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Abstract: To enrich 3D scenes, a real–virtual fusion-based integral imaging method is proposed.
It combines the Softargmax function with Gaussian weighting coefficients for sub-pixel feature
point extraction from SuperPoint detection results. SIFT is also used for feature point detection
and matching, along with the improved SuperPoint. Subsequently, based on the multi-view 3D
reconstruction, the real object is reconstructed into a 3D model. A virtual model is then fused with
the 3D reconstructed model of the real object to generate a real–virtual fusion elemental image array
based on the display platform’s optical parameters. The experimental results demonstrate that the
proposed method can optically reconstruct more realistic and vivid real–virtual fusion 3D images.
This method can enrich a scene’s content, enhance visualization and interactivity, save costs and time,
and provide flexibility and customization.

Keywords: integral imaging; 3D reconstruction; real–virtual fusion

1. Introduction

Unlike traditional two-dimensional (2D) imaging, three-dimensional (3D) imaging
technology has the potential to capture the depth and angle information of objects. Three-
dimensional imaging and display systems have brought revolutionary changes in many
fields, providing more comprehensive, accurate, and visualized data, thus promoting
innovation and development. Through 3D imaging technology, we can understand and
analyze objects and scenes in the real world in a more in-depth and comprehensive way,
bringing tremendous potential and opportunities to various industries [1]. Integral imaging
is a true 3D display technology characterized by its simple architecture, low manufacturing
cost, and good imaging effect. It has been developed for more than a century. Many
researchers have dedicated their efforts to improving the 3D display performance in various
aspects [2–5]. Lim et al. used depth-slice images and orthogonal-view images to optimize
element image arrays and enhance the display resolution [6]. Navarro et al. proposed a
smart pseudo-orthogonal transformation method to optimize the depth of field [7]. Kwon
et al. improved the resolution by reconstructing and rapidly processing the intermediate
view through the image information of adjacent elements [8]. They also enhanced the
depth-of-field range by using a multiplexed structure combining a dual-channel beam
splitter with a microlens array [9]. Zhang et al. proposed a target contour extraction method
and a block-based image fusion method to generate a reconstructed image with extended
degrees of freedom and improve the depth of field [10]. Sang et al. utilized a pre-filter
function array (PFA) to preprocess elemental images, aiming to improve the reconstruction
fidelity of integral imaging [11]. Ma et al. employed a conjugate pinhole camera and a
pinhole-based projection model to mitigate distortion and expand the view angle of integral
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imaging [12]. Wang et al. utilized a bifocal lens array to achieve a 3D image display with
a depth of field twice that of conventional integral imaging [13]. Cao et al. proposed a
high-resolution integral imaging display with an enhanced point light source to improve
the image resolution of the vertical and horizontal dimensions [14]. The above research
improved the quality and efficiency of integral imaging content generation and display
by optimizing and improving the resolution, viewing angle, and depth of field range of
integral imaging.

With developments in computer science, real–virtual fusion based on integral imaging
has recently become a research hotspot field, which overlays 3D images in real environ-
ments [15,16]. Hong et al. introduced an integral floating 3D display that adopts a concave
lens to combine 3D images and real-world scenes [17]. Hua and Javidi et al. used the
microscopic integral imaging to create a mini-3D image and combined it with the freeform
optical to design a see-through 3D display [18]. Yamaguchi and Takaki et al. used two
integral imaging systems to achieve a background occlusion capability [19]. H. Deng et al.
proposed a method for creating a magnified augmented reality (AR) 3D display using
integral imaging. The method involves the use of a convex lens and a half-mirror to merge
a magnified 3D image with a real-world scene [20]. To increase real-time performance,
Wang et al. proposed GPU-based computer-generated integral imaging and presented an
AR device for surgical 3D image overlay [21]. Furthermore, developing a high-definition,
real–virtual fusion 3D display is also a problem that needs to be resolved [22–24]. How-
ever, these methods can only present one real scene at a time. In order to achieve a more
immersive and rich augmented reality experience, as well as capture, process, and combine
different real scenes simultaneously, this study proposes a method to import real objects
into virtual spaces. By utilizing virtual capture technology based on integral imaging, it
is possible to generate a real–virtual fusion 3D display that combines multiple real scenes
in a single process. Since modeling real objects degrades the object display quality, it is
necessary to enhance the 3D reconstruction effect.

