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Abstract: Retinex-based deep learning methods show good low-light enhancement performance
and are mainstream approaches in this field. However, the current methods for enhancing low-light
images are insufficient in accurately separating illumination and comprehensively restoring degraded
information, especially in images with uneven or extremely low illumination levels. This situation
often leads to the over-enhancement of bright regions, a loss of detail, and color distortion in the final
images. To address these issues, we improved three subnetworks in the classic KinD network, and
proposed a trans-scale and refined low-light image enhancement network. Compared with KinD,
our method shows more precise image decomposition performance, enhancing the expressiveness
of the reflection and illumination components in order to better depict image details, colors, and
lighting information. For reflectance restoration, we use a U-shaped network for cross-scale denoising,
incorporating attention mechanisms and a color saturation loss to restore image textures and colors.
For light adjustment, we apply fine-grained light adjustment approaches to simultaneously enhance
brightness in dark areas and prevent excessive enhancement in bright areas. The experimental results
demonstrate that with the LOL dataset, the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) of TSRNet are improved by 2–31% and 5–34%, respectively, when compared
with the mainstream methods.

Keywords: nonuniform low illumination; extremely low illumination; trans-scale; refined;
U-shaped network

1. Introduction

Although images inherently contain rich information, images are often acquired under
uneven or extremely low illumination in practical scenarios, such as during nighttime
surveillance, in backlit environments, or in poorly lit rooms. Consequently, these images
may exhibit low brightness, low contrast levels, significant noise, and blurred details [1],
not only resulting in a suboptimal visual experience for viewers, but also impeding the
performance on advanced visual tasks, such as facial detection and target recognition,
in low-light environments [2]. Therefore, to make the buried details and color visible,
to enhance human visual perception, and to accelerate advancement in the execution of
advanced visual tasks, low-light image enhancement is demanded.

Traditional low-light image enhancement methods can be divided into two categories
as follows: mapping-based methods [3,4] and retinex-based methods [5–7]. Mapping-
based methods [8,9] are designed to improve image contrast, but, although they can
effectively enhance image brightness, the resulting images may contain obvious noise
and blurred details. Retinex-based methods [5,6] focus on eliminating the influence of
illumination, and can therefore reduce noise to some extent when compared to mapping-
based methods. However, the current illumination estimation methods are not sufficiently
accurate, resulting in a loss of detail and color distortion in the final results. Figure 1a,b
show original images acquired under uneven and extremely low illumination, respectively.
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As shown in Figure 1c–f, representative mapping-based and retinex-based algorithms,
histogram equalization (HE) [10], and multiscale retinex (MSR) [11], respectively, produced
poor enhancement effects on Figure 1a,b.
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Compared with traditional methods, methods based on deep learning have been
demonstrated to achieve better enhancement effects. For instance, Figure 1d,e show the
enhancement results of two representative deep learning-based networks, RetinexNet [12]
and GladNet [13]. The enhancement results are evidently brighter and free of severe
halos (as observed around the house in Figure 1c) compared with those produced by
the traditional methods. However, due to the lack of a trans-scale and refined network
structure, these methods still face the three following challenges when processing images
captured under uneven or extremely low illumination: detail blurring, color distortion,
and the over-enhancement of bright regions. For example, regions with different levels of
exposure in an image will contain varying levels of noise, with the noise in dark regions
being much more severe than that in bright regions. Consequently, RetinexNet’s uniform
denoising strategy cannot effectively eliminate noise in images with uneven illumination.
Moreover, due to its lack of color constraints, RetinexNet suffers from noticeable noise and
color distortion in its enhancement results, as shown in Figure 1d. Similarly, GladNet’s
global illumination estimation method cannot finely adjust the brightness levels of images
with uneven illumination, which can lead to over-enhancement in bright regions, as shown
in the region marked with a red box in Figure 1e.

To address the aforementioned challenges, we propose a low-light enhancement
network based on the concepts of trans-scale processing and refinement, which can maintain
details, restore color, and adaptively adjust unevenly illuminated regions. Figure 1g
shows the results of our method. Noise is effectively eliminated, while clear details are
preserved. Moreover, the color appears realistic and bright. The over-enhancement of
bright regions does not occur, and no artifacts appear at the boundaries between regions
with different illumination levels. In comparison to state-of-the-art Retinex-based methods
(as shown in Figure 1f), TSRNet also shows satisfactory color restoration and illumination
adjustment results.

The main contributions of this paper are as follows:

(1) We added all cross-level connections based on U-shaped networks for image decomposition.
(2) In the reflectance refinement restoration network, in addition to the use of the U-

shaped network for cross-scale denoising, we incorporate attention mechanisms and
a color saturation loss to obtain clear details and natural colors.
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(3) In the lighting adjustment network, we train a detailed factor that can adaptively
adjust the brightness of each pixel. Importantly, the brightness adjustment range of
this factor is not limited.

