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Abstract: Machine learning is increasingly and ubiquitously being used in the medical domain.
Evaluation metrics like accuracy, precision, and recall may indicate the performance of the models
but not necessarily the reliability of their outcomes. This paper assesses the effectiveness of a
number of machine learning algorithms applied to an important dataset in the medical domain,
specifically, mental health, by employing explainability methodologies. Using multiple machine
learning algorithms and model explainability techniques, this work provides insights into the models’
workings to help determine the reliability of the machine learning algorithm predictions. The results
are not intuitive. It was found that the models were focusing significantly on less relevant features
and, at times, unsound ranking of the features to make the predictions. This paper therefore argues
that it is important for research in applied machine learning to provide insights into the explainability
of models in addition to other performance metrics like accuracy. This is particularly important for
applications in critical domains such as healthcare.

Keywords: explainable AI; machine learning; mental health; model evaluation

1. Introduction

Mental health is a serious issue. For the past few years, a non-profit organization,
Open Sourcing Mental Health (OSMH), has been publishing the results of its survey
on the mental health of employees primarily in the tech/IT industry under Creative
Commons Attribution-ShareAlike 4.0 International license. A literature survey shows that
the dataset [1] is popular among researchers. Multiple articles have used machine learning
models on the dataset(s) to draw valuable insights. The models have been treated as black
boxes, assessed using conventional evaluation metrics, and concluded to have performed
significantly well. However, no attempts have been made to gauge the reliability of the
results. LIME [2] and SHAP [3] have become popular tools for enhancing the transparency
and accountability of machine learning models, enabling users to gain insights into their
decision-making processes and build trust in their predictions. Both approaches aim to
unravel the underlying logic driving the models’ predictions, particularly for individual
data points. We therefore attempted to use them to see how reliable the models were in
their prognosis.

Our experiments in trying to justify the results using LIME [2] and SHAP [3] show
that the class predictions relied significantly on unsound weights for features in the dataset.
These experiments demonstrate the need to supplement conventional metrics with expla-
nations of the models’ behavior and justification of the results. This work aims to answer
the following research questions:

• RQ1: How reliable are evaluation metrics such as accuracy in assessing machine
learning model performance in making important predictions?
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• RQ2: How well do the explainable AI techniques SHAP and LIME complement
conventional evaluation metrics?

• RQ3: How do the various machine learning algorithms compare when it comes to the
explainability of their outcomes?

A brief review of the current literature follows. A search for “Mental Health in Tech
Survey” in Google Scholar shows scores of articles that apparently have used the OSMH
datasets. A few of them [4,5] applied machine learning to predict the mental health of
employees mainly working in the tech/IT sector. One of them [6] attempted to interpret the
model using SHAP and Permutation Importance, but no conclusions were drawn. Even
according to their analysis, a past mental health disorders “whether it would interfere with
work if treatment is not effective” weighed more than “whether it has been professionally
diagnosed”, which does not make much sense. Generalized Linear Models applied to the
dataset show a high correlation between mental health issues and working for a primarily
technology-oriented company combined with certain demographics [7].

Prior work on linear regression, Multi-Layer Perceptron, and Echo State Networks
shows that there is a close relationship between the SHAP values and differences in
the performance of the models [8]. Since the models differ in complexity, the paper
concludes that model complexity is an important consideration concerning explainability.
The metrics used in the work are monotonicity, trendability, and prognosability. There
has been an attempt to measure the effectiveness of explainable techniques like SHAP
and LIME [9]. The authors created a new methodology to evaluate precision, generality,
and consistency in attribution methods. They found that both SHAP and LIME lacked all
three of these qualities, leading to the conclusion that more investigation is needed in the
area of explainability. In this context, it is also worth mentioning the explainable AI (XAI)
toolkit [10] that is built on top of DARPA’s efforts in XAI. The toolkit is purported to be a
resource for everyone wanting to use AI responsibly.

