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Abstract: This study addresses the integral role of typical wind power generation curves in the
analysis of power system flexibility planning. A novel method is introduced for extracting these
curves, integrating an enhanced K-means clustering algorithm with advanced optimization tech-
niques. The process commences with thorough data cleaning, filtering, and smoothing. Subsequently,
the refined K-means algorithm, augmented by the Pearson correlation coefficient and a greedy algo-
rithm, clusters the wind power curves. The optimal number of clusters is ascertained through the
silhouette coefficient. The final stage employs particle swarm and whale optimization algorithms
for the extraction of quintessential wind power output curves, essential for flexibility planning in
power systems. This methodology is validated through a case study involving wind power output
data from a new energy-rich provincial power grid in North China, spanning from 1 January 2019, to
31 December 2022. The resultant curves proficiently mirror wind power fluctuations, thereby laying
a foundational framework for power system flexibility planning analysis.

Keywords: power system flexibility; Extended Kalman Filter (EKF) typical wind power curve;
clustering; Pearson correlation coefficient; optimization algorithm

1. Introduction

As nations advance toward ‘carbon peak and carbon neutrality’ objectives, there’s
a notable shift towards novel power systems, heavily incorporating renewable energy
sources like wind and solar. Despite the rapid progress, the inherent unpredictability and
intermittency of wind power introduce considerable challenges to the power grid’s stability
and operational planning. Addressing these issues, system flexibility planning becomes
pivotal, ensuring the power grid’s resilience, reliability, and economic operation, especially
as the share of these volatile energy sources grows. This planning is integral to managing
the complexities introduced by fluctuating energy inputs like wind power. [1].

In the context of extensive wind power integration, understanding its influence on
system flexibility is paramount. The initial step entails identifying typical daily wind power
generation curves through flexibility planning analysis. This approach shifts the focus from
the stochastic nature of wind power to a deterministic scenario analysis, catering to the
demands of large-scale, time-series data computations and analyses. This transformation is
vital for accurate system flexibility assessments in a landscape dominated by renewable
energy [2]. In the realm of power system operation, typical curve extraction methods are
broadly categorized into traditional and emerging techniques. Traditional methods, like
statistical analysis, distill patterns from wind power data to derive typical curves, while
manual classification groups curves, selecting exemplars from each. Conversely, emerging
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methods, like cluster analysis, employ advanced algorithms (e.g., K-means, fuzzy C-means)
to aggregate and represent large datasets. Another innovative approach, model fitting,
constructs mathematical models to mirror wind turbine output, offering a data-driven
pathway to identifying typical curves. The authors of [3,4] delved into the characteristic
index system of wind power and photovoltaic output. The study focused on categorizing
and pinpointing typical curves, a crucial step for understanding and optimizing energy
generation patterns in renewable energy systems. The authors of [5] conducted an insightful
analysis of power system load curves, pinpointing the day with the highest annual peak-to-
valley difference. This day was utilized as a benchmark for electricity balance calculations
in wind power systems, emphasizing the significance of understanding daily fluctuations
for effective energy management. In [6], the authors advanced traditional approaches by
revamping and refining the daily load curve for enhanced clustering accuracy. Recent
progress in machine learning has spurred the development and application of sophisticated
clustering techniques, significantly enriching the analysis of power system generation
curves with improved accuracy and insight. The authors of [7] introduced a sophisticated
clustering approach by merging the enhanced fuzzy C-means algorithm (PFCM) with
fuzzy linear discriminant analysis (FLDA). This integration aims to optimize the selection
of typical load curves, harnessing the strengths of both methods for more accurate and
insightful power system analysis.

Furthermore, in [8], the authors introduced a novel approach by utilizing hierarchical
clustering algorithms to effectively deduce typical scenarios from regional wind power
data. This method aims to comprehensively capture and represent the intrinsic patterns
and variabilities in wind power generation across different regions. Reference [9] obtained
the optimal clustering scheme by combining the lion optimization algorithm with the
K-means algorithm, while reference [10] used the grey wolf algorithm combined with the
fuzzy C-means clustering algorithm (FCM) to improve the daily load curve clustering effect.
The authors of [11] determined the optimal number of clusters based on the silhouette
coefficient. Reference [12] introduced the Copula function into the production of typical
curves for wind and solar power output scenarios [13]. In [14], the authors used an
optimized spectral clustering algorithm for typical scenario generation and analysis.