Compared with the classic KinD approach, in terms of image decomposition, TSRNet
enhances the expressiveness of the reflection and illumination to better depict image details,
colors, and lighting information, thus providing a good foundation for the subsequent
image detail restoration process. In terms of reflectance restoration, TSRNet balances
noise reduction with detail preservation, while also obtaining natural and visually appeal-
ing image colors. In terms of illumination adjustment, our factor is more fine-grained
than previous approaches, thus enhancing the generalizability of the illumination adjust-
ment function.

2. Related Work

In recent years, researchers have proposed a series of schemes for enhancing low-light
images. In the following section, we will provide a brief overview of classical algorithms
that are closely related to the topic of this paper.

2.1. Retinex-Based Traditional Methods

Retinex theory [14] posits that an image is a product of the illumination and reflectance,
as shown in Formula (1), where (x, y) denotes the two-dimensional coordinates of an
image pixel, and L(x, y), R(x, y), and I(x, y), respectively, represent the original image,
reflectance, and illumination. Retinex-based image enhancement methods [6,7] estimate
the illumination through some prior or regularization and remove it from the original
image in order to eliminate the adverse effects of illumination on the image. However,
it is difficult to accurately estimate the illumination. The illumination estimated by the
existing prior and regularization is not accurate [15]. Thus, the influence of illumination
in the resulting image is not completely eliminated, which results in detail loss and color
deviation. Therefore, finding an effective prior or regularization is a key problem that still
needs to be explored for such methods [15].

L(x, y) = R(x, y)•I(x, y) (1)

2.2. Deep Learning-Based Methods

In recent years, deep learning-based methods for low-light image enhancement have
demonstrated significant advancements and outstanding achievements. In 2017, Lore
et al. [16] introduced LLNet, which was the pioneering work to apply deep learning to
image enhancement, and yielded remarkable results. LLNet innovatively uses deep sparse
denoising auto-encoders to construct a network for both the contrast enhancement and
denoising, whereas the details were not taken into account, resulting in blurred details.
For display-rich details, the GladNet, proposed by Wang et al. [13] in 2018, designs a
network named detail reconstruction, which has achieved remarkable success in retaining
image details. In addition, the global illumination estimation method used by GladNet
can effectively enhance the brightness of low-light images, whereas, when processing the
uneven illumination images, GladNet applies the same brightness enhancement to different
brightness regions, which inevitably leads to over-enhancement in bright regions and a
loss of details.

2.3. Retinex-Based Deep Learning Methods

Unlike the direct adjustment of the contrast and brightness of images based on subjec-
tive visual perception in Section 2.2, several scholars argue that applying the Retinex theory
to image enhancement has a more robust theoretical foundation. Therefore, scholars have
tried to combine Retinex with CNN (convolutional neural network) to obtain better illumi-
nation and reflectance with the powerful learning ability of CNN. The enhancement steps
for this type of method can be summarized as follows: Using a pair of low/normal-light
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images as the network input, a pair of decomposed reflectance and illumination images are
obtained. Then, enhancements are separately applied to the reflectance and illumination
components, and, finally, the fusion of the enhanced illumination and reflectance produces
the final enhanced image.

In 2018, Wei et al. [12] proposed RetinexNet, based on the Retinex theory, which
decomposes the input image into reflectance and illumination via a decomposition network.
Subsequently, it executes the brightness enhancement of illumination and the denoising of
reflectance. Based on this, this method can excellently improve the brightness in extremely
low illumination images, and will not lead to over-enhancement in unevenly illuminated
images. However, the classic denoising method, named BM3D (block-matching and 3D
filtering) [17], used in RetinexNet is not entirely suitable for low-light images. This is
because the noise in dark regions is more severe than in bright regions, and the uniform
denoising proposed in BM3D is unable to completely eliminate noise in low-light images.
Thus, RetinexNet does not have great denoising abilities. In addition, it also lacks color
constraints, making the color extremely unnatural in the resulting image.

Inspired by RetinexNet, Zhang et al. [18] proposed KinD in 2019. They designed three
independent subnetworks for image decomposition, reflectance restoration, and illumina-
tion adjustment, based on the divide and conquer principle. Compared with RetinexNet,
the reflectance restoration network in KinD can more effectively eliminate noise. Further-
more, the illumination adjustment network in KinD incorporates an adjustment factor
that can adjust the brightness to a certain degree. However, KinD has the following three
shortcomings: (1) Shallow-level information is often obtained early in the network. KinD
uses U-Net for image decomposition. During the layer-by-layer convolutions, shallow-level
information may be lost [15], resulting in the loss of detail in the decomposed reflectance
image, and ultimately leading to a blurry enhanced image. (2) KinD utilizes U-Net for
denoising in the reflectance restoration network. However, during this process, KinD does
not account for the detail loss due to denoising. (3) KinD roughly adjusts the illumination
levels with the illumination adjustment network; that is, ratio > 1 and ratio ≤ 1 [18]. As
a result, the enhancement outcomes are prone to issues such as over-enhancement or
insufficient improvement in the overall image brightness.

