Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control
Abstract
:1. Introduction
2. ASPIM Model Description
3. Proposed Control Applied to the ASPIM
3.1. Mechanical Speed Control
3.2. PCC Based on FCS-MPC
3.3. Reduced Order Current Observers
3.4. Cost Function
3.5. Modulated PCC (MPCC)
3.6. Field Weakening Operation
3.7. Steady-State Current Regulator
4. Experimental Results
4.1. Figures of Merit
4.2. Steady-State Results
4.3. Transient Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASPIM | Asymmetrical six-phase induction machine |
FCS-MPC | Finite control version of model predictive control |
FOC | Field-oriented control |
FW | Field weakening |
IGBT | Isolated gate bipolar transistor |
IRFOC | Indirect rotor field oriented control |
KF | Kalman filter |
LC | Lead compensator |
LO | Luenberger observer |
LV | Large vector |
MV | Mid vector |
MVE | Mean value error |
MPCC | Modulated predictive control |
MSE | Mean square error |
PCC | Predictive current control |
PI | Proportional-integral |
SVM | Space vector modulation |
THD | Total harmonic distortion |
VSD | Vector space decomposition |
VSI | Voltage source inverter |
ZV | Null vector |
References
- Barrero, F.; Duran, M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines: Part I. IEEE Trans. Ind. Electron. 2016, 63, 449–458. [Google Scholar] [CrossRef]
- Duran, M.J.; Barrero, F. Recent Advances in the Design, Modeling, and Control of Multiphase Machines: Part II. IEEE Trans. Ind. Electron. 2016, 63, 459–468. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zheng, Z. A review of drive techniques for multiphase machines. CES Trans. Electr. Mach. Syst. 2018, 2, 243–251. [Google Scholar] [CrossRef]
- Prieto, I.G.; Duran, M.J.; Garcia-Entrambasaguas, P.; Bermudez, M. Field-oriented control of multiphase drives with passive fault tolerance. IEEE Trans. Ind. Electron. 2019, 67, 7228–7238. [Google Scholar] [CrossRef]
- Muduli, U.R.; Behera, R.K.; Al Hosani, K.; El Moursi, M.S. Direct torque control with constant switching frequency for three-to-five phase direct matrix converter fed five-phase induction motor drive. IEEE Trans. Power Electron. 2022, 37, 11019–11033. [Google Scholar] [CrossRef]
- Kali, Y.; Ayala, M.; Rodas, J.; Saad, M.; Doval-Gandoy, J.; Gregor, R.; Benjelloun, K. Current control of a six-phase induction machine drive based on discrete-time sliding mode with time delay estimation. Energies 2019, 12, 170. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, C.; Mora, A.; Flores-Bahamonde, F.; Acuna, P.; Novak, M.; Zhang, Y.; Tarisciotti, L.; Davari, S.A.; Zhang, Z.; et al. Latest advances of model predictive control in electrical drives—Part I: Basic concepts and advanced strategies. IEEE Trans. Power Electron. 2021, 37, 3927–3942. [Google Scholar] [CrossRef]
- Mamdouh, M.; Abido, M.A. Simple Predictive Current Control of Asymmetrical Six-Phase Induction Motor with Improved Performance. IEEE Trans. Ind. Electron. 2022, 70, 7580–7590. [Google Scholar] [CrossRef]
- Aciego, J.J.; Prieto, I.G.; Duran, M.J. Model predictive control of six-phase induction motor drives using two virtual voltage vectors. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 321–330. [Google Scholar] [CrossRef]
- González-Prieto, I.; Durán, M.; Bermúdez, M.; Barrero, F.; Martín, C. Assessment of Virtual-Voltage-based Model Predictive Controllers in Six-phase Drives under Open-Phase Faults. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2634–2644. [Google Scholar] [CrossRef]
- Arahal, M.R.; Barrero, F.; Satué, M.G.; Ramírez, D.R. Predictive Control of Multi-Phase Motor for Constant Torque Applications. Machines 2022, 10, 211. [Google Scholar] [CrossRef]