Explainability and fairness have been recommended for AI models used in healthcare
in what the authors of [11] call “the FAIR principles”. Understandably, the recent literature
has abundant work in these growing areas. Classification and explainability were attempted
on publicly available English language datasets related to mental health [12]. The focus of
the work was on analyzing the spectrum of language behavior evidenced on social media.
Interestingly, t-SNE and UMAP were also considered explainable artificial intelligence (XAI)
methods in a survey of the current literature on the explainability of AI models in medical
health [13]. Explainable AI (XAI) continues to be a hot topic in research, particularly in the
health domain, as can be observed from the the recent literature [14,15]. Machine learning
models deployed in the health domain can suffer from fairness issues too, and some of the
methods to address fairness can degrade the model’s performance in terms of accuracy and
fairness as well [16].

In an interesting scenario, SHAP explanations were used as features to improve
machine learning classification [17]. The article discusses the cost of wrong predictions in
finance and how SHAP explanations can be used to reduce this cost. The authors propose a
two-step classification process where the first step uses a base classifier and the second step
uses a classifier trained on SHAP explanations as new features. They test their method on
nine datasets and find that it improves classification performance, particularly in reducing
false negatives.

However, SHAP and LIME are vulnerable to adversarial attacks. In an article about
fooling post hoc explanation methods for black box models [18], the authors propose a
new framework to create “scaffolded” classifiers that hide the biases of the original model.
They show that these new classifiers can fool SHAP and LIME into generating inaccurate
explanations. A recent detailed survey [19] on explainable AI (XAI) methods highlighted
their limitations, including those of LIME. In yet another recent survey on XAI methods,
including LIME and SHAP, for use in the detection of Alzheimer’s disease [20], the authors
also highlighted the limitations and open challenges with XAI methods. A number of open
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issues with XAI have been discussed under nine categories providing research directions
in a recently published work [21].

1.1. Contribution

Our literature survey highlighted the advantages and disadvantages of explainabil-
ity techniques. Despite the limitations of SHAP and LIME described above, this work
successfully uses them to show how the black box approach of using machine learning
algorithms can be dangerously misleading. For instance, our experiments show that with
significant accuracy and a 100% prediction probability, the machine learning model called
SGD Classifier may predict that a person does not have a mental health condition even if
they answered “sometimes” to the survey question “If you have a mental health condition,
do you feel that it interferes with your work?” In doing so, the model relies more on the
fact that the person did not answer with “often” or “rarely” to the same question than on
the fact that the person did answer “sometimes”. The very fact that the person answered
this question implies that the person accepts they have a mental health condition. But
SGD Classifier predicts that the person does not have a mental health condition. The pre-
diction is therefore highly misleading. To the best of our knowledge, this work is unique
in highlighting the inadequacy of conventional evaluation metrics in assessing machine
learning model performance in the mental health domain and argues strongly that the
metrics need to be corroborated with a deeper understanding of the relationships between
features and outcomes.

1.2. Paper Organization

The remainder of this paper is organized as follows. Section 2 describes the approach,
detailing the dataset, tools, and experiments. The results from the experiments are pre-
sented in Section 3. Section 4 discusses the results and presents the analysis. Finally,
the conclusion is presented in Section 5.

2. Materials and Methods

After performing some intuitive data preprocessing steps on the dataset, such as
dropping irrelevant columns like timestamps and comments, smoothing the outliers,
and renaming the columns for consistency, class prediction was performed using a host
of machine learning algorithms, which are all popularly used in the literature. The al-
gorithms used were logistic regression [22], K-NN [23], decision tree [24], random for-
est [25], Gradient Boosting [26], Adaboost [27], SGD Classifier [28], Naive Bayes [29],
Support Vector Machines [30], XGBoost [31], and LightGBM [32]. For brevity, the algo-
rithms are not described here. Citations are provided instead. The selection of the algo-
rithms was based on the existing literature [4].