The proliferation and diversification of new energy sources have led to an expanded
distribution of energy stations and a wealth of operational data. This growing data repos-
itory significantly enhances the robustness of various clustering methodologies reliant
on real operational data, paving the way for more informed and data-driven decisions in
the energy sector [15]. The research emphasizes refining clustering algorithms for global
analysis of wind and solar power output curves. Notably, it introduces a method combining
an improved K-means algorithm with intelligent optimization algorithms for extracting
typical wind power curves, crucial for power system flexibility planning. The method
involves data cleansing, noise filtering, smoothing, and using the Pearson correlation coef-
ficient with a greedy algorithm to enhance the K-means clustering, addressing traditional
challenges like optimal K value selection and clustering center determination [11]. Then,
particle swarm algorithms [16] and whale algorithms [17] are used to extract typical wind
power curves and perform cross-validation, ultimately generating typical daily wind power
output curves for power system flexibility planning analysis.

2. General Framework for Extracting Typical Daily Wind Power Generation Curves

The framework for extracting typical daily wind power generation curves based
on power system flexibility planning analysis is illustrated in Figure 1 and comprises
four steps:

1. Eliminate anomalies and missing values from historical daily wind power output
data, standardize the output data (output data/daily installed capacity), then use
the Extended Kalman Filter (EKF) for data filtering and noise reduction, followed
by curve smoothing functions [18]. Afterwards, calculate the daily peak-to-valley
difference rate to obtain the wind power daily output dataset for subsequent research.
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2. Select the daily generation curves from the processed wind power daily output dataset
that fall within the top 10% in terms of peak-to-valley difference rate and conduct
statistical analysis on the months when the maximum peak-to-valley differences occur.

3. Perform K-means clustering on the selected wind power data to preliminarily analyze
data patterns and the clustering K-value. The Pearson correlation coefficient plays
a pivotal role in the optimization of the K-means clustering algorithm, particularly
by quantifying linear relationships, enhancing K-means clustering, and optimizing
cluster representation. Calculate the Pearson correlation coefficient of the selected
daily wind power output data, and use the Greedy Algorithm to find the output
curve with the lowest correlation as the clustering center [19]. Then, use K-means for
clustering and repeat several times to find the clustering result corresponding to the
maximum silhouette coefficient [12].

4. Extract curves from the clustering result dataset using both particle swarm optimiza-
tion and whale algorithms. Cross-validate the results obtained from these two meth-
ods to finally derive the typical daily wind power generation curves for power system
flexibility planning analysis.
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3. Data Preprocessing
3.1. Cleaning of Missing and Anomalous Data

Data cleaning is an integral step in our data analysis process, designed to enhance the
reliability and accuracy of the dataset by addressing incorrect, incomplete, or inaccurate
data entries. This section is of paramount importance as it underpins the credibility of our
subsequent analysis and modeling [20].

The process of cleaning the data involved several stages. Initially, we employed an
automated script to identify and flag any missing values within the dataset. The criteria
for identifying missing data were based on the expected data transmission intervals. Any
points that did not adhere to these intervals were considered missing.

Following the identification of missing data, we applied an imputation technique to
address these gaps. Specifically, we used a linear interpolation method for time series data
where appropriate, which assumes that the change between two data points is linear and
can be estimated. This method was chosen for its simplicity and effectiveness in dealing
with small gaps in time series data.

In addition to missing data, we also scrutinized the dataset for anomalies that could
indicate incorrect or inaccurate data. For this, we implemented a Z-score analysis to detect
outliers. Data points with a Z-score greater than 3 were considered extreme and thus were
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examined manually to determine whether they represented true values or anomalies due
to recording errors or data transmission issues.

We further refined the dataset by examining the consistency of the daily output
curves. Any curve that showed continuous abnormalities, deviating significantly from the
established pattern without justifiable cause, was removed. This decision was based on the
standard deviation of the curve’s gradient, with a threshold set at two standard deviations
from the mean gradient of the dataset.

The enhancements to our methodology not only improve the quality of our data but
also provide a transparent and rigorous foundation for our analysis, thus addressing the
potential issues inherent in the secondary data collection process from power systems.

3.2. Data Denoising and Smoothing

To enhance the accuracy of the data, the Extended Kalman Filter (EKF) algorithm is
used for data filtering and noise reduction, followed by smoothing the filtered data using a
smooth function resulting in data for subsequent research [10].