The Structure from Motion (SFM) is a classical 3D reconstruction algorithm [10], first
proposed by Longuet-Higgins [25], that can accurately reconstruct real objects and generate
computerized 3D models. The Scale Invariant Feature Transform (SIFT) has demonstrated
excellent application effectiveness and high robustness [26]. It is also a widely recognized
feature extraction algorithm. However, it tends to perform poorly on image regions with
weak textures. With the rise of deep learning, there has been a rapid advancement and
increase in iteration speeds in image feature point detection. The fast corner detection is the
first algorithm to obtain image corners through machine learning [27]. Yi et al. proposed the
learned invariant feature transform (LIFT), an end-to-end convolutional neural network-
based feature point detection [28]. Detone et al. proposed a self-supervised interest point
(SuperPoint) algorithm for feature point extraction that is trained in a self-supervised
manner [29]. This algorithm has a good detection effect in areas of the image with a weak
texture. However, the SuperPoint algorithm can only extract integer coordinates of feature
points, which limits its accuracy. Wu added a sub-pixel module based on the Softargmax
function to implement the subpixel detection of feature points [30]. However, in dense
feature maps, the edges of the pixel blocks extracted by Softargmax often contain isolated
points with high pixel values. These isolated points can affect the accuracy of the bias
values calculated by Softargmax. Since the calculation of Softargmax relies on the weights
of individual pixels within the pixel block, if there are isolated high pixel value points,
their weights may be excessively amplified, leading to inaccuracies in the bias values. This
inaccuracy further affects the results of subsequent tasks and reduces the overall accuracy
of the algorithm. On the other hand, if the size of the extracted pixel blocks is reduced
to avoid isolated points, the pixels at the boundaries will not be fully utilized. This is
because boundary pixels usually carry important edge information, and reducing the size
of the pixel blocks may result in the neglect or loss of boundary pixels, thereby affecting
the accuracy of Softargmax calculations.
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Therefore, this paper proposes to improve the SuperPoint function by adding Gaussian
weights and performing sub-pixelization to enhance the matching accuracy of image feature
point detection and improve the mapping effect in real scenes. By reducing the weight
of the edge area, the interference caused by isolated points with high pixel values can
be minimized. Meanwhile, increasing the weight of the central area can better capture
the position of the main feature points, improving the accuracy of feature point detection.
In addition, sub-pixelization processing can further improve the positioning accuracy of
feature points, thereby improving the quality and authenticity of scene reconstruction.

In conclusion, this paper combines integral imaging and 3D reconstruction techniques
and proposes a method for generating elemental image arrays for real–virtual fusion
scenes. The 3D information of multiple real scenes can be combined in a single process.
The SuperPoint feature point detection is improved with an added Gaussian weight and
combined with the SIFT algorithm to obtain a rich number of accurate image feature
points. Then, the SFM algorithm is used to complete the 3D model reconstruction. Finally,
following the principle of integral imaging, the elemental image array of the real–virtual
fusion scene can be generated. This eliminates the need to consider the size and matching
issues of the scene. The model only needs to be reconstructed once and can be used multiple
times, which saves the cost and time of modeling and rendering. This enables the rapid
generation of diverse scenes while minimizing the need for additional equipment and
resources. Users can modify the real–virtual fusion model anytime according to their needs,
achieving a more personalized scene presentation.

This article is organized as follows: in Section 2, the content generation for real–virtual
fusion in integral imaging is introduced. Section 2.1 presents a joint feature point detection
method aimed at improving the detection effectiveness. Section 2.2 focuses on how to
generate real–virtual fused elemental image arrays. Section 3 presents the experimental
results and provides a comprehensive discussion. Finally, in Section 4, conclusions are
drawn based on the conducted research.

2. Integral Imaging Content Generation for Real–Virtual Fusion

An improved SuperPoint and the SIFT algorithm are used for feature point detection
and matching, followed by the utilization of the SFM-based method to achieve the 3D
reconstruction of the object. By combining the 3D model of the real object with the virtual
model, a mixed-reality scene is created. This allows the integral imaging virtual capture
method to capture both real and virtual models simultaneously. The process is shown in
Figure 1.
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Figure 1. The overall approach of our proposed method.