LIME (Local Interpretable Model-Agnostic Explanations) [2] and SHAP (Shapley
Additive Explanations) [3] are two prominent techniques used to demystify the complex
workings of machine learning models. These are much better than merely computing
feature importance using, say, information gain [24]. For instance, features with more
unique values tend to have higher information gain simply due to the increased opportunity
for splits, even if their true predictive power is limited. Also, information gain only
considers individual features and does not capture how features might interact with each
other to influence the outcome. On the other hand, attribution methods like SHAP and
LIME capture complex relationships between features and can identify synergistic effects.
We therefore attempted to justify the results using the explainability algorithms SHAP
and LIME. Both SHAP and LIME are used for complementary insights. LIME excels at
local explanations [2], while SHAP provides global feature importance and theoretical
guarantees [3]. Details are provided below.
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2.1. Dataset

The dataset used for the experiments in this work is called the “Mental Health in Tech
Survey [1]”. The data are from a survey conducted in 2014 pertaining to the prevalence of men-
tal health issues among individuals working in the technology sector. Some of the questions
asked in the survey include whether the respondent has a family history of mental illness,
how often they seek treatment for mental health conditions, and whether their employer
provides mental health benefits among questions about demographics, work environment, job
satisfaction, and other mental health-related factors. The class was determined by the answer
to the question in the survey “Have you ever been diagnosed with a mental health disorder?”
and was used as the target variable for the experiments. For data pre-processing, we dropped
the timestamp, country, state, and comments because those columns contained a number of
missing values and are not as relevant for the prediction of mental health. Also, one of the
numerical values named “Age” contained many outliers and missing values. Therefore, we
replaced those values with the median value for our experiment. The data were then split
into training and test sets in a ratio of 0.7:0.3.

2.2. LIME: Local Interpretable Model-Agnostic Explanations

LIME [2] is a technique used to explain individual predictions made by machine
learning models that are often used as “black boxes”. It is model-agnostic and works
with any type of model, regardless of its internal structure or training process. LIME
provides explanations specific to a single prediction, rather than trying to interpret the
model globally. This allows for capturing nuanced relationships between features and
outcomes for individual data points. LIME explanations are formulated using human-
understandable concepts, such as feature weights or contributions. This enables users to
grasp why the model made a particular prediction without needing deep expertise in the
model’s internal workings.

The core principle of LIME relies on surrogate models that are simple and interpretable
like linear regression. Such a surrogate model is fitted to approximate the black box model’s
behavior around the data point of interest. This is achieved through the following steps.

• Generate perturbations: A set of perturbed versions of the original data point is created
by slightly modifying its features. This simulates how changes in input features might
affect the model’s prediction.

• Query the black box: The model’s predictions for each perturbed data point are obtained.
• Train the surrogate model: A local surrogate model, such as a linear regression, is fit

to the generated data and corresponding predictions. This model aims to mimic the
black box’s behavior in the vicinity of the original data point.

• Explain the prediction: The weights or coefficients of the trained surrogate model
represent the contributions of each feature to the model’s output. These weights are
interpreted as the explanation for the original prediction.

The surrogate model can often be represented as

f̂ (x) = w0 + Σiwi ∗ xi (1)

where

• f̂ is the prediction of the surrogate model for an input data point x .
• w0 is the intercept.
• wi are the coefficients for each feature xi.

The weights wi then explain the model’s prediction, indicating how much each feature
influenced the outcome. LIME uses various techniques to ensure the faithfulness of the
explanation to the original model, such as the regularization and weighting of perturbed
points based on their proximity to the original data point.
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2.3. SHAP: Shapley Additive Explanations

SHAP [3] is also a model-agnostic technique for explaining machine learning models
by assigning each feature an importance value for a particular prediction. It provides
both individual prediction explanations (local) and overall feature importance insights
across the dataset (global). It applies Shapley values [33] from coalitional game theory to
calculate feature importance. In a game with players (features), a Shapley value represents
a player’s average marginal contribution to all possible coalitions (subsets of features).
SHAP analyzes how each feature’s marginal contribution impacts the model’s output,
considering all possible feature combinations.