2.4. U-Shaped Network

The Retinex-based deep learning methods often use convolution to extract the re-
flectance. The shallow convolution layer can extract basic edge and texture features. As
the network deepens, it combines shallow features into basic shapes and local features,
eventually forming a complete representation of the entire object. However, during this
process, there is a risk of losing shallow texture details, which leads to unclear reflectance
and subsequently affects the recovery of reflectance.

The U-shaped network can integrate low-level and high-level information, which
is beneficial to low-light image enhancement. Consequently, more and more researchers
apply U-Net [19] or U-shaped networks to image decomposition or denoising [15]. In 2021,
Lv and Sun et al. [20] utilized a U-shaped network to design a decomposition network for
obtaining illumination and reflectance. Based on this, they achieved satisfactory decom-
position results. Additionally, after enhancing the brightness of the image, the network
also utilized U-Net for detail restoration. In 2022, Zhao et al. [21] proposed a unified depth
framework for low-light image enhancement. It uses ResNet [22] and U-Net for image
decomposition, respectively, and experiments showed that U-Net was more capable of
obtaining a satisfactory decomposition result.

2.5. Obtain Inspiration

In summary, the above algorithm can effectively process images captured under un-
even or extremely low illumination conditions. However, during denoising, it can easily
cause the blurring of image edges, as exemplified by LLNet, RetinexNet, and KinD. More-
over, when enhancing the brightness of images with uneven illumination levels, these
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methods roughly adjust the illumination level using one or two brightness adjustment
ranges, as exemplified by GladNet and KinD. There is a risk of under-enhancing illumina-
tion levels in dark regions or over-enhancing illumination levels in bright regions, which
can lead to a loss of detail. In addition, these algorithms still have shortcomings concerning
color restoration, as the enhanced results exhibit color distortion. In previous research, the
effectiveness of the Retinex theory for low-light enhancement has been demonstrated in
both theory and practice, and the inherent structure of the U-shaped network is beneficial
for the decomposition and enhancement of low-light images. Based on this, we improve
the performance of Retinex-based deep learning methods as follows: For image decom-
position, we improved the performance of the U-shaped network to achieve more refined
decomposition results. During denoising, we apply a U-shaped network, incorporate an
attention mechanism [23] to preserve details, and use a color saturation loss function to
prevent color distortion. To adjust the lighting levels, we designed a detailed factor to
adjust the illumination at the pixel level, and the brightness adjustment range of this factor
was not limited.

3. Materials and Methods

Based on the survey results, we applied the classic KinD network framework, as shown in
Figure 2. We improved the three subnetworks for image decomposition, reflectance component
recovery, and lighting adjustment, proposing a deep neural network called TSRNet.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 17 
 

 

2.5. Obtain Inspiration 
In summary, the above algorithm can effectively process images captured under un-

even or extremely low illumination conditions. However, during denoising, it can easily 
cause the blurring of image edges, as exemplified by LLNet, RetinexNet, and KinD. More-
over, when enhancing the brightness of images with uneven illumination levels, these 
methods roughly adjust the illumination level using one or two brightness adjustment 
ranges, as exemplified by GladNet and KinD. There is a risk of under-enhancing illumi-
nation levels in dark regions or over-enhancing illumination levels in bright regions, 
which can lead to a loss of detail. In addition, these algorithms still have shortcomings 
concerning color restoration, as the enhanced results exhibit color distortion. In previous 
research, the effectiveness of the Retinex theory for low-light enhancement has been 
demonstrated in both theory and practice, and the inherent structure of the U-shaped net-
work is beneficial for the decomposition and enhancement of low-light images. Based on 
this, we improve the performance of Retinex-based deep learning methods as follows: For 
image decomposition, we improved the performance of the U-shaped network to achieve 
more refined decomposition results. During denoising, we apply a U-shaped network, 
incorporate an attention mechanism [23] to preserve details, and use a color saturation 
loss function to prevent color distortion. To adjust the lighting levels, we designed a de-
tailed factor to adjust the illumination at the pixel level, and the brightness adjustment 
range of this factor was not limited. 

3. Materials and Methods 
Based on the survey results, we applied the classic KinD network framework, as 

shown in Figure 2. We improved the three subnetworks for image decomposition, reflec-
tance component recovery, and lighting adjustment, proposing a deep neural network 
called TSRNet. 

 
Figure 2. Network framework diagram. 

3.1. Image Decomposition Network 
The architecture of the image decomposition network is shown in Figure 3. Through 

decomposition, the more information contained in the reflectance, the better. Thus, we 
add all cross-level connections based on U-shaped nets to extract the reflectance with re-
fined precision. Through decomposition, the illumination should reflect changes in light 
and maintain consistency with reflectance in terms of structure. So, we designed a net-
work branch to extract the illumination. To ensure the accuracy of the decomposition re-
sults, we use composite loss function to constrain the decomposition network. 