2.1. Joint Feature Point Detection

The SIFT algorithm is renowned for its ability to detect a large number of feature points
accurately. However, it exhibits an uneven distribution of feature points and performs
poorly in low-texture regions. On the other hand, the SuperPoint feature detection, based
on deep learning networks, excels in detecting feature points in low-texture regions but
lacks precision in positioning. By combining the strengths of both algorithms, SIFT and
SuperPoint, we can effectively enhance the capability of image feature point detection and
matching. This combination allows us to leverage the advantages of each algorithm while
mitigating their respective shortcomings. The SIFT algorithm provides a robust and accu-
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rate localization of feature points while the SuperPoint algorithm enhances the performance
in low-texture regions. As a result, the overall capability for detecting and matching image
feature points is significantly improved. This integration of SIFT and SuperPoint brings
a complementary approach that addresses the limitations of each algorithm individually,
leading to a more reliable and comprehensive feature point detection.

SuperPoint is a deep learning-based algorithm used for self-supervised feature point
detection and description. It extracts image features through deep learning and generates
pixel-level image feature points along with their corresponding descriptors. The SuperPoint
network can be divided into four main parts: the VGG-style shared encoder, the feature
point decoder, the descriptor subdecoder, and the error construction, as shown in Figure 2.
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The SuperPoint feature detection network outputs the feature point confidence distri-
bution map and the feature descriptor map. Each pixel value on the feature point confidence
distribution map represents the probability that the corresponding point is a feature point
in the image. SuperPoint obtains feature points using the Non-Maximum Suppression
(NMS) function. It detects a set of pixels above a certain threshold and then uses these
pixels as centers to obtain bounding boxes of size N × N. The overlap degree between each
bounding box is calculated, and feature points that are too close to each other are removed
to obtain the final set of feature points. However, these feature points have integer coordi-
nates, and the detection results are not precise [31]. A study [30] added a sub-pixel module
based on the Softargmax function to the SuperPoint feature point detection algorithm to
achieve the sub-pixel detection of feature points. Considering that the NMS function only
retains the maximum value within an N × N pixel size and sets all other pixel points to 0,
it is easy to have isolated points with larger pixel values on the edges of the pixel blocks
extracted by Softargmax in densely featured images, which will affect the accuracy of the
bias value calculated by Softargmax. On the other hand, if the size of the extracted pixel
block is reduced, the pixel points at the boundary cannot be utilized, which will also affect
the calculation accuracy of Softargmax.

To solve the above problem, we introduce Gaussian weight coefficients into the Su-
perPoint sub-pixel feature point detection algorithm. It starts by obtaining the integer
coordinate feature point set through the feature point decoder of the SuperPoint algorithm.
Then, the pixel blocks extracted by the Softargmax function are processed with the addition
of Gaussian weight coefficients, typically with a block size of 5 × 5. This approach effec-
tively reduces the weight of the edge regions within the pixel blocks while increasing the
weight of the central regions. As a result, it mitigates the impact of isolated points with
large pixel values at the edges on the accuracy of the Softargmax calculation and improves
the precision of the feature point detection.
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Let G be the Gaussian weight coefficient, the size is consistent with the pixel block
extracted by Softargmax, and G(i, j) is the weight value at (i, j); then, the expectation of
offset (δx, δy) in the x and y directions is calculated as follows:

δx =

∑
j

∑
i

eG(i,j)S(xi ,yj)i

∑
j

∑
i

eG(i,j)S(xi ,yj)
, δy =

∑
j

∑
i

eG(i,j)S(xi ,yj) j

∑
j

∑
i

eG(i,j)S(xi ,yj)
, (1)

where S(x, y) represents the probability that the pixel at position (x, y) in the image is
a feature point, while S(xi, yj) represents the pixel value at position i, j in the extracted
pixel block.

According to the obtained offset (δx, δy), the final feature point coordinates are calcu-
lated as follows:

(x, y) = (x0 + δx, y0 + δy) (2)

where x0 and y0 are the integer coordinates of feature points, which also represent the
center position of the extracted pixel block. The above method increases the algorithm’s
complexity due to the addition of the Gaussian weight coefficient, but it can effectively
reduce the error generated in the process of feature point sub-pixelization in the feature-
point-dense image or region, resulting in more accurate final feature points.

The sub-pixel feature descriptors of the improved SuperPoint feature point detection
algorithm are obtained through the descriptor decoder. The input to the descriptor decoder
is convolved to generate a descriptor matrix of size H/8 × W/8 × 256. This matrix is then
subjected to bicubic interpolation and L2 normalization to obtain a 256-dimensional feature
descriptor vector for the sub-pixel feature points.