For a model f and an input instance x with features S = x1, x2, ..., xn, the SHAP value
for a feature xi is defined as

ϕi( f , x) =
ΣS⊆S′−{xi}|S|!(n − |S| − 1)!

n!
∗ [ f (S ∪ {xi})− f (S)] (2)

where

• ϕi( f , x) represents the SHAP value for feature xi.
• S is a subset of features S’ excluding xi.
• f (S) is the model’s prediction using only features in S.
• n is the number of features.

• |S|!(n−|S|−1)!
n! can be considered a weighing factor.

As can be seen from the above equation, the marginal importance of each feature is
computed by including and excluding the feature in the prediction. SHAP assumes an
additive feature attribution model, but not in the units of prediction. Therefore, a “link
function” is used for additivity:

f (x) = g(w0 + Σiϕi( f , x)) (3)

where

• g is a link function such as a sigmoid for binary classification

Positive SHAP values indicate a feature pushing the prediction toward a higher value.
Negative SHAP values indicate a feature pushing the prediction toward a lower value.
Larger absolute SHAP values indicate greater feature importance for that prediction.

The methodology for the experiments is further described in Figure 1. After prepro-
cessing the data, various machine learning models are used to make predictions and are
evaluated using a number of metrics. The models are then passed as parameters to LIME
and SHAP explainers to generate interpretable plots.

Figure 1. Flowchart illustrating the methodology.
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3. Results

All the Python implementations of the machine learning algorithms used for prediction
and the attribution methods SHAP and LIME were imported and used with some fine-
tuning of the limited hyperparameters obtained by the grid search. The classification results
obtained are similar to the ones in the literature [4] and are tabulated in Table 1 and Figure 2.
To assess any impact due to class imbalance, we also computed the F1-score in addition to
other metrics. The machine learning algorithms used for this work are the same as the ones
used in [4], which has been used as the baseline for comparison with our work.

Table 1. Summary of results from applying various machine learning algorithms on the dataset.

Evaluation Metrics

Models Precision Recall F1 score Accuracy

LR 0.8279 0.8944 0.8599 0.8456
KNN 0.7428 0.5226 0.6135 0.6534

DT 0.7949 0.9547 0.8675 0.8465
RF 0.7857 0.8844 0.8321 0.8121
GB 0.8364 0.8994 0.8668 0.8544

AdaBoost 0.9206 0.2914 0.4427 0.6137
SGD 0.9206 0.2914 0.4427 0.6137
NB 0.7483 0.5678 0.6457 0.6719

SVM 0.7949 0.9547 0.8675 0.8465
XGB 0.8146 0.8391 0.8267 0.8148

LGBM 0.8240 0.8944 0.8578 0.8439

Figure 2. Bar graph comparing the results from various machine learning algorithms.

The hyperparameters used with each of the models are summarized in Table 2.

Table 2. Summary of fine-tuned hyperparameters for each model using grid search.

Model Hyperparameters

LR max iter: 1000
KNN n neighbors: 5

DT criterion: “gini”, max depth: 4
RF n estimators: 200, max depth: 12, min samples leaf: 6, min samples split: 20
GB n estimators: 50, learning rate: 1.0, max depth: 1

AdaBoost n estimators: 50
SGD max iter: 1000, loss: ‘log loss’, tol: 1 × 10−3

NB none
SVM kernel: “linear”, probability: True
XGB none

LGBM num round = 10
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The specific findings from the application of SHAP and LIME on each of the models
are discussed in the following subsections.

3.1. Logistic Regression

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of logistic regression are tabulated in Table 1.

Analysis of Results for SHAP and LIME

Based on the outcomes derived from employing logistic regression in conjunction with
the SHAP and LIME methods, it is evident that the variable “Work Interference(Sometimes)”
significantly influences the determination of mental health conditions among
study participants.