During the layer-by-layer convolutions, there is a risk of losing shallow-level infor-
mation, resulting in the loss of detail in the decomposed reflectance, and ultimately lead-
ing to a blurry enhanced image. Research has found that U-Net++ [24], commonly used 
for image segmentation, cleverly adds skip connections between non-adjacent convolu-
tional layers, achieving a win-win situation in extracting both detailed features and global 

Figure 2. Network framework diagram.

3.1. Image Decomposition Network

The architecture of the image decomposition network is shown in Figure 3. Through
decomposition, the more information contained in the reflectance, the better. Thus, we add
all cross-level connections based on U-shaped nets to extract the reflectance with refined
precision. Through decomposition, the illumination should reflect changes in light and
maintain consistency with reflectance in terms of structure. So, we designed a network
branch to extract the illumination. To ensure the accuracy of the decomposition results, we
use composite loss function to constrain the decomposition network.

During the layer-by-layer convolutions, there is a risk of losing shallow-level informa-
tion, resulting in the loss of detail in the decomposed reflectance, and ultimately leading
to a blurry enhanced image. Research has found that U-Net++ [24], commonly used for
image segmentation, cleverly adds skip connections between non-adjacent convolutional
layers, achieving a win-win situation in extracting both detailed features and global fea-
tures. Therefore, we use the same design to fuse features from different levels of depth and
shallowness. It not only extracts rich abstract information in high-level, but also avoids
the loss of textures in the shallow level, laying the foundation for the recovery of the
reflectance. In addition, we also used the reflectance similarity loss in the decomposition
network, aiming to make the reflectance of low-light images as close as possible to that of
normal-light images.
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According to Retinex [12], the illumination should be smooth within continuous re-
gions, which means that light changes should only occur at the edges of objects. Therefore,
when extracting illumination, we perform three 3 × 3 convolutions with the LReLU for fea-
ture extraction. Specifically, the input to the third convolution layer consists of two feature
maps. The first one is the output of the second convolution layer, and the second one is
the final feature map from the reflectance extraction branch. This is completed to allow the
reflectance with clear edges, to help smooth out texture in the illumination, and to maintain
the consistency in the structure of both components. Simultaneously, we incorporate a
smoothness loss to regulate the illumination during this process, with the objective of
achieving improved smoothness in the non-edge regions of the image.

The composite loss function Ldec consists of the four following terms: reconstruc-
tion loss Lres, reflectance similarity loss Lrs, illumination smoothing loss Lis, and mutual
consistency loss Lmc.

Ldec = Lres + αrsLrs + αisLis + αmcLmc (2)

where αrs, αis, and αmc denote the coefficients to balance the Lrs, Lis, and Lmc losses, whose
values are taken as 0.01, 0.15, and 0.2, respectively, when training the network model [18].

Lres is used to ensure the accuracy of the decomposition. The reconstructed image of
the decomposed reflection and illumination components should differ minimally from the
original input image as follows:

Lres = ∥Slow−Rlow• Ilow∥1 +
∥∥∥Shigh−Rhigh• Ihigh

∥∥∥
1

(3)

where Slow and Shigh represent the input normal and low light image. Rlow and Ilow
represent the reflection and illumination decomposed from normal-light images. Rhigh and
Ihigh represent the reflection and illumination decomposed from low-light images. And
||•|| 1 means the ↕1 norm.

The reflection component is unaffected by changes in illumination. Therefore, Lrs
is used to ensure that the reflection component extracted from low-light images is as
consistent as possible with that extracted from normal-light images.

Lrs = ∥Rhigh − Rlow∥1 (4)

In illumination smoothing loss, the input image is employed to guide the generation of
the illumination component. In the regions of the edges in the input image, the illumination
should vary, while in the flat regions, the illumination should be smooth. The structure
of Lis is depicted in Equation (5). Lis continuously decreases during the training process.
Therefore, when ∇S is large, indicating image edges, the constraint on ∇I becomes smaller,
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preserving image information; conversely, when ∇S is small, indicating smooth regions,
the constraint on ∇I increases, smoothing image information.

Lis =

∥∥∥∥ ∇Ilow
max(|∇Slow|, ρ)

∥∥∥∥
1
+

∥∥∥∥ ∇Ihigh

max(|∇Snorm|, ρ)

∥∥∥∥
1

(5)

where ∇ stands for the first order derivative operator, containing ∇x (horizontal) and
∇y (vertical) directions. ρ is a non-zero constant ensuring the avoidance of the zero
denominator, set to 0.01. And |•| means the absolute value operator.

Lmc aims to make the structures of Ilow and Ihigh as consistent as possible.