The feature points extracted by SIFT are high-precision sub-pixel feature points, and
those extracted by the improved SuperPoint algorithm are also at the sub-pixel level. This
means that the feature points extracted by these two algorithms at the same position will
not completely coincide. Therefore, in order to merge the feature point set extracted by
SIFT and the improved SuperPoint, it is necessary to calculate the distance between each
feature point in the improved SuperPoint and each feature point in the SIFT set. If the
distance exceeds a threshold, the feature point is retained; otherwise, it is discarded. The
formula for this calculation is as follows:

√
(x1i − x2j)

2 + (y1i − y2j)
2 > λ, S(x1i ,y1i)

= 1√
(x1i − x2j)

2 + (y1i − y2j)
2 < λ, S(x1i ,y1i)

= 0
(3)

where (x1,i, y1,i) and (x2,j, y2,j) are the feature points in the improved SuperPoint and SIFT
feature point sets. The value of S(x,y) indicates whether the feature point (x, y) in the feature
point set of the improved SuperPoint is discarded, and λ is a constant.

Considering that the dimensions of the feature point description extracted by the
SIFT and improved SuperPoint algorithms are 128 and 256, respectively, this paper first
uses feature point matching and then detects distance thresholds to merge feature point
collections. The feature point matching algorithm calculates the distance ratio between the
closest and the second closest neighboring features and matches the SIFT feature point set
and the improved SuperPoint feature point set on two images, respectively.

2.2. Virtual–Real Fusion Element Image Array Generation

The generation of elemental image arrays mainly involves two methods: real-scene
capture and computer-based virtual generation. The real-scene capture can acquire the 3D
information of the actual scene but requires camera arrays or lens arrays. The calibration
and synchronization of camera arrays are complex and precise processes, while lens arrays
are limited in size and shooting range due to manufacturing constraints. The computer-
based virtual generation method uses 3D modeling and animation software such as Maya,
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3DsMax, and Blender to simulate the shooting process of real lens arrays or camera arrays,
establishing an optical mapping model to generate elemental image arrays. This method is
not limited by capturing devices, allowing for an infinitely small virtual camera spacing
and shooting from within virtual objects [32]. It can achieve various shooting structures
such as parallel, convergence, and shift. However, the captured 3D models are virtual
models. Therefore, addressing the issues of a high cost, complex processes, limited shooting
structures, and a single virtual shooting model in real-scene capture, this section proposes
a method for generating a real–virtual fusion elemental image array. It utilizes SFM to
establish the 3D models of real objects and merge them with the virtual models. The ray
tracing technique is used to render the real–virtual fusion elemental image array. This
method enables the capture of real scenes without being limited by capturing devices,
providing a more diverse source of true 3D videos for integral imaging system research.

Compared to other 3D reconstruction methods, SFM is based on the principles of multi-
view geometry to restore the 3D structural information of a scene through images captured
from different angles [33]. By using images from different angles, it is possible to calculate
the fundamental matrix and essential matrix, which can then be decomposed to extract the
relative camera pose information and determine the position and orientation of each camera
when capturing the images. Subsequently, using triangulation techniques, the 3D point
cloud of the scene can be reconstructed. In the reconstruction process, bundle adjustment
is performed to minimize errors considering error accumulation. Bundle adjustment is a
method that simultaneously adjusts all camera parameters to optimize camera poses and
the positions of 3D points by minimizing reprojection errors. These steps are repeated,
incorporating new images, until all multi-view images are reconstructed to obtain the final
sparse point cloud. The advantages of SFM are its ability to capture camera motion freely
without prior camera calibration and its ability to fuse multi-view information to generate
sparse but accurate 3D reconstruction results. It can be used in various scenarios, including
indoor, outdoor, static, and dynamic scenes. Therefore, this paper adopts SFM for the 3D
reconstruction of real objects. The specific process is shown in Figure 3.
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Import the real object model into virtual space and combine it with a virtual model,
and a virtual reality fusion scene is created. After that, using integral imaging virtual
acquisition, a real–virtual 3D scene-fused elemental image array can be generated. The
element image array serves as a bridge connecting the integral imaging acquisition and
reconstruction process.