In Figure 3a, at the top, there are three charts. The leftmost is the predicted outcome.
In this specific instance, the outcome is “no mental health issue with 90% certainty”,
indicated by the blue-colored bar. The rightmost chart is a listing of the feature–value
pairs for the specific instance. Each feature in the middle plot is represented by a color-
coded bar whose length (positive or negative) indicates its overall contribution to the
prediction. Higher positive values imply the feature pushes the prediction toward the
outcome of the corresponding color, while higher negative values imply it opposes it.
For instance, the biggest factor that pushed the prediction to a “no” is in blue, called
“Work_Interfere_Sometimes”, which corresponds to the survey question “If you have a
mental health condition, do you feel that it interferes with your work?” Interestingly, it
played a more significant role in the model predicting “no” than Work_Interfere_Rarely,
which is a fallacy. One would expect that if the mental health condition interferes less
frequently or, for that matter, does not interfere less frequently, meaning never interferes, it
would be a better predictor of the complete absence of mental health condition than if it
interferes more frequently or does not interfere more frequently. The latter case implies
that there is still a possibility that it still interferes once in a while, hence the fallacy.

LIME is a local interpretation of a specific instance. SHAP, on the other hand, offers
both individual prediction explanations and overall feature importance insights. Individual
plots tell us why a specific prediction was made, while summary plots show the average
impact of each feature across the entire dataset. Since individual plots were examined
using LIME, Figure 3b at the bottom shows a summary plot for a more comprehensive
analysis. As can be seen, answering “sometimes” to the survey question “If you have a
mental health condition, do you feel that it interferes with your work?” weighs far more in
the logistic regression model in predicting than answering “often” or “rarely”, which is
counter-intuitive. Similarly, an employer providing mental health benefits weighs more
than respondent demographics like age and gender. Despite these apparent anomalies,
logistic regression achieves superlative evaluation metrics, as can be seen from Table 1.

3.2. Explanations Based on the K-Nearest Neighbors Algorithm

Despite fine-tuning the hyperparameters, the K-NN algorithm does not perform as
well as logistic regression. The evaluation metrics precision, recall, F1 score, and accuracy
obtained from the application of the K-Nearest Neighbors algorithm are tabulated in
Table 1.

SHAP and LIME Analysis of K-NN Model Performance

The analysis shows that K-NN differs significantly from logistic regression in terms of
the explainability of their outcomes. Based on the results derived from employing the K-NN
algorithm in conjunction with the SHAP and LIME methods, it is evident that the variables
“Age” and “Work Interference(Sometimes)” significantly influence the determination of
mental health conditions among study participants. The SHAP plot at the top in Figure 4 is
considerably different from the one for logistic regression in terms of the relative importance
attached to the features. Like with logistic regression, answering “sometimes” to the survey
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question “If you have a mental health condition, do you feel that it interferes with your
work?” weighs far more in the logistic regression model in predicting than answering
“often” or “rarely”, which is counter-intuitive. But the SHAP values are more sensible than
before because demographics like age, gender, and family history are given more weightage.

Figure 3. Insights into what drives the logistic regression predictions, to understand how and
why the predictions were made. (Top) Visualization of how features nudge the logistic regression
predictions up or down using SHAP values. (Bottom) Interpretable Explanations using LIME’s
localized approach. LIME uses weighted tweaks to features, revealing their impact on predictions.

The results from LIME are also more sensible because for the specific instance at the
bottom in Figure 4, the person is predicted to have a mental health issue based on age,
among other factors, while answering no to the survey question “If you have a mental
health condition, do you feel that it interferes with your work?”, and not having a family
history pulled the outcome the other way (blue). It is also intuitive that the employer
providing mental health benefits and the employee knowing about the care options that
the employer provides contributed to the prediction of a mental health issue. However,
the better sensibility of the explanations does not correlate with the not-so-appreciable
evaluation metrics.
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Figure 4. (Top) SHAP bar chart showing overall feature importance when K-NN model is used.
Features with larger absolute SHAP values (both positive and negative) have a stronger influence on the
prediction. (Bottom) Interpretable Explanations of the K-NN model using LIME’s localized approach.