- Gonzalez, O.; Ayala, M.; Romero, C.; Delorme, L.; Rodas, J.; Gregor, R.; Gonzalez-Prieto, I.; Durán, M.J. Model predictive current control of six-phase induction motor drives using virtual vectors and space vector modulation. IEEE Trans. Power Electron. 2022, 37, 7617–7628. [Google Scholar] [CrossRef]
- Lei, J.; Feng, S.; Wheeler, P.; Zhou, B.; Zhao, J. Steady-state error suppression and simplified implementation of direct source current control for matrix converter with model predictive control. IEEE Trans. Power Electron. 2019, 35, 3183–3194. [Google Scholar] [CrossRef]
- Norambuena, M.; Lezana, P.; Rodriguez, J. A method to eliminate steady-state error of model predictive control in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2525–2530. [Google Scholar] [CrossRef]
- Favato, A.; Carlet, P.G.; Toso, F.; Torchio, R.; Bolognani, S. Integral model predictive current control for synchronous motor drives. IEEE Trans. Power Electron. 2021, 36, 13293–13303. [Google Scholar] [CrossRef]
- Goncalves, P.F.; Cruz, S.M.; Mendes, A.M. Disturbance observer based predictive current control of six-phase permanent magnet synchronous machines for the mitigation of steady-state errors and current harmonics. IEEE Trans. Ind. Electron. 2021, 69, 130–140. [Google Scholar] [CrossRef]
- Wang, L.; Gan, L. Integral FCS predictive current control of induction motor drive. IFAC Proc. Vol. 2014, 47, 11956–11961. [Google Scholar] [CrossRef]
- Jin, X.H.; Zhang, Y.; Xu, D.G. Static current error elimination algorithm for induction motor predictive current control. IEEE Access 2017, 5, 15250–15259. [Google Scholar] [CrossRef]
- Oliani, I.; Figueiredo, R.; Lourenço, L.F.N.; Pelizari, A.; Sguarezi Filho, A.J. Robust Predictive Current Control Using Discrete-Time Integral Action for Induction Motors. IEEE J. Emerg. Sel. Top. Power Electronics 2023, 11, 5766–5773. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R.; Rivera, M. A novel modulated model predictive control applied to six-phase induction motor drives. IEEE Trans. Ind. Electron. 2020, 68, 3672–3682. [Google Scholar] [CrossRef]
- Zhao, Y.; Lipo, T. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Trans. Ind. Electron. 1995, 31, 1100–1109. [Google Scholar] [CrossRef]
- Harnefors, L.; Saarakkala, S.E.; Hinkkanen, M. Speed control of electrical drives using classical control methods. IEEE Trans. Ind. Appl. 2013, 49, 889–898. [Google Scholar] [CrossRef]
- Satué, M.G.; Arahal, M.R.; Ortega, M.G.; Ramírez, D.R. A simple rotor current estimation method for predictive control of multi-phase drives. Int. J. Circuit Theory Appl. 2022, 50, 4478–4491. [Google Scholar] [CrossRef]
- Martin, C.; Arahal, M.R.; Barrero, F.; Duran, M. Five-Phase Induction Motor Rotor Current Observer for Finite Control Set Model Predictive Control of Stator Current. IEEE Trans. Ind. Electron. 2016, 63, 4527–4538. [Google Scholar] [CrossRef]
- Martin, C.; Arahal, M.R.; Barrero, F.; Duran, M. Multiphase rotor current observers for current predictive control: A five-phase case study. Control Eng. Prac. 2016, 49, 101–111. [Google Scholar] [CrossRef]
- Rodas, J.; Barrero, F.; Arahal, M.R.; Martín, C.; Gregor, R. Online estimation of rotor variables in predictive current controllers: A case study using five-phase induction machines. IEEE Trans. Ind. Electron. 2016, 63, 5348–5356. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Gonzalez, O.; Rodas, J.; Gregor, R.; Rivera, M. Experimental stability study of modulated model predictive current controllers applied to six-phase induction motor drives. IEEE Trans. Power Electron. 2021, 36, 13275–13284. [Google Scholar] [CrossRef]
