
Metrics | RetinexNet | GladNet | KinD | Zero-DCE |
---|---|---|---|---|
Processing Time | 0.7368 | 0.7925 | 1.1304 | 0.6195 |
Metrics | LLFlow | DRLIE | URetinex | Our |
Processing Time | 131.9530 | 0.7925 | 1.8530 | 1.2093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Q.; Ma, Y.; Wang, X.; Li, Z. TSRNet: A Trans-Scale and Refined Low-Light Image Enhancement Network. Electronics 2024, 13, 950. https://doi.org/10.3390/electronics13050950
Mu Q, Ma Y, Wang X, Li Z. TSRNet: A Trans-Scale and Refined Low-Light Image Enhancement Network. Electronics. 2024; 13(5):950. https://doi.org/10.3390/electronics13050950
Chicago/Turabian StyleMu, Qi, Yueyue Ma, Xinyue Wang, and Zhanli Li. 2024. "TSRNet: A Trans-Scale and Refined Low-Light Image Enhancement Network" Electronics 13, no. 5: 950. https://doi.org/10.3390/electronics13050950
APA StyleMu, Q., Ma, Y., Wang, X., & Li, Z. (2024). TSRNet: A Trans-Scale and Refined Low-Light Image Enhancement Network. Electronics, 13(5), 950. https://doi.org/10.3390/electronics13050950