The process of collecting and visualizing spatial scene information using an integral
imaging system can be summarized as consisting of two stages: acquisition and display, as
shown in Figure 4a [5]. During the acquisition process, media with information recording
capabilities are placed in parallel behind the lens array. In this way, when light emitted
from an object passes through a lens array and is projected onto a capture device, the image
information of the object at a certain spatial angle is saved at the elemental image array.
Integral imaging is an optically symmetrical system, where the acquisition and display
processes are optically reversible. In the display process, the elemental image array captured
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on the recording media is projected onto the lens array through high-definition display
devices such as liquid crystal displays (LCDs). According to the reversible principle of light
paths, the light emitted from the display screen, after optical decoding by the lens array,
converges at the original location of the captured object, generating a real three-dimensional
image. Therefore, in the integral imaging system, both the recording and reproducing
processes need to satisfy the lens imaging principle—the Gaussian imaging formula.

1
g
+

1
L
=

1
f

(4)

where g and L are the distance between the captured or display device and the lenslet array;
f is the focal length of the lens array.
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Figure 4. Integral imaging acquisition and display process. (a) Fundamental principles; (b) optical
mapping model.

In order to make the acquired elemental image array efficiently displayed in the actual
light field environment, it is important that the camera array parameters in the virtual
acquisition process must be set according to the display platform. The optical mapping
model is shown in Figure 4b.

L1
g1

= P1
D

L2
g2

= P2
d

D
d = β

(5)

where L1, g1, P1, and D are the object distance, camera focal length, camera array pitch,
and disparity between adjacent image pairs in acquisition; L2, g2, P2, and d are the image
distance, distance between the lens and the display plane, lens pitch, and disparity between
adjacent elemental image pairs in the display; β is the magnification factor.

After establishing the optical mapping model from the acquisition to display, the
virtual camera array is set according to the display parameters, as shown in Figure 5.
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3. Experimental Results

The experiment first verified that the improved SuperPoint feature point detection
algorithm can reconstruct the 3D model of the object more accurately and realistically.
On this basis, the real–virtual fusion elemental image array combining the real object
reconstruction and virtual models and its optical 3D reconstruction effect were given
experimentally.

A standard test dataset of large-scale castle-P30 and a self-captured small-scale rockery
scene with more textures and details were selected as the real scenes. The image sets
consisted of 30 buildings and 23 rockery images captured from different angles, with sizes
of 3072 × 2048 and 2306 × 4608 pixels. Figure 6 shows a subset of different view images.
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In order to verify the effectiveness of the proposed method, three sparse point cloud
reconstructions were carried out according to different feature point detection algorithms.
The reconstruction result is shown in Figure 7. Table 1 shows the number of point clouds
generated.
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Figure 7. Sparse point cloud reconstruction of the castle-P30 image set and rockery generated
by (a) SIFT feature point detection, (b) SIFT and subpixel SuperPoint detection [30], and (c) the
proposed method.

Table 1. The total number of points in the sparse point cloud.

Castle-P30 Rockery

SIFT 19,249 13,833
SIFT and subpixel SuperPoint detection 27,207 16,141

Proposed method 27,663 16,185

Figure 7 and Table 1 demonstrate that the proposed method generates approximately
one-third more point clouds compared to the single SIFT algorithm, and compared to [30],
it also has significant improvements. Furthermore, our proposed method exhibits superior
accuracy in feature point detection and a stronger capability to generate 3D sparse point
clouds, particularly in areas with weak textures such as the base and center of the rockery.
This improvement is attributed to the incorporation of Gaussian weight coefficients to
process the pixel blocks extracted by the Softargmax function. By reducing the weight of
the edge regions and increasing the weight of the central regions, this approach mitigates
the impact of isolated high pixel values at the edges of the pixel blocks on the results of the
Softargmax calculation.

For the obtained sparse point cloud, this study performed patch reconstruction using
the patch-based multi-view stereo (PMVS). Through the Poisson surface reconstruction
operation in Meshlab, a smooth 3D model of the real object was obtained. The surface
texture information of the model was recovered using the captured image of the object.
As a result, a highly restored, detailed, and vivid 3D model was achieved, as shown in
Figure 8.
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Figure 8. Reconstructed 3D model of the rockery.

The 3D model and texture map of the real object rockery were imported into Blender to
form a real–virtual fusion scene with the virtual model Mario, as shown in Figure 9. Then,
a virtual camera array was established straight ahead of the scene to generate real–virtual
fused elemental image array. The parameters of the virtual camera array and optical lens
array are shown in Table 2, and the real–virtual fused elemental image array is shown in
Figure 10.
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Figure 9. Virtual reality fusion scene.