- Novak, M.; Dragicevic, T.; Blaabjerg, F. Weighting factor design based on Artificial Neural Network for Finite Set MPC operated 3L-NPC converter. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 77–82. [Google Scholar] [CrossRef]
- Majmunović, B.; Dragičević, T.; Blaabjerg, F. Multi Objective Modulated Model Predictive Control of Stand-Alone Voltage Source Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2559–2571. [Google Scholar] [CrossRef]
- Xu, X.; Novotny, D.W. Selection of the flux reference for induction machine drives in the field weakening region. IEEE Trans. Ind. Appl. 1992, 28, 1353–1358. [Google Scholar] [CrossRef]
- Kim, S.H.; Sul, S.K. Maximum torque control of an induction machine in the field weakening region. IEEE Trans. Ind. Appl. 1995, 31, 787–794. [Google Scholar] [CrossRef]
- Riveros, J.A.; Yepes, A.G.; Barrero, F.; Doval-Gandoy, J.; Bogado, B.; Lopez, O.; Jones, M.; Levi, E. Parameter identification of multiphase induction machines with distributed windings Part 2: Time-domain techniques. IEEE Trans. Energy Conv. 2012, 27, 1067–1077. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
() | 6.9 | () | 6.7 |
(mH) | 654.4 | (mH) | 626.8 |
(mH) | 614 | (mH) | 5.3 |
(rpm) | (kW) | 2 | |
(kg·) | 0.07 | (kg·/s) | 0.0004 |
P (pole pair) | 1 | 0.1533 | |
(Nm) | 7.5 | (A) | 2.2 |
500 | 0.1546 | 0.1518 | 0.2655 | 0.2470 | 1.5650 |
1000 | 0.1602 | 0.1600 | 0.2638 | 0.2593 | 1.3316 |
1500 | 0.1687 | 0.1678 | 0.2911 | 0.2946 | 1.9202 |
2000 | 0.1843 | 0.1890 | 0.3196 | 0.3219 | 2.0436 |
2550 | 0.2043 | 0.2156 | 0.3477 | 0.3507 | 3.1504 |
3000 | 0.2013 | 0.2037 | 0.3026 | 0.3094 | 3.2554 |
3400 | 0.2255 | 0.2334 | 0.3392 | 0.3471 | 3.8409 |
500 | 20.87 | 21.18 | 2.77 | 6.57 | |
1000 | 19.79 | 19.29 | 3.36 | 8.16 | |
1500 | 15.65 | 16.20 | 3.17 | 8.55 | |
2000 | 13.75 | 14.22 | 0.22 | 9.09 | |
2550 | 12.21 | 12.63 | 2.68 | 9.33 | |
3000 | 16.50 | 17.54 | 0.60 | 12.75 | |
3400 | 13.81 | 14.61 | 6.44 | 11.26 |
500 | 0.1545 | 0.1532 | 0.2693 | 0.2532 | 1.5877 |
1000 | 0.1536 | 0.1527 | 0.2764 | 0.2605 | 1.4949 |
1500 | 0.1548 | 0.1628 | 0.2894 | 0.2806 | 1.9880 |
2000 | 0.1611 | 0.1674 | 0.3053 | 0.3020 | 2.2003 |
2550 | 0.1610 | 0.1705 | 0.3308 | 0.3377 | 3.0439 |
3000 | 0.1596 | 0.1645 | 0.2872 | 0.2959 | 3.7133 |
3400 | 0.1781 | 0.1835 | 0.3210 | 0.3290 | 4.8528 |
500 | 20.26 | 20.82 | 0.01 | 0.05 | |
1000 | 19.31 | 19.67 | 0.00 | 0.14 | |
1500 | 17.85 | 18.78 | 0.00 | 0.03 | |
2000 | 16.06 | 16.43 | 0.01 | 0.06 | |
2550 | 12.99 | 14.24 | 0.03 | 0.00 | |
3000 | 17.81 | 18.83 | 0.05 | 0.00 | |
3400 | 16.26 | 16.77 | 0.00 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R.; Delorme, L.; Romero, C.; Fleitas, A. Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics 2024, 13, 952. https://doi.org/10.3390/electronics13050952
Ayala M, Doval-Gandoy J, Rodas J, Gonzalez O, Gregor R, Delorme L, Romero C, Fleitas A. Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics. 2024; 13(5):952. https://doi.org/10.3390/electronics13050952
Chicago/Turabian StyleAyala, Magno, Jesus Doval-Gandoy, Jorge Rodas, Osvaldo Gonzalez, Raúl Gregor, Larizza Delorme, Carlos Romero, and Ariel Fleitas. 2024. "Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control" Electronics 13, no. 5: 952. https://doi.org/10.3390/electronics13050952
APA StyleAyala, M., Doval-Gandoy, J., Rodas, J., Gonzalez, O., Gregor, R., Delorme, L., Romero, C., & Fleitas, A. (2024). Improving Steady State Accuracy in Field-Weakened Six-Phase Induction Machines with Integrator and Modulated Predictive Control. Electronics, 13(5), 952. https://doi.org/10.3390/electronics13050952