The Extended Kalman Filter (EKF) is a nonlinear state estimation algorithm based on
the Kalman Filter, suitable for systems with nonlinear models [18]. EKF linearizes nonlinear
problems by Taylor expansion of the nonlinear functions, and then employs the Kalman
Filter methodology for state estimation and error correction.

The specific steps are as follows:

1. State equation:

x(k) = f (x(k − 1), u(k − 1)) + ω(k − 1) (1)

in which ω(k − 1) represents process noise.

2. Observation equation:

y(k) = h(x(k)) + v(k) (2)

in which v(k) represents observation noise.

3. Observation steps:

State vector prediction:
xpred = [x1 + x2, x2]

T (3)

Transition matrix:

F =

[
1 1
0 1

]
(4)

Covariance matrix predicted value:

Ppred = FP0FT + Q (5)

4. Update steps:

Observed value and predicted value:

yyred = xpred(1) (6)

Observation Matrix:
H = [1, 0] (7)

Kalman Gain:
K = Ppred HT

(
HPpredHT + R

)−1
(8)

Estimated state vector:

xest = xpred + K
(

y(k)− yyred

)
(9)
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Estimated covariance matrix:

Pest = (I − KH)Ppred (10)

In this context, x1 and x2 represent the two components of the state vector, specifically
the wind power output and its rate of change, respectively. Q and R represent the covari-
ance matrices of process noise and observation noise, respectively. In the program, the
initial values of the covariance matrices are as follows:

P0 =

[
1 0
0 1

]
(11)

After filtering, the data is further smoothed using the moving average method. The
moving average method is a commonly used smoothing technique that can smooth a
one-dimensional vector, removing noise and jitter. Its basic concept is as follows: for a
vector of length N, a window of length m is selected. The data within this window is
averaged to obtain a new data point. Then, the window is shifted one unit to the right, and
the above operation is repeated until all data points have been processed.

As shown in equation:

yi =
1
m

m

∑
j=1

xi−j+⌊ m
2 ⌋ (12)

where xi represents the i data point of the original data vector, yi represents the i data
point of the smoothed data vector, m represents the window size, and ⌊·⌋ represents the
floor function.

3.3. Data Normalization

Considering that the wind power output curve is significantly influenced by the
installed capacity, to find a general rule, this paper adopts the method of normalizing the
data by dividing the daily wind power output by the daily wind power installation capacity.

x′ =
x
p

(13)

In the equation, x′ is the normalized wind power output value, and p is the daily
installed wind power capacity.

4. Clustering of Wind Power Output Curves

The influence of environmental factors on wind power output introduces significant
variability and distinct typologies in output curves. K-means clustering, an eminent
unsupervised learning algorithm, adeptly categorizes these curves by their shape and
size using Euclidean distance. This algorithm is praised for its simplicity, straightforward
implementation, and computational efficiency, which enables it to process large datasets
with commendable scalability. Its ability to cluster substantial volumes of data efficiently
makes it an indispensable tool for analyzing and understanding the complex dynamics
of wind power output curves, providing valuable insights into their classification and
underlying patterns. However, K-means requires pre-specifying the number of clusters K,
which depends on experience or other algorithms, lacking automation. Additionally, it is
sensitive to the choice of initial cluster centers. Since cluster centers are randomly selected,
this can lead to convergence to local optima instead of global optima and inconsistency in
clustering results [21].

To address these issues, this paper uses the silhouette coefficient method to preliminar-
ily find the K value with a larger silhouette coefficient. It calculates the Pearson correlation
coefficient of the selected data, and uses the greedy algorithm to find the K data points with
the lowest correlation under the K value to serve as cluster centers. Afterwards, K-means
clustering is performed.
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The silhouette coefficient is a clustering evaluation metric used to assess the reason-
ableness and quality of clustering results [11]. It is based on the comparison of intra-cluster
similarity and inter-cluster dissimilarity, with a value range of [−1, 1]. A higher value
indicates better clustering effect.

Specifically, for each sample, the silhouette coefficient is calculated as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (14)

The provided text is a description of the silhouette coefficient and the Pearson correla-
tion coefficient, key concepts used in statistical analysis and clustering.