Table 2. Configuration of the experiment.

Virtual camera array
Distance between 3D object and camera array 500 mm

Number of cameras 12 × 12
Resolution per camera 67 × 67

Optical lens array
Number of lenses 12 × 12

Focal length 60 mm
Pitch of lens 10 mm

To assess the quality of the displayed real–virtual fused elemental image array, the vir-
tual and optical reconstruction for the left, right, center, top, and bottom views, respectively,
were established, as shown in Figures 11 and 12.
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The experimental results show that combining real scenes with virtual models and
utilizing integral imaging virtual capture can generate an element image array with both
real and virtual contents in a single step, greatly enriching the 3D scene. The introduction
of Gaussian weighting coefficients helps to better address the edge region issue in the
SuperPoint sub-pixel feature detection algorithm. The edge region often contains isolated
points with large pixel values, which can significantly affect the accuracy of computations.
By reducing the weight of the edge region, the interference caused by these isolated points
on the computational results can be minimized. At the same time, increasing the weight
of the central region allows for a better capture of the positions of the main feature points,
thus improving the accuracy of feature point detection. Therefore, the proposed method in
this paper is able to adapt to feature point distributions in various scenarios, enhancing
the quality and authenticity of reconstruction results. As seen in Figures 8 and 12, the
detailed features of the rockery are well preserved, enabling a more realistic and vivid
optical reconstruction of the 3D images. This means that during the reconstruction process,
we are able to capture more detailed information, making the final reconstruction result
more realistic, which is crucial for the visualization and interactivity of real scenes.

4. Conclusions

In this paper, the process of generating real–virtual fused 3D scenes based on inte-
gral imaging is introduced. The improved SuperPoint algorithm enhances the accuracy
of feature point detection by adding Gaussian weighting coefficients to softeargmax to
perform sub-pixel feature point detection. Through the reconstruction of sparse, dense
point clouds and a Poisson surface, a highly restored, detailed, and vivid 3D model is
achieved. Then, integral imaging is used to generate and reproduce the real–virtual fused
3D images by combining them with the virtual model. The experimental results show
that more realistic and vivid real–virtual fusion 3D images can be optically reconstructed.
This method enhances user immersion and experience by providing more intuitive and
interactive visual effects, allowing them to better understand and explore scenes. It also
helps save costs and time in modeling and rendering, enabling the rapid generation of
diverse scenes while reducing the need for additional equipment and resources. Users can
modify virtual models or replace real objects according to their needs, achieving a more
personalized scene presentation. Overall, fusing real object modeling with virtual models
can provide more realistic, rich, and interactive 3D scenes, offering users a better visual
experience and immersion. The proposed method may be widely used in the fields of
virtual reality (VR), augmented reality (AR), and training simulations in various industries,
allowing learners to gain a more realistic experience closer to actual scenarios. This is
particularly important for industries that involve complex operations or high-risk work
environments, such as aerospace, medical surgery, hazardous chemical handling, and more.
In the future, we will explore the combination of other deep learning methods to further
improve the 3D reconstruction effect.

Author Contributions: Conceptualization, W.W. and H.W.; methodology, W.C. and S.W.; software,
W.W. and H.W.; validation, W.W and S.W.; formal analysis, W.C.; investigation, S.W.; resources, C.Z.;
data curation, H.W.; writing—original draft preparation, W.W.; writing—review and editing, W.W.;
visualization, C.Z.; supervision, W.C.; project administration, S.W. and W.C.; funding acquisition,
W.W. and S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(NSFC) (61631009 and 61901187) and the Science and Technology Development Plan of Jilin Province
(20220101127JC and 20210201027GX).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available on request.