Lmc = ∥κ•exp(− c•κ)∥1 (6)

κ =
∣∣∣∇Ilow|+

∣∣∣∇Ihigh

∣∣∣ (7)

where c is a parameter used to control the shape of the function, with a value of 10 during
model training. And κ represents the sum of the gradients of the illumination between the
high and low light images [18].

3.2. Reflectance Refinement Restoration Network

The reflectance, obtained from the image decomposition network, contains information
such as noise, texture, and color. And the presence of noise may interfere with details
and color. Thus, denoising is very important. However, while denoising, it is easy to
blur the details, so the primary goal of our restoration network is to effectively denoise
while retaining details. Additionally, natural and bright colors are crucial for achieving
an optimal visual experience. Therefore, restoring image color is the second goal of our
restoration network. Based on this, we design a reflectance refinement restoration network.
The architecture of the restoration network is shown in Figure 4.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 17 
 

 

The reflection component is unaffected by changes in illumination. Therefore, rsL  
is used to ensure that the reflection component extracted from low-light images is as con-
sistent as possible with that extracted from normal-light images. 

1lowhighrs R-RL =  (4) 

In illumination smoothing loss, the input image is employed to guide the generation 
of the illumination component. In the regions of the edges in the input image, the illumi-
nation should vary, while in the flat regions, the illumination should be smooth. The struc-
ture of isL  is depicted in Equation (5). isL  continuously decreases during the training 
process. Therefore, when S∇  is large, indicating image edges, the constraint on I∇  be-
comes smaller, preserving image information; conversely, when S∇  is small, indicating 
smooth regions, the constraint on I∇ increases, smoothing image information. 

1norm

high

1low

low
is ρS

I
ρS

I
L

)|,∇max(|
∇

)|,∇max(|
∇

+=  (5) 

where ∇  stands for the first order derivative operator, containing x∇  (horizontal) and 

y∇  (vertical) directions. ρ  is a non-zero constant ensuring the avoidance of the zero de-
nominator, set to 0.01. And |•|  means the absolute value operator.  

mcL  aims to make the structures of lowI  and highI  as consistent as possible.  

1mc κc-κL )exp( ••=  (6) 

highlow IIκ ∇+∇=  (7) 

where c  is a parameter used to control the shape of the function, with a value of 10 dur-
ing model training. And κ  represents the sum of the gradients of the illumination be-
tween the high and low light images [18]. 

3.2. Reflectance Refinement Restoration Network 
The reflectance, obtained from the image decomposition network, contains infor-

mation such as noise, texture, and color. And the presence of noise may interfere with 
details and color. Thus, denoising is very important. However, while denoising, it is easy 
to blur the details, so the primary goal of our restoration network is to effectively denoise 
while retaining details. Additionally, natural and bright colors are crucial for achieving 
an optimal visual experience. Therefore, restoring image color is the second goal of our 
restoration network. Based on this, we design a reflectance refinement restoration net-
work. The architecture of the restoration network is shown in Figure 4. 

 
Figure 4. Reflectance refinement restoration network structure. 

Denoising and retaining details. Upon analyzing the decomposed reflectance, some 
regions exhibit mild degradation, with isolated noise points as shown in the red box in 
Figure 5b, while other regions suffer from severe degradation, with noise distributed in 
block patterns as illustrated in the yellow box on the right in Figure 5d. For point noise, 

Figure 4. Reflectance refinement restoration network structure.

Denoising and retaining details. Upon analyzing the decomposed reflectance, some
regions exhibit mild degradation, with isolated noise points as shown in the red box in
Figure 5b, while other regions suffer from severe degradation, with noise distributed in
block patterns as illustrated in the yellow box on the right in Figure 5d. For point noise,
due to the high correlation among neighboring image pixels, restoration can be achieved
through convolution operations utilizing the information from surrounding pixels. We
choose the highly computationally efficient 3 × 3 convolution [25] for feature extraction.
For block noise, expanding the convolution kernel size is a common way to achieve a
large receptive field. However, it is easy to lead to a significant increase in the number of
parameters and computational costs, which is not a preferable option for us. Therefore,
we choose to use down-sampling to obtain a larger receptive field, and still use 3 × 3
convolutions to trans-scale eliminate the block noise. Integrating the CBAM in the up-
sampling and concatenating the feature map between down-sampling and up-sampling is
also aimed at enhancing details.
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Color recovery. A color saturation loss function [26] is employed to enforce color
constraints. This loss function not only assesses the dissimilarities in color between paired
reflectance samples, but also concurrently adjusts the brightness and contrast to ensure
accurate color representation.