The silhouette coefficient involves two distances: a(i), which represents the average
distance of sample i to the other samples in the same cluster (intra-cluster similarity), and
b(i), which represents the average distance of sample i to all the samples in the nearest
cluster that i is not a part of (inter-cluster dissimilarity). For the silhouette coefficient of the
entire dataset, the average value of the silhouette coefficients for all samples can be taken.

The Pearson Correlation Coefficient is a statistical measure used to assess the strength
of a linear relationship between two variables. Its value ranges between −1 and 1, where
0 indicates no linear relationship, and values closer to 1 or −1 indicate a stronger linear
relationship between the two variables [22]. The formula for calculating the Pearson
correlation coefficient is as follows:

rxi ,xj =
Cov

(
xi, xj

)
S(xi)·S

(
xj
) (15)

where Cov
(

xi, xj
)

represents the covariance between xi and xj, and S(xi) and S
(
xj
)

are the
standard deviations of xi and xj, respectively.

The greedy algorithm is a common heuristic algorithm that achieves a global optimum
by selecting a local optimum at each step. Specifically, the greedy algorithm chooses the
best solution at each step in decision making until a certain goal is reached or no further
optimization can be made. After obtaining the correlation coefficient for each curve, the
greedy algorithm is used to calculate the selection of k points in the dataset such that their
sum is minimized.

The specific steps are as follows:

1. Choose a starting point ri and add it to the set of selected points;
2. Calculate the distance dij from all unselected points to the selected points, i.e., the

distance between the ith point and the jth point, and find the point rj with the
minimum distance to the selected points, then add it to the set of selected points;

3. Repeat step 2 until the number of selected points reaches the preset value k.

In this problem, the weight of each point is its value r, so the sum of the selected points
is calculated as:

k

∑
i=1

ri (16)

In the program, the sum of the points can be calculated by iterating over the selected
points, as follows:

k

∑
i=1

ri =
k

∑
i=1

ri + ∑
i<j,i,j∈sselected points

dij (17)

where dij represents the distance between the ith point and the jth point, and ri represents
the value of the ith point. Finally, the value of the above formula is the minimum sum of
the selected k points.

Using the above method to select K cluster centers, clustering is completed using the
K-means algorithm.
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5. Extraction of Typical Wind Power Curves

Upon clustering the wind power output curves, we categorize them into K distinct
daily output scenarios. This necessitates the derivation of a representative curve for each
category. While the prevailing literature commonly employs averaging to determine
representative curves, this method is prone to significant inaccuracies due to the impact of
outliers within clusters. To address this issue, our study employs the correlation coefficient
method. This method selects the curve that demonstrates the highest cumulative correlation
with all other curves in its category as the representative curve. Initially, we compute the
Pearson correlation coefficients for the scenario curves within each category. Subsequently,
we utilize both the particle swarm optimization (PSO) algorithm and the whale optimization
algorithm (WOA) to identify the curve that maximizes the sum of correlations with other
curves. The PSO algorithm is preferred for its straightforward implementation, minimal
parameter requirements, and efficacy in addressing nonlinear problems. However, its
vulnerability to local optima is a notable drawback. In contrast, the WOA, characterized
by its unique escape mechanisms, versatility, and balanced approach to exploration and
exploitation, may necessitate more iterations but adeptly circumvents the issue of local
optima. By integrating these two algorithms and conducting mutual verification during
the process of extracting typical curves, we can enhance the accuracy of the results. The
curve identified through this rigorous process is then designated as the most representative
curve for its category.

5.1. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is inspired by social behavior pat-
terns of organisms such as birds and fish. It is a stochastic optimization technique that
guides a population of particles through the search space by updating generations based on
the individual and collective experience of the swarm. Each particle updates its trajectory
towards its own best-known position and towards the best-known global position in the
search space [16].

Specifically, the basic process of the particle swarm algorithm is as follows:

1. Initialize the population:

Randomly generate a certain number of particles, which are individuals, each with an
initial position and velocity.

2. Calculate the fitness function:

Evaluate the fitness value for each particle based on its position in the fitness function.

3. Search for the optimal solution:

Identify the particle with the highest fitness value in the current population, which
represents the current optimal solution.

4. Update position and velocity:

Based on the information about the current optimal solution, and the positions and
velocities of other particles, update the position and velocity of each particle.