Electronics 2024, 13, 970 13 of 14

Acknowledgments: The authors would like to acknowledge support from the State Key Laboratory
of New Communications Technologies at Jilin University.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Martínez-Corral, M.; Javidi, B. Fundamentals of 3D imaging and displays: A tutorial on integral imaging, light-field, and

plenoptic systems. Adv. Opt. Photonics 2018, 10, 512–566. [CrossRef]
2. Xiao, X.; Javidi, B. Advances in three-dimensional integral imaging sensing, display, and applications. Appl. Opt. 2013, 52,

546–560. [CrossRef] [PubMed]
3. Hui, R.; Li, X.N. Review on tabletop true 3D display. J. Soc. Inf. Display 2020, 28, 75–91.
4. Wu, W.; Wang, S.G.; Piao, M.L.; Zhao, Y.; Wei, J. Performance metric and objective evaluation for displayed 3D images generated

by different lenslet arrays. Opt. Commun. 2018, 426, 635–641. [CrossRef]
5. Wu, W.; Wang, S.G.; Zhong, C.; Piao, M.L.; Zhao, Y. Integral Imaging with Full Parallax Based on Mini LED Display Unit. IEEE

Access 2019, 7, 32030–32036. [CrossRef]
6. Lim, Y.T.; Park, J.H.; Kwon, K.C.; Kim, N. Resolution-enhanced integral imaging microscopy that uses lens array shifting. Opt.

Express 2009, 17, 19253–19263. [CrossRef] [PubMed]
7. Navarro, H.; Martínez-Cuenca, R.; Saavedra, G.; Martínez-Corral, M.; Javidi, B. 3D integral imaging display by smart

pseudoscopic-to-orthoscopic conversion(SPOC). Opt. Express 2010, 18, 25573–25583. [CrossRef] [PubMed]
8. Kwon, K.C.; Jeong, J.S.; Erdenebat, M.U.; Piao, Y.L.; Yoo, K.H.; Kim, N. Resolution-enhancement for an orthographic-view image

display in an integral imaging microscope system. Biomed. Opt. Express 2015, 6, 736–746. [CrossRef]
9. Kwon, K.C.; Erdenebat, M.U.; Alam, M.A.; Lim, Y.T.; Kim, K.G.; Kim, N. Integral imaging microscopy with enhanced depth-of-

field using a spatial multiplexing. Opt. Express 2016, 24, 2072–2083. [CrossRef]
10. Zhang, M.; Wei, C.Z.; Piao, Y.R.; Liu, J.Q. Depth-of-field extension in integral imaging using multi-focus elemental images. Appl.

Opt. 2017, 56, 6059–6064. [CrossRef]
11. Zhang, W.L.; Sang, X.Z.; Gao, X.; Yu, X.B.; Yan, B.B.; Yu, C.X. Wavefront aberration correction for integral imaging with the

pre-filtering function array. Opt. Express 2018, 26, 27064–27075. [CrossRef]
12. Ma, S.T.; Lou, Y.M.; Hu, J.M.; Wu, F.M. Enhancing integral imaging performance using time-multiplexed convergent backlight.

Appl. Opt. 2020, 59, 3165–3173. [CrossRef] [PubMed]
13. Wang, L.; Deng, H.; Zhong, F.Y.; Cheng, C.; Li, Q. Integral imaging display with enhanced depth of field based on bifocal lens

array. J. Soc. Inf. Display 2021, 29, 689–696. [CrossRef]
14. Cao, Y.L.; Chagnaadorj, B.O.; Dalkhaa, N.E.; Baasantseren, G. Aberration Compensated Point Light Source Display with

High-Resolution. Front. Phys 2022, 3, 919050. [CrossRef]
15. Shen, X.; Javidi, B. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using

a focus-tunable lens. Appl. Opt 2018, 57, B184–B189. [CrossRef]
16. Javidi, B.; Carnicer, A.; Arai, J.; Fujii, T.; Hua, H.; Liao, H.; Martínez-Corral, M.; Pla, F.; Stern, A.; Waller, L.; et al. Roadmap on 3D

integral imaging: Sensing, processing, and display. Opt. Express 2020, 28, 32266–32293. [CrossRef]
17. Hong, J.; Min, S.W.; Lee, B. Integral floating display systems for augmented reality. Appl. Opt. 2012, 51, 4201–4209. [CrossRef]
18. Hua, H.; Javidi, B. A 3D integral imaging optical see-through head-mounted display. Opt. Express 2014, 22, 13484–13491.

[CrossRef]
19. Yamaguchi, Y.; Takaki, Y. See-through integral imaging display with background occlusion capability. Appl. Opt. 2016, 55,

A144–A149. [CrossRef]
20. Deng, H.; Wang, Q.H.; Xiong, Z.L.; Zhang, H.L.; Xing, Y. Magnified augmented reality 3D display based on integral imaging.