We defined a composite loss function Lre which consists of the four following terms:
mean squared error loss Lsquare, gradient domain loss Lgrad, structural similarity loss Lssim,
and color saturation loss Lrgb. Rout represents the recovered reflectance. Rhigh is the
reference image. These can make Rout approach Rhigh in terms of edge details, brightness,
contrast, and structure as follows:

Lre = Lsquare − Lssim + Lgrad + λrgbLrgb (8)

Lsquare =
∥∥∥Rout − Rhigh

∥∥∥2

2
(9)

Lgrad =
∥∥∥∇Rout −∇Rhigh

∥∥∥2

2
(10)

Lssim = SSIM
(

Rout, Rhigh

)
(11)

where ∥ ∥2
2 means the l2 norm, indicating the absolute error between the recovered re-

flectance and Rhigh (reference image). If the error increases, the mean squared loss increases
quadratically. λrgb is set to 0.5. The value of λrgb is determined through experimentation.
We conducted experiments by setting λrgb to 1, 0.8, 0.5, 0.3, and 0.1, respectively, all under
the same conditions. In the last batch of the last epoch under different values, we randomly
sampled 10 instances to compare their respective network losses (as shown in Figure 6a)
and the time required to complete the restoration network training (as shown in Figure 6b).
When λrgb is 0.5 (red curve), the average loss is the lowest and the required time is the least,
therefore achieving the best model performance.

Lrgb can not only evaluate the color difference between the low-light reflection and
the reference image, but also correct the brightness and contrast simultaneously. The main
formulas of Lrgb are as follows:

Lrgb

(
Rout, Rhigh

)
=

∥∥∥R
′
out − R

′
high

∥∥∥2

2
(12)

R
′
(i, j) = ∑

k,l
R(i + k, j + l) · G(k, l) (13)

G(k, l) = Aexp(−
(
k − µx)2

2δx
−

(
l − µy)2

2δy
) (14)
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where R
′
out and R

′
high are the blurred images of Rout and Rhigh, respectively, after Gaussian

filtering G(k, l). The specific parameters are set to A = 0.053, µx,y = 0, δx,y = 0 [26].
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3.3. Illumination Adjustment Network

To accommodate the diverse requirements for various brightness levels in terms
of light adjustment, we introduce an illumination adjustment ratio map α, as shown
in Formula (15). The adjustment network is trained in a data-driven manner, with the
illumination of normally lit images serving as the learning target. To guide this training
process, a loss function is employed to impose constraints and optimize the performance
of the network. By calculating the adjustment ratios between low-light and normal-light
conditions on a per-pixel basis, the network can adaptively adjust to various brightness
values, demonstrating strong generalization performance. Therefore, our network can
enhance the brightness in dark regions, while avoiding over-enhancement in bright regions
when processing images with uneven illumination. In addition, we apply the idea of a
relative position to concatenate the feature maps before and after convolution to participate
together in the next convolutional layer, thereby enabling the feature information to be
fully utilized.

α =
Ihigh

Ilow
(15)

The architecture of the illumination adjustment network is shown in Figure 7, which
consists of five identical convolutional layers and one sigmoid layer. Combined with the
idea of a relative position [22], we concatenate the feature maps before and after convolution
to participate in the next convolutional layer together, fully utilizing the feature information.
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The loss Ladj of this network consists of the mean squared error loss and gradient loss,
where Iout represents the adjusted illumination,

Ladj = L
′
square + L

′
grad (16)

L
′
square =

∥∥∥Iout − Ihigh

∥∥∥2

2
(17)

L
′
grad =

∥∥∥∇Iout −∇Ihigh

∥∥∥2

2
(18)
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where ∥ ∥2
2 represents the absolute error between the recovered illumination and Ihigh

(reference image). If the error increases, the mean squared loss increases quadratically.

3.4. Ablation Experiment

To verify the necessity of the operations used to address the over-enhancement of
bright regions, a loss of details, and distorted color in the final image, we will conduct
ablation experiments, including the U-Net++ network in the image decomposition network,
color loss Lrgb and the CBAM attention mechanism in the reflection component network,
and the light adjustment factor in the light adjustment network. In particular, because
some algorithms commonly use U-Net for image decomposition [19,20], we compared the
enhancement effects of using U-Net++ and U-Net separately in the decomposition network.
The design of the ablation study is shown in Table 1, and the final enhanced results are
shown in Figure 8.

Table 1. Ablation study design.

U-Net++
for

Decomposition

U-Net
for

Decomposition
CBAM Lrgb α

TSRNet ✓ - ✓ ✓ ✓
with U-Net × ✓ ✓ ✓ ✓

without
CBAM ✓ - × ✓ ✓

without Lrgb ✓ - ✓ × ✓
without α ✓ - ✓ ✓ ×

Note: The last three rows are to verify the effectiveness of CBAM, Lrgb, and α, using subtraction on the basis of
TSRNet and represented by “×” in the table. “✓” means use it.
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Figure 8. The enhancement results of the ablation experiment.