5. Repeat steps 2–4 until the stopping criteria are met.

The position and velocity are updated according to the following formulas:

vid(t + 1) = ω·vid(t) + c1·rand()(pid − xid(t)) + c2·rand()·(gd − xid(t))
xid(t + 1) = xid(t) + vid(t + 1)

(18)

The first equation updates the velocity based on the particle’s previous velocity, its
best-known position, and the global best-known position. The second equation updates the
particle’s position based on its new velocity. In this context, vid(t) represents the velocity
of the ith particle in the dth dimension at iteration t + 1, xid(t) represents the position
of the ith particle in the dth dimension at iteration t + 1, pid represents the best-known
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position of particle i in the dth dimension, gd represents the best-known position among
all particles in the dth dimension, ω represents the inertia weight, balancing exploration
and exploitation, c1 and c2, respectively, represent cognitive and social factors, and rand()
represents a random number function.

5.2. Whale Optimization Algorithm (WOA)

The whale algorithm is a heuristic optimization algorithm based on the group behavior
of whales in nature, simulating the behavior of whale pods when foraging for food. This
algorithm iteratively updates the position and velocity of each whale in the search for an
optimal solution [23].

Specifically, the basic process of the whale algorithm is as follows:

1. Initialize the population:

Randomly generate a certain number of whales, which are individuals, each with an
initial position and velocity.

2. Calculate the fitness function:

Evaluate the fitness value for each whale based on its position in the fitness function.

3. Search for the optimal solution:

Identify the whale with the highest fitness value in the current population, which
represents the current optimal solution.

4. Update position and velocity:

Based on the information about the current optimal solution, and the positions and
velocities of other whales, update the position and velocity of each whale.

5. Repeat steps 2–4 until the stopping criteria are met.

The position and velocity are updated according to the following formulas:

vid(t + 1) = vid(t) + a·A·(pid − xid(t)) + a·C·(gd − xid(t))
xid(t + 1) = xid(t) + vid(t + 1)

(19)

In this context, vid(t) represents the velocity of the ith whale in the dth dimension, xid
represents the position of the ith whale in the dth dimension, pid represents the position
of the current best solution in the dth dimension, gd represents the average position of all
whales in the dth dimension, a represents the learning factor, and A and C, respectively,
represent the cognitive and social factors.

6. Case Study Analysis

The computational analysis conducted in this study utilized MATLAB 2022b on a
Windows 11-based computer system equipped with an i7 processor and 16GB of RAM.
The dataset comprises wind power generation data from an expansive new energy grid in
North China, covering the period from 1 January 2019, to 31 December 2022. This region,
which includes Northeast China, North China, and Northwest China, harbors the nation’s
richest onshore wind resources. With its installed wind power capacity surpassing 25
GW, the area presents a valuable opportunity for investigating the characteristics of wind
power production. Statistical analysis of wind power variability in the region revealed
that fluctuations occurring on a 15 min timescale across the grid have attained a level
necessitating attention. In contrast, fluctuations shorter than 15 min exert a minimal impact
on grid operations. Furthermore, in the interest of computational efficiency, data analysis
was conducted using a 15 min timescale.

6.1. Data Preprocessing and Statistics

Anomalies and missing values are removed from the historical daily wind power
output data, and the output data is normalized (output data/daily installed capacity).
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Subsequently, the data is filtered for noise reduction using the Extended Kalman Filter
(EKF), followed by smoothing with the smooth function, and the daily peak-to-valley
difference rate is calculated. The daily output curves with a peak-to-valley difference rate
in the top 10% (about 150 curves) are extracted for further research. The comparison of
the data before and after preprocessing is shown in Figure 2. The preprocessed curves are
smoother and retain the characteristics of the curves.
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Statistical analysis of the processed wind power data on a monthly basis reveals that
the days with the top 10% peak-to-valley differences in wind power output are distributed
throughout the year, as shown in Figure 3. The occurrence probability is higher in spring,
autumn, and winter, corresponding to January–May and September–December, while the
frequency is lower in summer, corresponding to June–August. The seasonal distribution
probability of days with large peak-to-valley differences is significant, but even during the
low wind season in summer, there are days with large wind power daily output peak-to-
valley differences. There is no apparent regularity in the distribution of various types of
curves, so it is necessary in power system flexibility planning analysis to comprehensively
consider various curve shapes and timings of the typical wind power output curves
with large peak-to-valley differences. Furthermore, with the large-scale integration of
wind power into the grid, the existing wind power data can represent the wind resources
and wind power distribution in all regions of the studied provincial power grid. After
standardizing the output data, it can provide a reliable research foundation for future
power system flexibility planning analysis.
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6.2. Clustering of Wind Power Output Curves
6.2.1. K-Means Clustering

Firstly, direct K-means clustering is applied to the selected daily wind power output
data to find the range of cluster numbers K with the maximum silhouette coefficient SC.
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Taking K values from 2 to 10, clustering is performed 10 times for each K value, and the
clustering statistics are shown in Table 1.