3.3. Explanations Based on the Decision Tree Algorithm

The decision tree model’s performance is much better than that of K-NN. The evalua-
tion metrics precision, recall, F1 score, and accuracy obtained from the application of the
decision tree algorithm are tabulated in Table 1.

SHAP and LIME Analysis of the Decision Tree Model’s Performance

Decision trees are inherently interpretable. Here, too, based on the outcomes derived
from employing the decision tree algorithm in conjunction with the SHAP and LIME
methods, it is evident that the variable “Work Interference(Sometimes)” significantly in-
fluences the determination of mental health conditions among study participants. This
can be verified from Figure 5. Like before, “Work Interference(Sometimes)” ranks higher
than “Work Interference(often)” and “Work Interference(rarely)”. The ranking for the other
features is more sensible than that for logistic regression. The instance examined by LIME
is predicted to not have any mental health issues based on the response of “no” to family
history and work interference, which is a reasonable conclusion.
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Figure 5. (Top) Quantifying feature influence on decision tree like a game of fair contributions using SHAP.
(Bottom) Understanding why the decision tree makes a specific prediction using LIME’s localized approach.

3.4. Explanations Based on the Random Forest Algorithm

The random forest model performs reasonably well on the dataset. The evaluation
metrics precision, recall, F1 score, and accuracy obtained from the application of random
forest algorithm are tabulated in Table 1.

SHAP and LIME Analysis of the Random Forest Model’s Performance

As can be seen from Figure 6, based on the outcomes derived from employing the ran-
dom forest algorithm in conjunction with the SHAP and LIME methods, the explanations
are not entirely consistent with those from the decision tree model but are similar.
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Figure 6. (Top) SHAP bar chart showing overall feature importance when random forest model
is used. Features with larger absolute SHAP values (both positive and negative) have a stronger
influence on the prediction. (Bottom) Interpretable Explanations of the random forest model using
LIME’s localized approach.

3.5. Explanations Based on the Gradient Boosting Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the Gradient Boosting algorithm are tabulated in Table 1. The model performs
well on the dataset.

SHAP and LIME Analysis of the Gradient Boosting Model’s Performance

Like for other models, based on the outcomes derived from employing the Gradient
Boosting algorithm in conjunction with the SHAP and LIME methods, it is evident that
the variable “Work Interference(Sometimes)” significantly influences the determination of
mental health conditions among study participants. As can be seen from Figure 7, there is
nothing significantly different for this model.
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Figure 7. (Top) SHAP bar chart showing overall feature importance when the Gradient Boosting
model is used. (Bottom) Interpretable Explanations of the Gradient Boosting model’s predictions
using LIME’s localized approach.

3.6. Explanations Based on the AdaBoost Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the AdaBoost algorithm are tabulated in Table 1. The metrics are similar to
those for most of the other models.

SHAP and LIME Analysis of the AdaBoost Model’s Performance

Based on the outcomes derived from employing the AdaBoost algorithm in conjunc-
tion with the SHAP and LIME methods, it is evident that the variables “Work Interfer-
ence(Sometimes)” and “Work Interference(Often)” significantly influence the determination
of mental health conditions among study participants. Interestingly, from Figure 8, in the
case chosen for analysis using LIME, none of the factors play a significant role in predicting
a “no”. The model is almost equanimous for this instance of data.
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Figure 8. (Top) SHAP value chart when AdaBoost algorithm is used. (Bottom) LIME’s localized
approach shows that the AdaBoost algorithm is almost equanimous in predicting for this instance.

3.7. Explanations Based on the Stochastic Gradient Descent Classifier Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the SGD Classifier algorithm are tabulated in Table 1. The numbers are lower
than those for the other algorithms.