Figure 8 illustrates the enhancement results obtained before and after utilizing key
points. Evidently, in Figure 8a,b, TSRNet, using U-Net++ for decomposition, exhibits
superior enhancement effects over U-Net, characterized by enhanced levels of detail,
heightened color vibrancy, and a notable preservation of fine details. Figure 8c,d show
the experimental results before and after using CBAM. From the red box area, it can be
observed that the image obtained by TSRNet with CBAM has clearer details. Figure 8e,f
display the experimental results before and after using Lrgb. From the red box area, it can be
seen that the image obtained by TSRNet with Lrgb has brighter colors. These improvements
are particularly evident within the red roses and the white wall. Similarly, in Figure 8g–j,
the results obtained after applying α exhibit outstanding performances in both bright
and dark regions. Table 2 shows the quantitative comparison of results in Figure 8. We
employed a non-reference image quality assessment method (NIQE) [27], commonly used
in the field of image enhancement at this stage, to evaluate the image quality. The smaller
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the NIQE value, the higher the quality of the image. From Table 2, it can be seen that the
NIQE of enhancement results from TSRNet is always better than the images against which
it is compared.

Table 2. The quantitative comparison of the results of the ablation experiments using the NIQE↓
index. Red is the optimal value.

Metrics (a) (c) (e) (g) (i)

NIQE↓ 5.0439 6.4148 3.5612 2.6991 2.6003

Metrics (b) (d) (f) (h) (j)

NIQE↓ 3.9901 5.5811 3.1583 2.5693 2.0392

4. Analysis of Experimental Results
4.1. Experimental Setup and Model Training

We use the LOL dataset [12] as our training dataset, which includes 500 pairs of
low/normal light images. We use 485 images as the training set and the remaining 15 im-
ages as the testing set. The hyperparameters for the different subnetworks during training
are shown in Table 3.

Table 3. The hyperparameter settings of the network model.

Network Epoch Batch_Size Patch_Size Optimizer Parameter

1 2000 10 48 × 48
Adam

LR: 0.0001
2 1000 4 384 × 384 betal: 0.9 0.999
3 2000 10 48 × 48 epsilon: 1 × 10−8

Note: “1” is Image Decomposition. “2” is Reflectance Refinement Restoration. “3” is Illumination Adjustment.

We evaluated our method on one reference dataset (LOL) and four non-reference
datasets (VV [28], MEF [29], DICM [30], and LLIV-Phone-imgT [15]). For the evaluation,
we selected a reference image quality assessment, namely PSNR [31] and SSIM [32], which
measure image quality in terms of the signal-to-noise ratio, brightness, contrast, and
structure. Additionally, we employed a non-reference image quality assessment method
(NIQE) [27], commonly used in the field of image enhancement at this stage, to evaluate
the image quality. The state-of-the-art methods of RetinexNet [12], GladNet [13], KinD [18],
Zero-DCE [33], LLFlow [34], DRLIE [35], and URetinex [36] are involved as the competitors.
All algorithms were run in the same environment, as shown in Table 4.

Table 4. The experimental environment of the TSRNet.

Equipment Model

CPU Intel(R) Core(TM) i7-8565 CPU @1.80GHz
GPU NVIDIA Tesla P100

Operating system Windows 10, 64bit
Experiment platform Colaboratory (Colab)

4.2. Subjective Evaluation

Figure 9 displays the enhancement results of various algorithms for the ‘Home’ image
from the testing set. Figure 10 shows the zoomed-in details of the regions marked with red
boxes in Figure 9. RetinexNet yields a significant improvement in image brightness and
preserves rich detailed information. However, the overall image exhibits obvious grain
noise (as exemplified by the purple blanket in Figure 10c). GladNet has a better denoising
ability than RetinexNet. In the enhanced results produced by GladNet, the noise particles
are reduced, but not completely eliminated. KinD effectively eliminates particle noise, but
the texture of the image becomes blurry. The images enhanced by LLFlow and URetinex
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are very clear (as shown in Figure 9g,i). But, from comparisons with Figures 9b and 10b,
it can be seen that the enhanced images produced by GladNet, KinD, LLFlow, DRLIE,
and URetinex exhibit color deviations. In particular, the purple blanket becomes gray (as
shown in Figure 10d,e,g–i). Zero-DCE fails to effectively enhance the brightness, and the
enhanced result is blurry. From these comparisons, it is evident that our TSRNet exhibits
remarkable efficacy in enhancing image brightness while effectively eliminating noise. Our
enhanced image shows clear details and correct colors, which are very close to those of the
reference image.
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Figure 11 presents the enhancement results of several images sourced from the VV,
DICM, MEF, and LLIV-Phone-imgT datasets. From the results, the enhancement results
from RetinexNet, GladNet, KinD, and Zero-DC, have the problems of noticeable noise, color
deviation, excessive enhancement, and a loss of detail either individually or simultaneously.
LLFlow and DRLIE exhibit the best enhancement results on natural landscape images (as
shown in House). However, they have shown severe over-enhancement when processing
other images. For example, the enhanced images of the girl and the woman, produced
by DRLIE, and the tree in the night, produced by LLFlow, show excessive enhancement.
Furthermore, the enhanced images of the girl, the woman, and the factory enhanced by
DRLIE also exhibit incorrect color. When enhancing images with extremely low illumi-
nation, the results from URetinex are very clear. However, when enhancing images with
uneven low illumination, it exhibits a significant issue of over-enhancement in bright re-
gions. From these comparisons, in the image of the girl, an image with uneven illumination,
our approach successfully enhances the brightness of backlit regions, while avoiding the
over-enhancement of bright regions and preserving clear details (as seen in the girl’s face,
hair, and hand, which are very clear). In the image of the woman, TSRNet exhibits the
most aesthetically pleasing effect for the sunset. In LLIV-Phone-imgT, compared to other
methods, we have clearer details and brighter and more natural color. Thus, the overall
effect of TSRNet is the best.
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pared to other methods, we have clearer details and brighter and more natural color. Thus, 
the overall effect of TSRNet is the best. 
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4.3. Objective Evaluation