Table 1. The results of using K-means algorithm for 10 rounds of clustering.

K-Value 3 4 5 6 7 8 9 10

SC1 0.439 0.421 0.452 0.411 0.435 0.375 0.388 0.38
SC2 0.451 0.473 0.445 0.41 0.432 0.405 0.373 0.383
SC3 0.452 0.443 0.443 0.397 0.433 0.378 0.43 0.382
SC4 0.389 0.425 0.445 0.42 0.427 0.426 0.355 0.411
SC5 0.451 0.398 0.443 0.432 0.414 0.361 0.385 0.39
SC6 0.448 0.413 0.439 0.418 0.432 0.403 0.378 0.372
SC7 0.379 0.42 0.407 0.451 0.434 0.362 0.394 0.377
SC8 0.439 0.409 0.446 0.42 0.442 0.403 0.358 0.388
SC9 0.452 0.428 0.452 0.415 0.421 0.385 0.408 0.39
SC10 0.378 0.409 0.453 0.435 0.431 0.406 0.402 0.413

SC(ave) 0.428 0.424 0.443 0.421 0.43 0.39 0.397 0.389

As shown in the above table, using direct K-means for clustering leads to unstable
results due to the random selection of cluster centers. The average silhouette coefficient
SCave is larger when K is between 3 and 7 and smaller for values of K from 8 to 10.

6.2.2. Clustering Using the Improved K-Means Algorithm

Calculate the Pearson correlation coefficient of the selected wind power daily output
data, use greedy algorithm to find K curves with the lowest correlation corresponding to
different K values, and use them as clustering centers for clustering. The cluster center
curve numbers and contour coefficients corresponding to different K values are shown in
Table 2.

Table 2. Improved K-means algorithm clustering results.

K-Value 3 4 5 6 7 8 9 10

SC 0.462 0.469 0.471 0.483 0.484 0.471 0.457 0.436

As shown in the above table, the improved K-means clustering algorithm has a signifi-
cant improvement in clustering performance compared to traditional K-means clustering
algorithms. The SC value reaches its maximum value of 0.484 when the K value is 7.
Therefore, selecting 7 as the K value, the clustering effect is shown in Figure 4.
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To further discover patterns, the mean of each cluster after clustering is calculated, as
shown in Figure 5.
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Figure 5. Mean clustering of the top 10% daily wind power output curves with peak-to-valley difference.

Based on the clustering results, the seven types of daily wind power output curves
with significant peak-to-valley differences are as follows: rapid rise type, rapid decline
type, slight decline followed by rapid rise type, large amplitude rise then fall type, large
amplitude fall then rise type, stable decline followed by rapid decline type, and stable rise
followed by rapid rise type.

6.3. Extraction of Typical Wind Power Curves

This paper employs two swarm intelligence algorithms, PSO and WOA, using the
curve extraction method proposed in Section 4 for solution. The main parameters are
shown in Table 3, the extraction results are illustrated in Figure 6, and specific numerical
values are provided in Table 4.

Table 3. Key parameters of the wind power typical output curve extraction model.

Algorithm Parameter Value

PSO

Population Size 50
Maximum Iterations 100

Inertia Weight ω 0.7
Acceleration Factor C1 1.5
Acceleration Factor C2 1.5

WOA
Population Size 50

Maximum Iterations 100
Spiral Update Constant 1
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Table 4. Data of typical daily wind power generation curves based on power system flexibility
planning analysis.