SHAP and LIME Analysis of the SGD Classifier Model Performance

From Figure 9, based on the outcomes derived from employing the Stochastic Gradient
Descent algorithm in conjunction with the SHAP and LIME methods, it is evident that the
variables “Work Interference(Sometimes)” and “Work Interference(Often)” significantly
influence the determination of mental health conditions among study participants. But as
pointed out earlier, the instance picked for analysis using LIME shows an erroneous
outcome. SGD Classifier predicts that a person does not have a mental health condition
even if they answered “sometimes” to the survey question “If you have a mental health
condition, do you feel that it interferes with your work?” In doing so, the model relies more
on the fact that the person did not answer with “often” or “rarely” to the same question
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than on the fact that the person did answer “sometimes”. The prediction is therefore
highly misleading.

Figure 9. (Top) SHAP and (bottom) LIME plots for SGD Classifier outcomes.

3.8. Explanations Based on the Naive Bayes Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the Naive Bayes algorithm are tabulated in Table 1. In terms of the metrics,
the algorithm does not perform as well as decision tree or logistic regression.

SHAP and LIME Analysis of the Naive Bayes Model’s Performance

As can be seen from Figure 10, the SHAP values are more logical than for the other
models. Based on the outcomes derived from employing the Naive Bayes algorithm in
conjunction with the SHAP and LIME methods, it is evident that the variable “Work Interfer-
ence(Often)” significantly influences the determination of mental health conditions among
study participants. The LIME analysis is also more reasonable than for the other models.
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Figure 10. (Top) SHAP bar chart showing overall feature importance when Naive Bayes algorithm is used.
(Bottom) Interpretable Explanations of the Naive Bayes algorithm using LIME’s localized approach.

3.9. Explanations Based on the Support Vector Machine Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the SVM algorithm are tabulated in Table 1. The performance of the model
in terms of these metrics is on par with other superlative models.

SHAP and LIME Analysis of the SVM Model’s Performance

From Figure 11, based on the outcomes derived from employing the Support Vector
Machine algorithm in conjunction with the SHAP and LIME methods, it is evident that
the variable “Work Interference(Sometimes)” significantly influences the determination
of mental health conditions among study participants. However, strangely, none of the
answers to the other questions matter much to the model in making predictions. This holds
consistently for both SHAP and LIME, locally and globally.
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Figure 11. (Top) SHAP bar chart showing overall feature importance when SVM model is used.
(Bottom) Interpretable Explanations of the SVM model using LIME’s localized approach.

3.10. Explanations Based on the XGBoost Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the XGBoost algorithm are tabulated in Table 1. The algorithm performs
reasonably well in terms of these metrics.

SHAP and LIME Analysis of the XGBoost Model’s Performance

From Figure 12, based on the outcomes derived from employing the XGBoost algo-
rithm in conjunction with the SHAP and LIME methods, it is evident that the variable
“Work Interference(Sometimes)” significantly influences the determination of mental health
conditions among study participants. These findings are not too different from those for
most other models.
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Figure 12. (Top) SHAP and (bottom) LIME plots for XGBoost outcomes.

3.11. Explanations Based on the LightGBM Algorithm

The evaluation metrics precision, recall, F1 score, and accuracy obtained from the
application of the LightGBM algorithm are tabulated in Table 1. The numbers are similar to
other best-performing models.

SHAP and LIME Analysis of the LightGBM Model’s Performance

As can be seen from Figure 13, based on the outcomes derived from employing the
Light GBM algorithm in conjunction with the SHAP and LIME methods, it is evident that
the variable “Work Interference(Sometimes)” significantly influences the determination of
mental health conditions among study participants. Here, too, there are no major surprises.
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Figure 13. (Top) SHAP and (bottom) LIME plots for Light GBM algorithm outcomes.