Table 5 shows the average of the PSNR, SSIM, and NIQE values of different methods,
based on the testing set. Table 6 shows the NIQE of images from VV, DICM, MEF, and LLIV-
Phone-imgT. The optimal value is indicated in red, and the suboptimal value is indicated
in blue. From the results in Tables 5 and 6, our method exhibits superior performance in
terms of PSNR, SSIM, and NIQE metrics.

Table 5. A quantitative comparison of the LOL datasets using SSIM↑, PSNR↑, and NIQE↓ indicators.

Metrics PSNR↑ SSIM↑ NIQE↓
RetinexNet 16.774 0.649 8.5240

GladNet 19.118 0.812 6.5391
KinD 17.648 0.825 4.9479

Zero-DCE 14.861 0.707 7.8211
LLFlow 20.998 0.835 5.7327
DRLIE 17.167 0.829 4.9848

URetinex 17.278 0.710 4.3274
Our 19.461 0.868 3.9639

Note: red is the optimal value and blue is the suboptimal value.
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Table 6. A quantitative comparison of VV, DICM, MEF, and LLIV-Phone-imgT datasets using the
NIQE↓ index.

Metrics RetinexNet GladNet KinD Zero-DCE

VV-Girl 3.9877 3.3858 3.2652 3.5838
VV-Women 3.7303 3.2472 2.8950 3.3505

DICM-Factory 3.5245 3.0554 3.2078 3.3119
MEF-House 4.8760 3.7013 3.5236 3.2645

LLIV-Xiaomi Mi 9 6.4722 5.0816 3.5295 5.9381
LLIV-Oppo R17 4.6039 3.8328 4.0457 4.3333

Metrics LLFlow DRLIE URetinex Our

VV-Girl 3.7142 4.5473 7.3672 2.8656
VV-Women 3.2432 3.3482 7.3040 2.6181

DICM-Factory 2.7622 3.9320 3.1259 2.9614
MEF-House 3.0593 2.7757 2.9554 3.1242

LLIV-Xiaomi Mi 9 5.6132 8.1151 5.9904 3.6709
LLIV-Oppo R17 4.2946 4.4758 4.0551 3.6255

Note: red is the optimal value and blue is the suboptimal value.

The VV dataset consists of 24 images with extremely uneven illumination, all with a
size of 2304 × 1728 pixels. Table 7 lists the average processing time of different methods
on the VV dataset on GPU. Through observation, it is evident that Zero-DCE, RetinexNet,
GladNet, and DRLIE exhibit relatively shorter processing times, while our method and
KinD require longer processing times. URetinex and LLFlow produce very clear enhance-
ment results, but they take longer than our method. Considering both the processing results
and processing times, our method is best.

Table 7. The comparison of the average processing times of different algorithms in the VV dataset
(unit: second).

Metrics RetinexNet GladNet KinD Zero-DCE

Processing Time 0.7368 0.7925 1.1304 0.6195

Metrics LLFlow DRLIE URetinex Our

Processing Time 131.9530 0.7925 1.8530 1.2093

5. Summary

A novel low-illumination image enhancement method named TSRNet and based
on Retinex is presented in this paper. In the decomposition network and the restora-
tion network, incorporating a U-shaped network to execute trans-scale image perception
functionalities enables a more accurate image decomposition and fine-grained denoising.
During this process, using CBAM and the color saturation loss function, clear details and
the natural color of the image are present. Furthermore, the illumination adjustment factor
we proposed can adjust different brightness values, which enhances the brightness of dark
regions, while avoiding the over-enhancement of bright regions. Experimental results
show that the proposed method can efficiently enhance images captured under uneven
and extremely low illumination. The brightness, contrast, color, and details of the resulting
images exhibit notable improvements when compared to the results of existing methods.
Nevertheless, the processing speed of TSRNet is relatively slow. Thus, further research
should be carried out in the future.
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