Data Point Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

1 0.395 0.661 0.090 0.726 0.646 0.289 0.022
2 0.391 0.649 0.088 0.715 0.638 0.286 0.023
3 0.383 0.632 0.084 0.694 0.624 0.278 0.025
4 0.376 0.613 0.081 0.675 0.611 0.269 0.027
5 0.368 0.592 0.077 0.653 0.596 0.260 0.030
6 0.359 0.566 0.072 0.631 0.579 0.251 0.034
7 0.349 0.536 0.069 0.610 0.565 0.243 0.039
8 0.338 0.505 0.066 0.592 0.553 0.236 0.045
9 0.327 0.475 0.065 0.577 0.543 0.232 0.052
10 0.315 0.445 0.064 0.562 0.535 0.228 0.058
11 0.305 0.418 0.064 0.548 0.530 0.227 0.065
12 0.297 0.395 0.064 0.535 0.526 0.227 0.073
13 0.291 0.374 0.065 0.523 0.522 0.228 0.080
14 0.288 0.357 0.066 0.513 0.519 0.231 0.087
15 0.287 0.344 0.068 0.504 0.515 0.234 0.095
16 0.290 0.334 0.071 0.497 0.511 0.237 0.102
17 0.295 0.327 0.073 0.491 0.509 0.241 0.110
18 0.302 0.324 0.075 0.489 0.509 0.244 0.117
19 0.311 0.323 0.078 0.489 0.511 0.246 0.123
20 0.324 0.321 0.080 0.492 0.514 0.249 0.129
21 0.337 0.319 0.083 0.496 0.518 0.253 0.134
22 0.350 0.317 0.087 0.502 0.521 0.257 0.138
23 0.363 0.315 0.090 0.508 0.524 0.262 0.142
24 0.375 0.313 0.093 0.514 0.527 0.268 0.145
25 0.385 0.312 0.096 0.521 0.531 0.273 0.146
26 0.396 0.310 0.098 0.528 0.534 0.278 0.145
27 0.409 0.306 0.099 0.535 0.538 0.284 0.142
28 0.423 0.301 0.101 0.541 0.540 0.292 0.137
29 0.439 0.294 0.103 0.548 0.543 0.301 0.132
30 0.456 0.287 0.106 0.553 0.543 0.311 0.128
31 0.474 0.278 0.110 0.557 0.543 0.323 0.128
32 0.491 0.270 0.113 0.561 0.545 0.335 0.135
33 0.507 0.261 0.117 0.560 0.545 0.347 0.148
34 0.521 0.253 0.120 0.555 0.541 0.359 0.170
35 0.532 0.245 0.123 0.543 0.535 0.370 0.199
36 0.540 0.238 0.126 0.522 0.525 0.381 0.231
37 0.546 0.232 0.130 0.490 0.507 0.391 0.265
38 0.551 0.226 0.135 0.451 0.488 0.399 0.297
39 0.555 0.221 0.141 0.406 0.466 0.405 0.325
40 0.561 0.218 0.147 0.359 0.444 0.411 0.346
41 0.567 0.216 0.154 0.314 0.422 0.417 0.364
42 0.574 0.215 0.163 0.278 0.402 0.424 0.379
43 0.582 0.216 0.172 0.250 0.386 0.432 0.391
44 0.589 0.218 0.184 0.231 0.376 0.443 0.400
45 0.596 0.220 0.197 0.220 0.370 0.455 0.407
46 0.604 0.222 0.212 0.213 0.367 0.466 0.409
47 0.612 0.223 0.227 0.209 0.365 0.472 0.407
48 0.621 0.223 0.242 0.206 0.364 0.474 0.400
49 0.632 0.224 0.258 0.203 0.363 0.468 0.391
50 0.642 0.224 0.273 0.201 0.360 0.458 0.380
51 0.651 0.224 0.288 0.202 0.358 0.447 0.370
52 0.659 0.224 0.302 0.207 0.356 0.437 0.362
53 0.664 0.224 0.315 0.211 0.355 0.426 0.357
54 0.666 0.223 0.328 0.218 0.354 0.420 0.356
55 0.667 0.222 0.342 0.223 0.355 0.417 0.357
56 0.666 0.220 0.356 0.228 0.356 0.416 0.359
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Table 4. Cont.