4. Discussion

These experiments show that the models behave differently than what is commonly
expected. Given that the survey is for understanding mental health issue prevalence in the
tech sector, the factors that are supposed to impact the prediction the most should relate to
the tech sector. In fact, the literature confirms a correlation between mental health prognosis
and the environment in the tech sector. Using the same dataset, researchers [34] state that
“When comparing those who work in tech to those who do not work in tech, there was a
clear majority of those who do work in tech”. It can therefore be expected that answers
to questions such as “Is your employer primarily a tech company/organization?” should
have ranked higher in the model’s predictions. However, the factors that came at the top
did not have anything specific to do with the tech sector. In fact, for some of the models,
like Support Vector Machine and decision tree, tech sector-related features did not matter
at all.
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Machine learning models are not expected to imply causality. Though the organization
OSMI, which conducts the survey year after year, targets workers in the tech sector, it is clear
from the results that indeed, there is no causality established. Despite the high accuracy
of the models in predicting mental health, they do not in any way imply that working in
the tech industry is a cause for mental health issues. The explainability techniques used
for this work also do not indicate any causality. It is therefore important to understand the
limitations and potential pitfalls of relying solely on machine learning models for drawing
major conclusions based on an intuitive interpretation of the results.

The authors of [35] also assess the effectiveness of machine learning algorithms in pre-
dicting mental health outcomes. Our experiments demonstrate that although the evaluation
metrics for the models are superlative, the justification of the outcomes from these models
is not intuitive or reasonable. It is also apparent that models differ in their explainability.
Accordingly, our research questions are answered as follows.

• RQ1: How reliable are evaluation metrics such as accuracy in assessing the machine
learning model performance in making important predictions?
The experiments demonstrate that the evaluation metrics fall short in their trustwor-
thiness. The metrics are high even when the models relied on an unsound ranking of
the features.

• RQ2: How well do the explainable AI techniques SHAP and LIME complement
conventional evaluation metrics?
The attribution techniques SHAP and LIME can add corroboratory evidence of the
model’s performance. The results from the experiment show the complementary
nature of the plots from the explainability methods and the evaluation metrics. LIME
is substantially impacted by the choice of hyperparameters and may not fully comply
with some legal requirements [36]. However, for the experiments described in this
paper, the profile of LIME explanations was mostly consistent with the explanations
from SHAP. A summary metric for the explainability aspects may further enhance the
utility of these methods.

• RQ3: How do the various machine learning algorithms compare when it comes to
the explainability of their outcomes?
The majority of the machine learning algorithms behave quite similarly with respect
to the explainability of the outcomes. However, some algorithms like SGD Classifier
perform poorly in terms of the explainability of their outcomes, while Naive Bayes
performs slightly better.

It is quite evident from these experiments that focusing only on achieving high perfor-
mance metrics from machine learning models, particularly those used for critical applica-
tions like mental health prediction, can be misleading and ethically concerning. This work
emphasizes the crucial role of explainability techniques in providing insights into how mod-
els arrive at their predictions, fostering trust and transparency. Our results also underscore
the broader applicability of XAI across various domains of application of machine learning.
A promising direction for research is in developing metrics and more frameworks that
evaluate models not just on accuracy-based performance but also on their interpretability
and trustworthiness.

5. Conclusions

Machine learning is increasingly being applied to critical predictions such as mental
health. The literature contains several bold claims about the effectiveness of the various
machine learning algorithms in predicting mental health outcomes. Several of those papers
use the same dataset as used in this work. The experiments described in this paper show
that these claims need to be corroborated using results from the explainability techniques
to gain insights into the models’ working and justification of the outcomes. Our findings
can be easily generalized to other domains and datasets as there is nothing specific in the
dataset or experiments detailed in this paper, nor are there any assumptions that limit their
generalizability. This work proves that merely achieving superlative evaluation metrics
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can be dangerously misleading and may infringe upon ethical horizons. A future direction
is to investigate methods to quantify the effectiveness of machine learning models in terms
of insights from their explainability.
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