Optik 2016, 127, 4250–4253. [CrossRef]
21. Wang, J.; Suenaga, H.S.; Liao, H.; Hoshi, K.; Yang, L.; Kobayashi, E.; Sakuma, I. Real-time computer-generated integral imaging

and 3D image calibration for augmented reality surgical navigation. Comput. Med. Imaging Graph. 2015, 40, 147–159. [CrossRef]
22. Li, Q.; He, W.; Deng, H.; Zhong, F.Y.; Chen, Y. High-performance reflection-type augmented reality 3D display using a reflective

polarizer. Opt. Express 2021, 29, 9446–9453. [CrossRef] [PubMed]
23. Deng, H.; Chen, C.; He, M.Y.; Li, J.J.; Zhang, H.L.; Wang, Q.H. High-resolution augmented reality 3D display with use of a

lenticular lens array holographic optical element. J. Opt. Soc. Am. A 2019, 36, 588–593. [CrossRef] [PubMed]
24. Huang, H.K.; Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt.

Express 2018, 26, 17578–17590. [CrossRef] [PubMed]
25. Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Rds. Comp. Vis. 1987, 293, 61–62.

[CrossRef]
26. Lowe, D.G. Object recognition from local scale-invariant features. IEEE Int. Conf. Comput. Vis. 1999, 2, 1150–1157.
27. Rosten, E.; Drummond, T. Matchine learning for high-speed corner detection. In Proceedings of the Computer Vision–ECCV

2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 430–443.
28. Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. LIFT: Learned invariant feature transform. In Proceedings of the Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 467–483.

https://doi.org/10.1364/AOP.10.000512
https://doi.org/10.1364/AO.52.000546
https://www.ncbi.nlm.nih.gov/pubmed/23385893
https://doi.org/10.1016/j.optcom.2018.05.068
https://doi.org/10.1109/ACCESS.2019.2903146
https://doi.org/10.1364/OE.17.019253
https://www.ncbi.nlm.nih.gov/pubmed/20372662
https://doi.org/10.1364/OE.18.025573
https://www.ncbi.nlm.nih.gov/pubmed/21164903
https://doi.org/10.1364/BOE.6.000736
https://doi.org/10.1364/OE.24.002072
https://doi.org/10.1364/AO.56.006059
https://doi.org/10.1364/OE.26.027064
https://doi.org/10.1364/AO.385768
https://www.ncbi.nlm.nih.gov/pubmed/32400599
https://doi.org/10.1002/jsid.1018
https://doi.org/10.3389/fphot.2022.919050
https://doi.org/10.1364/AO.57.00B184
https://doi.org/10.1364/OE.402193
https://doi.org/10.1364/AO.51.004201
https://doi.org/10.1364/OE.22.013484
https://doi.org/10.1364/AO.55.00A144
https://doi.org/10.1016/j.ijleo.2016.01.185
https://doi.org/10.1016/j.compmedimag.2014.11.003
https://doi.org/10.1364/OE.421879
https://www.ncbi.nlm.nih.gov/pubmed/33820372
https://doi.org/10.1364/JOSAA.36.000588
https://www.ncbi.nlm.nih.gov/pubmed/31044978
https://doi.org/10.1364/OE.26.017578
https://www.ncbi.nlm.nih.gov/pubmed/30119569
https://doi.org/10.1038/293133a0


Electronics 2024, 13, 970 14 of 14

29. Detone, D.; Malisiewic, T.; Rabinovich, A. SuperPoint: Self-supervised interest point detection and description. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp.
337–349.

30. Wu, Y.X. Research on Key Technologies of 3D Reconstruction Based on Visible Light Multi-View Images. Master Thesis, University
of Electronic Science and Technology of China, Chengdu, China, 2022.

31. Meza, J.; Romero, L.A.; Marrugo, A.G. MarkerPose: Robust Real-time Planar Target Tracking for Accurate Stereo Pose Estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN,
USA, 19–25 June 2021; pp. 1282–1290.

32. Alpaslan, Z.Y.; Sawchuk, A.A. Multiple camera image acquisition models for multi-view 3D display interaction. In Proceedings
of the IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, 29 September–1 October 2004; pp. 256–262.

33. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Integral Imaging Content Generation for Real–Virtual Fusion 
	Joint Feature Point Detection 
	Virtual–Real Fusion Element Image Array Generation 

	Experimental Results 
	Conclusions 
	References