Data Point Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

57 0.666 0.219 0.370 0.235 0.358 0.419 0.362
58 0.667 0.218 0.383 0.245 0.359 0.426 0.366
59 0.669 0.218 0.397 0.259 0.361 0.440 0.373
60 0.673 0.219 0.410 0.279 0.365 0.460 0.382
61 0.677 0.220 0.421 0.307 0.372 0.487 0.395
62 0.684 0.222 0.432 0.342 0.382 0.520 0.411
63 0.692 0.223 0.441 0.383 0.395 0.555 0.430
64 0.701 0.224 0.449 0.430 0.411 0.593 0.449
65 0.712 0.225 0.455 0.478 0.432 0.632 0.470
66 0.722 0.225 0.461 0.524 0.455 0.667 0.491
67 0.731 0.225 0.465 0.561 0.479 0.697 0.511
68 0.738 0.224 0.470 0.591 0.503 0.722 0.530
69 0.745 0.222 0.474 0.610 0.530 0.738 0.544
70 0.751 0.219 0.478 0.622 0.556 0.747 0.554
71 0.755 0.215 0.481 0.629 0.581 0.751 0.556
72 0.759 0.210 0.484 0.634 0.601 0.752 0.554
73 0.762 0.205 0.487 0.634 0.614 0.751 0.547
74 0.765 0.199 0.488 0.633 0.615 0.749 0.534
75 0.767 0.191 0.489 0.630 0.599 0.747 0.514
76 0.767 0.181 0.489 0.623 0.570 0.744 0.487
77 0.766 0.168 0.489 0.615 0.530 0.739 0.450
78 0.761 0.155 0.490 0.607 0.484 0.733 0.405
79 0.752 0.143 0.489 0.599 0.435 0.726 0.355
80 0.744 0.132 0.489 0.592 0.387 0.719 0.303
81 0.737 0.124 0.488 0.588 0.341 0.712 0.255
82 0.730 0.119 0.487 0.592 0.300 0.705 0.215
83 0.722 0.116 0.484 0.605 0.263 0.699 0.185
84 0.714 0.114 0.480 0.626 0.231 0.695 0.162
85 0.704 0.113 0.476 0.647 0.203 0.692 0.145
86 0.692 0.113 0.473 0.666 0.181 0.691 0.132
87 0.681 0.114 0.470 0.675 0.163 0.691 0.121
88 0.673 0.114 0.469 0.673 0.148 0.689 0.112
89 0.667 0.114 0.468 0.658 0.137 0.685 0.103
90 0.662 0.114 0.467 0.638 0.129 0.678 0.096
91 0.659 0.112 0.466 0.612 0.124 0.670 0.091
92 0.656 0.110 0.465 0.584 0.121 0.660 0.086
93 0.654 0.107 0.462 0.557 0.119 0.653 0.082
94 0.653 0.103 0.459 0.533 0.119 0.647 0.079
95 0.653 0.099 0.455 0.510 0.119 0.644 0.077
96 0.654 0.097 0.451 0.496 0.120 0.642 0.076

The table illustrates that the particle swarm optimization (PSO) and whale optimiza-
tion algorithm (WOA) yield identical representative curves for wind power output, corrob-
orating the efficacy of both algorithms. PSO is celebrated for its straightforwardness and
efficiency in nonlinear optimization challenges, albeit prone to entrapment in local optima.
Conversely, WOA employs distinct strategies to circumvent local optima, enhancing its
search robustness, albeit at the expense of increased iterations. The congruence in outcomes
may stem from the characteristics of wind power output data and the algorithms’ profi-
ciency in converging upon solutions that faithfully encapsulate the data’s inherent patterns.
This efficiency likely results from the algorithms’ adeptness in navigating and capitalizing
on the search space, culminating in comparable optimal or suboptimal solutions.

7. Conclusions

This paper proposes a method for extracting typical daily wind power generation
curves based on power system flexibility planning analysis and concludes the following:
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1. The data preprocessing method, which combines Extended Kalman Filter with curve
smoothing, can effectively improve data quality and retain the morphological charac-
teristics of the wind power output curves.

2. The use of the Pearson correlation coefficient combined with the greedy algorithm
to optimize K-means clustering can effectively solve the problems of selecting the K
value and the random selection of cluster centers in the traditional K-means algorithm.
The clustering results are more accurate and effective.

3. The use of the Pearson correlation coefficient combined with swarm intelligence
algorithms such as PSO and WOA can effectively extract typical wind power output
curves, with consistent calculation results.

This paper introduces a method for extracting typical daily wind power generation
curves tailored to power system flexibility planning analysis. The seven distinct types
of wind power output curves identified offer a robust data foundation for planning and
analyzing power system flexibility. While primarily focusing on intra-day wind power
output, the proposed algorithm is also applicable to longer-term analyses, including weekly,
monthly, or seasonal time scales. However, due to the constraints of the data collected,
future research will further explore the characteristics of wind power output over ex-
tended periods.
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